[1] David M Holland and Adrian Jenkins. Modeling thermodynamic ice--ocean interactions at the base of an ice shelf. Journal of physical oceanograph5rs, 29(8):1787--1800, 1999. [ bib ]
[2] DA Sutherland, Rebecca H Jackson, Christian Kienholz, Jason M Amundson, WP Dryer, Dan Duncan, EF Eidam, RJ Motyka, and JD Nash. Direct observations of submarine melt and subsurface geometry at a tidewater glacier. Science, 365(6451):369--374, 2019. [ bib ]
[3] Kenneth D Mankoff, Fiammetta Straneo, Claudia Cenedese, Sarah B Das, Clark G Richards, and Hanumant Singh. Structure and dynamics of a subglacial discharge plume in a g reenlandic fjord. Journal of Geophysical Research: Oceans, 121(12):8670--8688, 2016. [ bib ]
[4] RH Jackson, JD Nash, C Kienholz, DA Sutherland, JM Amundson, RJ Motyka, D Winters, E Skyllingstad, and EC Pettit. Meltwater intrusions reveal mechanisms for rapid submarine melt at a tidewater glacier. Geophysical Research Letters, 47(2):e2019GL085335, 2020. [ bib ]
[5] Donald A Slater, Dan N Goldberg, Peter W Nienow, and Tom R Cowton. Scalings for submarine melting at tidewater glaciers from buoyant plume theory. Journal of Physical Oceanography, 46(6):1839--1855, 2016. [ bib ]
[6] DA Slater and F Straneo. Submarine melting of glaciers in greenland amplified by atmospheric warming. Nature Geoscience, pages 1--6, 2022. [ bib ]
[7] Donald A Slater, Fiamma Straneo, Denis Felikson, Christopher M Little, Heiko Goelzer, Xavier Fettweis, and James Holte. Estimating greenland tidewater glacier retreat driven by submarine melting. The Cryosphere, 13(9):2489--2509, 2019. [ bib ]
[8] Jason E Box, Alun Hubbard, David B Bahr, William T Colgan, Xavier Fettweis, Kenneth D Mankoff, Adrien Wehrlé, Brice Noël, Michiel R Van Den Broeke, Bert Wouters, et al. Greenland ice sheet climate disequilibrium and committed sea-level rise. Nature Climate Change, 12(9):808--813, 2022. [ bib ]
[9] E Rignot, Y Xu, D Menemenlis, J Mouginot, B Scheuchl, X Li, M Morlighem, H Seroussi, M van den Broeke, I Fenty, et al. Modeling of ocean-induced ice melt rates of five west greenland glaciers over the past two decades. Geophysical Research Letters, 43(12):6374--6382, 2016. [ bib ]
[10] Michael Wood, Eric Rignot, Ian Fenty, Lu An, Anders Bjørk, Michiel van den Broeke, Cilan Cai, Emily Kane, Dimitris Menemenlis, Romain Millan, et al. Ocean forcing drives glacier retreat in greenland. Science Advances, 7(1):eaba7282, 2021. [ bib ]
[11] Romain Hugonnet, Robert McNabb, Etienne Berthier, Brian Menounos, Christopher Nuth, Luc Girod, Daniel Farinotti, Matthias Huss, Ines Dussaillant, Fanny Brun, et al. Accelerated global glacier mass loss in the early twenty-first century. Nature, 592(7856):726--731, 2021. [ bib ]
[12] Inès N Otosaka, Andrew Shepherd, Erik R Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel van den Broeke, Martin Horwath, Ian Joughin, Michalea King, Gerhard Krinner, et al. Mass balance of the greenland and antarctic ice sheets from 1992 to 2020. Earth System Science Data Discussions, 2022:1--33, 2022. [ bib ]
[13] Anthony Seale, Poul Christoffersen, Ruth I Mugford, and Martin O'Leary. Ocean forcing of the greenland ice sheet: Calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. Journal of Geophysical Research: Earth Surface, 116(F3), 2011. [ bib ]
[14] Haotian Zhang, Chuanfeng Zhao, Yan Xia, and Yikun Yang. North atlantic oscillation--associated variation in cloud phase and cloud radiative forcing over the greenland ice sheet. Journal of Climate, 36(10):3203--3215, 2023. [ bib ]
[15] Ian M Howat, Ian Joughin, Mark Fahnestock, Benjamin E Smith, and Ted A Scambos. Synchronous retreat and acceleration of southeast greenland outlet glaciers 2000--06: ice dynamics and coupling to climate. Journal of Glaciology, 54(187):646--660, 2008. [ bib ]
[16] David Pollard. A simple ice sheet model yields realistic 100 kyr glacial cycles. Nature, 296(5855):334--338, 1982. [ bib ]
[17] J Oerlemans. Model experiments on the 100,000-yr glacial cycle. Nature, 287(5781):430--432, 1980. [ bib ]
[18] J Oerlemans. Some basic experiments with a vertically-integrated ice sheet model. Tellus, 33(1):1--11, 1981. [ bib ]
[19] Benoit S Lecavalier, David A Fisher, Glenn A Milne, Bo M Vinther, Lev Tarasov, Philippe Huybrechts, Denis Lacelle, Brittany Main, James Zheng, Jocelyne Bourgeois, et al. High arctic holocene temperature record from the agassiz ice cap and greenland ice sheet evolution. Proceedings of the National Academy of Sciences, 114(23):5952--5957, 2017. [ bib ]
[20] Victoria Lee, Stephen L Cornford, and Antony J Payne. Initialization of an ice-sheet model for present-day greenland. Annals of Glaciology, 56(70):129--140, 2015. [ bib ]
[21] MEREDITH A Kelly and ANTONY J Long. The dimensions of the greenland ice sheet since the last glacial maximum. PAGES News, 17(2):60--61, 2009. [ bib ]
[22] Stephen L Cornford, Daniel F Martin, Daniel T Graves, Douglas F Ranken, Anne M Le Brocq, Rupert M Gladstone, Antony J Payne, Esmond G Ng, and William H Lipscomb. Adaptive mesh, finite volume modeling of marine ice sheets. Journal of Computational Physics, 232(1):529--549, 2013. [ bib ]
[23] Roman J Motyka, Lewis Hunter, Keith A Echelmeyer, and Cathy Connor. Submarine melting at the terminus of a temperate tidewater glacier, leconte glacier, alaska, usa. Annals of Glaciology, 36:57--65, 2003. [ bib ]
[24] Ed Bueler and Jed Brown. Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model. Journal of Geophysical Research: Earth Surface, 114(F3), 2009. [ bib ]
[25] Roman J Motyka, William P Dryer, Jason Amundson, Martin Truffer, and Mark Fahnestock. Rapid submarine melting driven by subglacial discharge, leconte glacier, alaska. Geophysical Research Letters, 40(19):5153--5158, 2013. [ bib ]
[26] Alanna V Alevropoulos-Borrill, Isabel J Nias, Antony J Payne, Nicholas R Golledge, and Rory J Bingham. Ocean-forced evolution of the amundsen sea catchment, west antarctica, by 2100. The Cryosphere, 14(4):1245--1258, 2020. [ bib ]
[27] Adrian Jenkins. Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. Journal of Physical Oceanography, 41(12):2279--2294, 2011. [ bib ]
[28] Yun Xu, Eric Rignot, Ian Fenty, Dimitris Menemenlis, and M Mar Flexas. Subaqueous melting of store glacier, west greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophysical Research Letters, 40(17):4648--4653, 2013. [ bib ]
[29] Mason J Fried, Ginny A Catania, Timothy C Bartholomaus, D Duncan, M Davis, Leigh A Stearns, J Nash, E Shroyer, and D Sutherland. Distributed subglacial discharge drives significant submarine melt at a greenland tidewater glacier. Geophysical Research Letters, 42(21):9328--9336, 2015. [ bib ]
[30] Rebecca H Jackson, Emily L Shroyer, Jonathan D Nash, David A Sutherland, Dustin Carroll, Mason J Fried, Ginny A Catania, Timothy C Bartholomaus, and Leigh A Stearns. Near-glacier surveying of a subglacial discharge plume: Implications for plume parameterizations. Geophysical Research Letters, 44(13):6886--6894, 2017. [ bib ]
[31] Robin S Smith, Pierre Mathiot, Antony Siahaan, Victoria Lee, Stephen L Cornford, Jonathan M Gregory, Antony J Payne, Adrian Jenkins, Paul R Holland, Jeff K Ridley, et al. Coupling the uk earth system model to dynamic models of the greenland and antarctic ice sheets. Journal of Advances in Modeling Earth Systems, 13(10):e2021MS002520, 2021. [ bib ]
[32] Ellyn M Enderlin, Ian M Howat, Seongsu Jeong, Myoung-Jong Noh, Jan H Van Angelen, and Michiel R Van Den Broeke. An improved mass budget for the greenland ice sheet. Geophysical Research Letters, 41(3):866--872, 2014. [ bib ]
[33] Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, et al. The future sea-level contribution of the greenland ice sheet: a multi-model ensemble study of ismip6. The Cryosphere, 14(9):3071--3096, 2020. [ bib ]
[34] Marcus Lofverstrom, Jeremy G Fyke, Katherine Thayer-Calder, Laura Muntjewerf, Miren Vizcaino, William J Sacks, William H Lipscomb, Bette L Otto-Bliesner, and Sarah L Bradley. An efficient ice sheet/earth system model spin-up procedure for cesm2-cism2: Description, evaluation, and broader applicability. Journal of Advances in Modeling Earth Systems, 12(8):e2019MS001984, 2020. [ bib ]
[35] William H Lipscomb, Stephen F Price, Matthew J Hoffman, Gunter R Leguy, Andrew R Bennett, Sarah L Bradley, Katherine J Evans, Jeremy G Fyke, Joseph H Kennedy, Mauro Perego, et al. Description and evaluation of the community ice sheet model (cism) v2. 1. Geoscientific Model Development, 12(1):387--424, 2019. [ bib ]
[36] WF Budd, PL Keage, and NA Blundy. Empirical studies of ice sliding. Journal of glaciology, 23(89):157--170, 1979. [ bib ]
[37] Johannes Weertman. The theory of glacier sliding. Journal of Glaciology, 5(39):287--303, 1964. [ bib ]
[38] AC Fowler. Weertman, lliboutry and the development of sliding theory. Journal of Glaciology, 56(200):965--972, 2010. [ bib ]
[39] John F Nye. The motion of ice sheets and glaciers. Journal of Glaciology, 3(26):493--507, 1959. [ bib ]
[40] Heinz Blatter, Ralf Greve, and Ayako Abe-Ouchi. A short history of the thermomechanical theory and modeling of glaciers and ice sheets. Journal of Glaciology, 56(200):1087--1094, 2010. [ bib ]
[41] John F Nye. The flow of glaciers and ice-sheets as a problem in plasticity. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 207(1091):554--572, 1951. [ bib ]
[42] D Jenssen. A three-dimensional polar ice-sheet model. Journal of Glaciology, 18(80):373--389, 1977. [ bib ]
[43] WF Budd, D Jenssen, and IN Smith. A three-dimensional time-dependent model of the west antarctic ice sheet. Annals of Glaciology, 5:29--36, 1984. [ bib ]
[44] MW Mahaffy. A three-dimensional numerical model of ice sheets: Tests on the barnes ice cap, northwest territories. Journal of Geophysical Research, 81(6):1059--1066, 1976. [ bib ]
[45] Luke D Trusel, Sarah B Das, Matthew B Osman, Matthew J Evans, Ben E Smith, Xavier Fettweis, Joseph R McConnell, Brice PY Noël, and Michiel R van den Broeke. Nonlinear rise in greenland runoff in response to post-industrial arctic warming. Nature, 564(7734):104--108, 2018. [ bib ]
[46] Chad A Greene, Alex S Gardner, Nicole-Jeanne Schlegel, and Alexander D Fraser. Antarctic calving loss rivals ice-shelf thinning. Nature, 609(7929):948--953, 2022. [ bib ]
[47] Fernando S Paolo, Alex S Gardner, Chad A Greene, Johan Nilsson, Michael P Schodlok, Nicole-Jeanne Schlegel, and Helen A Fricker. Widespread slowdown in thinning rates of west antarctic ice shelves. The Cryosphere, 17(8):3409--3433, 2023. [ bib ]
[48] Sylvie Charbit, Aurélien Quiquet, Xavier Fettweis, Christophe Dumas, Masa Kageyama, Coraline Wyard, Catherine Ritz, et al. Assessment of the greenland ice sheet--atmosphere feedbacks for the next century with a regional atmospheric model coupled to an ice sheet model. The Cryosphere, 13(1):373--395, 2019. [ bib ]
[49] O. Linke, J. Quaas, F. Baumer, S. Becker, J. Chylik, S. Dahlke, A. Ehrlich, D. Handorf, C. Jacobi, H. Kalesse-Los, L. Lelli, S. Mehrdad, R. A. J. Neggers, J. Riebold, P. Saavedra Garfias, N. Schnierstein, M. D. Shupe, C. Smith, G. Spreen, B. Verneuil, K. S. Vinjamuri, M. Vountas, and M. Wendisch. Constraints on simulated past arctic amplification and lapse rate feedback from observations. Atmospheric Chemistry and Physics, 23(17):9963--9992, 2023. [ bib | DOI | http ]
[50] Felix Pithan and Thorsten Mauritsen. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature geoscience, 7(3):181--184, 2014. [ bib ]
[51] Jeff K Ridley, Philippe Huybrechts, JM u Gregory, and JA Lowe. Elimination of the greenland ice sheet in a high co2 climate. Journal of Climate, 18(17):3409--3427, 2005. [ bib ]
[52] Chad A Greene, Alex S Gardner, Michael Wood, and Joshua K Cuzzone. Ubiquitous acceleration in greenland ice sheet calving from 1985 to 2022. Nature, 625(7995):523--528, 2024. [ bib ]

This file was generated by bibtex2html 1.99.