[1] J. D. Annan and J. C. Hargreaves. A new global reconstruction of temperature changes at the last glacial maximum. Climate of the Past, 9(1):367--376, feb 2013. [ bib | DOI | http ]
[2] Michael J. Bentley, Colm Ó Cofaigh, John B. Anderson, Howard Conway, Bethan Davies, Alastair G.C. Graham, Claus-Dieter Hillenbrand, Dominic A. Hodgson, Stewart S.R. Jamieson, Robert D. Larter, Andrew Mackintosh, James A. Smith, Elie Verleyen, Robert P. Ackert, Philip J. Bart, Sonja Berg, Daniel Brunstein, Miquel Canals, Eric A. Colhoun, Xavier Crosta, William A. Dickens, Eugene Domack, Julian A. Dowdeswell, Robert Dunbar, Werner Ehrmann, Jeffrey Evans, Vincent Favier, David Fink, Christopher J. Fogwill, Neil F. Glasser, Karsten Gohl, Nicholas R. Golledge, Ian Goodwin, Damian B. Gore, Sarah L. Greenwood, Brenda L. Hall, Kevin Hall, David W. Hedding, Andrew S. Hein, Emma P. Hocking, Martin Jakobsson, Joanne S. Johnson, Vincent Jomelli, R. Selwyn Jones, Johann P. Klages, Yngve Kristoffersen, Gerhard Kuhn, Amy Leventer, Kathy Licht, Katherine Lilly, Julia Lindow, Stephen J. Livingstone, Guillaume Massé, Matt S. McGlone, Robert M. McKay, Martin Melles, Hideki Miura, Robert Mulvaney, Werner Nel, Frank O. Nitsche, Philip E. OBrien, Alexandra L. Post, Stephen J. Roberts, Krystyna M. Saunders, Patricia M. Selkirk, Alexander R. Simms, Cornelia Spiegel, Travis D. Stolldorf, David E. Sugden, Nathalie van der Putten, Tas van Ommen, Deborah Verfaillie, Wim Vyverman, Bernd Wagner, Duanne A. White, Alexandra E. Witus, and Dan Zwartz. A community-based geological reconstruction of antarctic ice sheet deglaciation since the last glacial maximum. Quaternary Science Reviews, 100:1--9, sep 2014. [ bib | DOI | http ]
[3] A. Born and K. H. Nisancioglu. Melting of northern greenland during the last interglaciation. The Cryosphere, 6(6):1239--1250, nov 2012. [ bib | DOI | http ]
[4] William Francis Budd and Uwe Radok. Glaciers and other large ice masses. Reports on Progress in Physics, 34(1):1, 1971. [ bib | http ]
[5] C. Buizert, V. Gkinis, J. P. Severinghaus, F. He, B. S. Lecavalier, P. Kindler, M. Leuenberger, A. E. Carlson, B. Vinther, V. Masson-Delmotte, J. W. C. White, Z. Liu, B. Otto-Bliesner, and E. J. Brook. Greenland temperature response to climate forcing during the last deglaciation. Science, 345(6201):1177--1180, sep 2014. [ bib | DOI | http ]
[6] R Calov, Alexander Robinson, M Perrette, and Andrey Ganopolski. Simulating the greenland ice sheet under present-day and palaeo constraints including a new discharge parameterization. The Cryosphere, 9(1):179--196, 2015. [ bib | DOI | http ]
[7] Stephen L Cornford, Daniel F Martin, Daniel T Graves, Douglas F Ranken, Anne M Le Brocq, Rupert M Gladstone, Antony J Payne, Esmond G Ng, and William H Lipscomb. Adaptive mesh, finite volume modeling of marine ice sheets. Journal of Computational Physics, 232(1):529--549, 2013. [ bib | DOI | http ]
[8] Joshua K Cuzzone, Peter U Clark, Anders E Carlson, David J Ullman, Vincent R Rinterknecht, Glenn A Milne, Juha-Pekka Lunkka, Barbara Wohlfarth, Shaun A Marcott, and Marc Caffee. Final deglaciation of the scandinavian ice sheet and implications for the holocene global sea-level budget. Earth and Planetary Science Letters, 448:34--41, 2016. [ bib | DOI | http ]
[9] D. Dahl-Jensen, M. R. Albert, A. Aldahan, N. Azuma, D. Balslev-Clausen, M. Baumgartner, A.-M. Berggren, M. Bigler, T. Binder, T. Blunier, J. C. Bourgeois, E. J. Brook, S. L. Buchardt, C. Buizert, E. Capron, J. Chappellaz, J. Chung, H. B. Clausen, I. Cvijanovic, S. M. Davies, P. Ditlevsen, O. Eicher, H. Fischer, D. A. Fisher, L. G. Fleet, G. Gfeller, V. Gkinis, S. Gogineni, K. Goto-Azuma, A. Grinsted, H. Gudlaugsdottir, M. Guillevic, S. B. Hansen, M. Hansson, M. Hirabayashi, S. Hong, S. D. Hur, P. Huybrechts, C. S. Hvidberg, Y. Iizuka, T. Jenk, S. J. Johnsen, T. R. Jones, J. Jouzel, N. B. Karlsson, K. Kawamura, K. Keegan, E. Kettner, S. Kipfstuhl, H. A. Kjær, M. Koutnik, T. Kuramoto, P. Köhler, T. Laepple, A. Landais, P. L. Langen, L. B. Larsen, D. Leuenberger, M. Leuenberger, C. Leuschen, J. Li, V. Lipenkov, P. Martinerie, O. J. Maselli, V. Masson-Delmotte, J. R. McConnell, H. Miller, O. Mini, A. Miyamoto, M. Montagnat-Rentier, R. Mulvaney, R. Muscheler, A. J. Orsi, J. Paden, C. Panton, F. Pattyn, J.-R. Petit, K. Pol, T. Popp, G. Possnert, F. Prié, M. Prokopiou, A. Quiquet, S. O. Rasmussen, D. Raynaud, J. Ren, C. Reutenauer, C. Ritz, T. Röckmann, J. L. Rosen, M. Rubino, O. Rybak, D. Samyn, C. J. Sapart, A. Schilt, A. M. Z. Schmidt, J. Schwander, S. Schüpbach, I. Seierstad, J. P. Severinghaus, S. Sheldon, S. B. Simonsen, J. Sjolte, A. M. Solgaard, T. Sowers, P. Sperlich, H. C. Steen-Larsen, K. Steffen, J. P. Steffensen, D. Steinhage, T. F. Stocker, C. Stowasser, A. S. Sturevik, W. T. Sturges, A. Sveinbjörnsdottir, A. Svensson, J.-L. Tison, J. Uetake, P. Vallelonga, R. S. W. van de Wal, G. van der Wel, B. H. Vaughn, B. Vinther, E. Waddington, A. Wegner, I. Weikusat, J. W. C. White, F. Wilhelms, M. Winstrup, E. Witrant, E. W. Wolff, C. Xiao, and J. Zheng. Eemian interglacial reconstructed from a greenland folded ice core. Nature, 493(7433):489--494, jan 2013. [ bib | DOI | http ]
[10] Robert M DeConto and David Pollard. Contribution of antarctica to past and future sea-level rise. Nature, 531(7596):591, 2016. [ bib | DOI | http ]
[11] M. A. Depoorter, J. L. Bamber, J. A. Griggs, J. T. M. Lenaerts, S. R. M. Ligtenberg, M. R. van den Broeke, and G. Moholdt. Calving fluxes and basal melt rates of antarctic ice shelves. Nature, 502(7469):89--92, sep 2013. [ bib | DOI | http ]
[12] Pierre Deschamps, Nicolas Durand, Edouard Bard, Bruno Hamelin, Gilbert Camoin, Alexander L. Thomas, Gideon M. Henderson, Junichi Okuno, and Yusuke Yokoyama. Ice-sheet collapse and sea-level rise at the bølling warming 14, 600 years ago. Nature, 483(7391):559--564, mar 2012. [ bib | DOI | http ]
[13] David Docquier, Laura Perichon, and Frank Pattyn. Representing grounding line dynamics in numerical ice sheet models: recent advances and outlook. Surveys in geophysics, 32(4-5):417--435, 2011. [ bib | DOI | http ]
[14] T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoffman, P. Huybrechts, A. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz. Effect of uncertainty in surface mass balance--elevation feedback on projections of the future sea level contribution of the Greenland ice sheet. The Cryosphere, 8:195--208, 2014. [ bib | DOI | http ]
[15] Tamsin L Edwards, Mark Brandon, Gael Durand, Neil R Edwards, Nicholas R Golledge, Philip B Holden, Isabel Nias, Antony Payne, Catherine Ritz, and Andreas Wernecke. Revisiting antarctic ice loss due to marine ice cliff instability. 2018. [ bib | http ]
[16] TL Edwards, Xavier Fettweis, O Gagliardini, F Gillet-Chaulet, H Goelzer, JM Gregory, M Hoffman, Ph Huybrechts, AJ Payne, M Perego, et al. Probabilistic parameterisation of the surface mass balance--elevation feedback in regional climate model simulations of the greenland ice sheet. The Cryosphere, 8(1):181--194, 2014. [ bib | http ]
[17] Jeremy C. Ely, Chris D. Clark, David Small, and Richard C. A. Hindmarsh. ATAT 1.0, an automated timing accordance tool for comparing ice-sheet model output with geochronological data. Geoscientific Model Development Discussions, pages 1--31, feb 2018. [ bib | DOI | http ]
[18] X. Fettweis, B. Franco, M. Tedesco, J. H. van Angelen, J. T. M. Lenaerts, M. R. van den Broeke, and H. Gallée. Estimating the greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model mar. The Cryosphere, 7(2):469--489, 2013. [ bib | DOI | http ]
[19] Xavier Fettweis, Jason Box, Cécile Agosta, Charles Amory, Christoph Kittel, Charlotte Lang, Dirk van As, Horst Machguth, and Hubert Gallée. Reconstructions of the 1900--2015 greenland ice sheet surface mass balance using the regional climate mar model. Cryosphere (The), 11:1015--1033, 2017. [ bib | http ]
[20] J. G. Fyke, W. J. Sacks, and W. H. Lipscomb. A technique for generating consistent ice sheet initial conditions for coupled ice sheet/climate models. Geoscientific Model Development, 7(3):1183--1195, jun 2014. [ bib | DOI | http ]
[21] JG Fyke, WJ Sacks, and WH Lipscomb. A technique for generating consistent ice sheet initial conditions for coupled ice sheet/climate models. Geoscientific Model Development, 7(3):1183--1195, 2014. [ bib | DOI | http ]
[22] Alex S Gardner and Martin J Sharp. A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization. Journal of Geophysical Research: Earth Surface, 115(F1), 2010. [ bib | DOI | http ]
[23] Heiko Goelzer, Sophie Nowicki, Tamsin Edwards, Matthew Beckley, Ayako Abe-Ouchi, Andy Aschwanden, Reinhard Calov, Olivier Gagliardini, Fabien Gillet-Chaulet, Nicholas R. Golledge, Jonathan Gregory, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Joseph H. Kennedy, Eric Larour, William H. Lipscomb, Sébastien Le clec&ampaposh, Victoria Lee, Mathieu Morlighem, Frank Pattyn, Antony J. Payne, Christian Rodehacke, Martin Rückamp, Fuyuki Saito, Nicole Schlegel, Helene Seroussi, Andrew Shepherd, Sainan Sun, Roderik van de Wal, and Florian A. Ziemen. Design and results of the ice sheet model initialisation experiments initMIP-greenland: an ISMIP6 intercomparison. The Cryosphere, 12(4):1433--1460, apr 2018. [ bib | DOI | http ]
[24] N. R. Golledge, L. Menviel, L. Carter, C. J. Fogwill, M. H. England, G. Cortese, and R. H. Levy. Antarctic contribution to meltwater pulse 1a from reduced southern ocean overturning. Nature Communications, 5(1), sep 2014. [ bib | DOI | http ]
[25] Lauren J. Gregoire, Bette Otto-Bliesner, Paul J. Valdes, and Ruza Ivanovic. Abrupt bølling warming and ice saddle collapse contributions to the meltwater pulse 1a rapid sea level rise. Geophysical Research Letters, 43(17):9130--9137, sep 2016. [ bib | DOI | http ]
[26] Lauren J Gregoire, Antony J Payne, and Paul J Valdes. Deglacial rapid sea level rises caused by ice-sheet saddle collapses. Nature, 487(7406):219, 2012. [ bib | DOI | http ]
[27] Lauren J Gregoire, Paul J Valdes, and Antony J Payne. The relative contribution of orbital forcing and greenhouse gases to the north american deglaciation. Geophysical Research Letters, 42(22):9970--9979, 2015. [ bib | http ]
[28] JM Gregory, OJH Browne, AJ Payne, JK Ridley, and IC Rutt. Modelling large-scale ice-sheet--climate interactions following glacial inception. Climate of the Past, 8(5):1565--1580, 2012. [ bib | http ]
[29] Michiel M Helsen, Roderik SW Van De Wal, Thomas J Reerink, Richard Bintanja, Marianne S Madsen, Shuting Yang, Qiang Li, and Qiong Zhang. On the importance of the albedo parameterization for the mass balance of the greenland ice sheet in ec-earth. Cryosphere, 11(4):1949--1965, 2017. [ bib | DOI | http ]
[30] Anna L. C. Hughes, Richard Gyllencreutz, Øystein S. Lohne, Jan Mangerud, and John Inge Svendsen. The last eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas, 45(1):1--45, oct 2015. [ bib | DOI | http ]
[31] Ruza F. Ivanovic, Lauren J. Gregoire, Masa Kageyama, Didier M. Roche, Paul J. Valdes, Andrea Burke, Rosemarie Drummond, W. Richard Peltier, and Lev Tarasov. Transient climate simulations of the deglaciation 219 thousand years before present (version 1) PMIP4 core experiment design and boundary conditions. Geoscientific Model Development, 9(7):2563--2587, jul 2016. [ bib | DOI | http ]
[32] Chris Jones, Jonathan Gregory, Robert Thorpe, Peter Cox, James Murphy, David Sexton, and Paul Valdes. Systematic optimisation and climate simulation of famous, a fast version of hadcm3. Climate Dynamics, 25(2):189--204, Aug 2005. [ bib | DOI | http ]
FAMOUS is an unfluxadjusted coupled atmosphere-ocean general circulation model (AOGCM) based on the Met Office Hadley Centre AOGCM HadCM3. Its parametrisations of physical and dynamical processes are almost identical to those of HadCM3, but by virtue of reduced horizontal and vertical resolution and increased timestep it runs about ten times faster. The speed of FAMOUS means that parameter sensitivities can be investigated more thoroughly than in slower higher-resolution models, with the result that it can be tuned closer to its target climatology. We demonstrate a simple method for systematic tuning of parameters, resulting in a configuration of FAMOUS whose climatology is significantly more realistic than would be expected for a model of its resolution and speed. FAMOUS has been tuned to reproduce the behaviour of HadCM3 as nearly as possible, in order that experiments with each model are of maximum relevance to the physical interpretation of the other. Analysis of the control climate and climate change simulation of FAMOUS show that it possesses sufficient skill for its intended purposes in Earth system science as a tool for long-timescale integrations and for large ensembles of integrations, when HadCM3 cannot be afforded. Thus, it can help to bridge the gap between models of intermediate complexity and the higher-resolution AOGCMs used for policy-relevant climate prediction.

[33] Kurt H Kjær, Shfaqat A Khan, Niels J Korsgaard, John Wahr, Jonathan L Bamber, Ruud Hurkmans, Michiel van den Broeke, Lars H Timm, Kristian K Kjeldsen, Anders A Bjørk, et al. Aerial photographs reveal late--20th-century dynamic ice loss in northwestern greenland. Science, 337(6094):569--573, 2012. [ bib | http ]
[34] A Lacour, H Chepfer, NB Miller, MD Shupe, V Noel, X Fettweis, H Gallee, JE Kay, R Guzman, and J Cole. How well are clouds simulated over greenland in climate models? consequences for the surface cloud radiative effect over the ice sheet. Journal of Climate, 31(22):9293--9312, 2018. [ bib | http ]
[35] K. Lambeck, H. Rouby, A. Purcell, Y. Sun, and M. Sambridge. Sea level and global ice volumes from the last glacial maximum to the holocene. Proceedings of the National Academy of Sciences, 111(43):15296--15303, oct 2014. [ bib | DOI | http ]
[36] E Le Meur, M Sacchettini, S Garambois, E Berthier, AS Drouet, G Durand, DA Young, JS Greenbaum, JW Holt, DD Blankenship, et al. Two independent methods for mapping the grounding line of an outlet glacier-an example from the astrolabe glacier, terre adélie, antarctica. The Cryosphere, 8(4):1331--1346, 2014. [ bib | http ]
[37] Benoit S. Lecavalier, Glenn A. Milne, Matthew J.R. Simpson, Leanne Wake, Philippe Huybrechts, Lev Tarasov, Kristian K. Kjeldsen, Svend Funder, Antony J. Long, Sarah Woodroffe, Arthur S. Dyke, and Nicolaj K. Larsen. A model of greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent. Quaternary Science Reviews, 102:54--84, oct 2014. [ bib | DOI | http ]
[38] Victoria Lee, Stephen L Cornford, and Antony J Payne. Initialization of an ice-sheet model for present-day greenland. Annals of Glaciology, 56(70):129--140, 2015. [ bib | DOI | http ]
[39] Yingkui Li, Jacob Napieralski, Jon Harbor, and Alun Hubbard. Identifying patterns of correspondence between modeled flow directions and field evidence: An automated flow direction analysis. Computers & Geosciences, 33(2):141--150, feb 2007. [ bib | DOI | http ]
[40] Zhengyu Liu, Jiang Zhu, Yair Rosenthal, Xu Zhang, Bette L Otto-Bliesner, Axel Timmermann, Robin S Smith, Gerrit Lohmann, Weipeng Zheng, and Oliver Elison Timm. The holocene temperature conundrum. Proceedings of the National Academy of Sciences, 111(34):E3501--E3505, 2014. [ bib | http ]
[41] Marie-France Loutre, Thierry Fichefet, Hugues Goosse, Philippe Huybrechts, Heiko Goelzer, and Emilie Capron. Factors controlling the last interglacial climate as simulated by loveclim1. 3. Climate of the Past, 10(4):1541--1565, 2014. [ bib | DOI | http ]
[42] Ashley L Lowe and John B Anderson. Reconstruction of the west antarctic ice sheet in pine island bay during the last glacial maximum and its subsequent retreat history. Quaternary Science Reviews, 21(16-17):1879--1897, 2002. [ bib | DOI | http ]
[43] Joseph A MacGregor, William T Colgan, Mark A Fahnestock, Mathieu Morlighem, Ginny A Catania, John D Paden, and S Prasad Gogineni. Holocene deceleration of the greenland ice sheet. Science, 351(6273):590--593, 2016. [ bib | DOI | http ]
[44] Jan Mangerud, Inge Aarseth, Anna L.C. Hughes, Øystein S. Lohne, Kåre Skår, Eivind Sønstegaard, and John Inge Svendsen. A major re-growth of the scandinavian ice sheet in western norway during allerød-younger dryas. Quaternary Science Reviews, 132:175--205, jan 2016. [ bib | DOI | http ]
[45] S. A. Marcott, J. D. Shakun, P. U. Clark, and A. C. Mix. A reconstruction of regional and global temperature for the past 11, 300 years. Science, 339(6124):1198--1201, mar 2013. [ bib | DOI | http ]
[46] Martin Margold, Chris R Stokes, and Chris D Clark. Ice streams in the laurentide ice sheet: Identification, characteristics and comparison to modern ice sheets. Earth-Science Reviews, 143:117--146, 2015. [ bib | DOI | http ]
[47] Martin Margold, Chris R Stokes, and Chris D Clark. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the laurentide ice sheet. Quaternary science reviews, 189:1--30, 2018. [ bib | DOI | http ]
[48] Mark Maslin, Dan Seidov, and John Lowe. Synthesis of the nature and causes of rapid climate transitions during the quaternary. The Oceans and Rapid Climate Change, pages 9--52, 2001. [ bib | http ]
[49] Valérie Masson-Delmotte, D Buiron, A Ekaykin, M Frezzotti, H Gallée, Jean Jouzel, G Krinner, A Landais, H Motoyama, Hans Oerter, et al. A comparison of the present and last interglacial periods in six antarctic ice cores. Climate of the Past, 7(2):397--423, 2011. [ bib | DOI | http ]
[50] M Morlighem, E Rignot, J Mouginot, H Seroussi, and E Larour. Deeply incised submarine glacial valleys beneath the greenland ice sheet. Nat. Geosci., 7:418--422, 2014. [ bib | DOI | http ]
[51] Sophie M. J. Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, Heiko Goelzer, William Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, and Andrew Shepherd. Ice sheet model intercomparison project (ISMIP6) contribution to CMIP6. Geoscientific Model Development, 9(12):4521--4545, dec 2016. [ bib | DOI | http ]
[52] J Oerlemans. Some basic experiments with a vertically-integrated ice sheet model. Tellus, 33(1):1--11, 1981. [ bib | http ]
[53] Andreas Plach, Kerim H Nisancioglu, Andreas Born, Petra M Langebroek, Chuncheng Guo, Michael Imhof, Thomas F Stocker, et al. Eemian greenland smb strongly sensitive to model choice. Climate of the Past, 14(10):1463--1485, 2018. [ bib | DOI | http ]
[54] J. G. L. Rae, G. Aðalgeirsdóttir, T. L. Edwards, X. Fettweis, J. M. Gregory, H. T. Hewitt, J. A. Lowe, P. Lucas-Picher, R. H. Mottram, A. J. Payne, J. K. Ridley, S. R. Shannon, W. J. van de Berg, R. S. W. van de Wal, and M. R. van den Broeke. Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models. The Cryosphere, 6(6):1275--1294, nov 2012. [ bib | DOI | http ]
[55] Eleanor Rainsley, Laurie Menviel, Christopher J Fogwill, Chris SM Turney, Anna LC Hughes, and Dylan H Rood. Greenland ice mass loss during the younger dryas driven by atlantic meridional overturning circulation feedbacks. Scientific reports, 8(1):11307, 2018. [ bib | DOI | http ]
[56] Jeff Ridley, Jonathan M Gregory, Philippe Huybrechts, and Jason Lowe. Thresholds for irreversible decline of the greenland ice sheet. Climate Dynamics, 35(6):1049--1057, 2010. [ bib | DOI | http ]
[57] E Rignot, JE Box, E Burgess, and E Hanna. Mass balance of the greenland ice sheet from 1958 to 2007. Geophysical Research Letters, 35(20), 2008. [ bib | http ]
[58] Eric Rignot, Isabella Velicogna, Michael R van den Broeke, Andrew Monaghan, and Jan TM Lenaerts. Acceleration of the contribution of the greenland and antarctic ice sheets to sea level rise. Geophysical Research Letters, 38(5), 2011. [ bib | DOI | http ]
[59] Catherine Ritz, Tamsin L Edwards, Gaël Durand, Antony J Payne, Vincent Peyaud, and Richard CA Hindmarsh. Potential sea-level rise from antarctic ice-sheet instability constrained by observations. Nature, 528(7580):115, 2015. [ bib | DOI | http ]
[60] Alessio Rovere, Maureen E Raymo, Matteo Vacchi, Thomas Lorscheid, Paolo Stocchi, Lluis Gomez-Pujol, Daniel L Harris, Elisa Casella, Michael J O'Leary, and Paul J Hearty. The analysis of last interglacial (mis 5e) relative sea-level indicators: Reconstructing sea-level in a warmer world. Earth-Science Reviews, 159:404--427, 2016. [ bib | DOI | http ]
[61] Christian Schoof and Ian Hewitt. Ice-sheet dynamics. Annual Review of Fluid Mechanics, 45:217--239, 2013. [ bib | DOI | http ]
[62] Jeremy D. Shakun, Peter U. Clark, Feng He, Shaun A. Marcott, Alan C. Mix, Zhengyu Liu, Bette Otto-Bliesner, Andreas Schmittner, and Edouard Bard. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature, 484(7392):49--54, apr 2012. [ bib | DOI | http ]
[63] Andrew Shepherd, Erik Ivins, Eric Rignot, Ben Smith, Michiel van den Broeke, Isabella Velicogna, Pippa Whitehouse, Kate Briggs, Ian Joughin, Gerhard Krinner, et al. Mass balance of the antarctic ice sheet from 1992 to 2017. Nature, 556:pages219--222, 2018. [ bib | DOI | http ]
[64] Andrew Shepherd, Erik R Ivins, A Geruo, Valentina R Barletta, Mike J Bentley, Srinivas Bettadpur, Kate H Briggs, David H Bromwich, René Forsberg, Natalia Galin, et al. A reconciled estimate of ice-sheet mass balance. Science, 338(6111):1183--1189, 2012. [ bib | http ]
[65] S. Sun, S. L. Cornford, Y. Liu, and J. C. Moore. Dynamic response of antarctic ice shelves to bedrock uncertainty. The Cryosphere, 8(4):1561--1576, aug 2014. [ bib | DOI | http ]
[66] CR Tabor, CJ Poulsen, and D Pollard. Mending milankovitch's theory: obliquity amplification by surface feedbacks. Climate of the Past, 10(1):41--50, 2014. [ bib | http ]
[67] ME Tamisiea, JX Mitrovica, and JL Davis. Grace gravity data constrain ancient ice geometries and continental dynamics over laurentia. Science, 316(5826):881--883, 2007. [ bib | http ]
[68] Lev Tarasov, Arthur S. Dyke, Radford M. Neal, and W.R. Peltier. A data-calibrated distribution of deglacial chronologies for the north american ice complex from glaciological modeling. Earth and Planetary Science Letters, 315-316:30--40, jan 2012. [ bib | DOI | http ]
[69] J. H. van Angelen, J. T. M. Lenaerts, M. R. van den Broeke, X. Fettweis, and E. van Meijgaard. Rapid loss of firn pore space accelerates 21st century greenland mass loss. Geophysical Research Letters, 40(10):2109--2113, may 2013. [ bib | DOI | http ]
[70] M. Vizcaíno, U. Mikolajewicz, J. Jungclaus, and G. Schurgers. Climate modification by future ice sheet changes and consequences for ice sheet mass balance. Climate Dynamics, 34(2-3):301--324, jun 2010. [ bib | DOI | http ]
[71] Miren Vizcaíno, William H. Lipscomb, William J. Sacks, and Michiel van den Broeke. Greenland surface mass balance as simulated by the community earth system model. part II: Twenty-first-century changes. Journal of Climate, 27(1):215--226, jan 2014. [ bib | DOI | http ]
[72] Miren Vizcaino, Uwe Mikolajewicz, Florian Ziemen, Christian B. Rodehacke, Ralf Greve, and Michiel R. van den Broeke. Coupled simulations of greenland ice sheet and climate change up to a.d. 2300. Geophysical Research Letters, 42(10):3927--3935, may 2015. [ bib | DOI | http ]
[73] Matthew G. Wise, Julian A. Dowdeswell, Martin Jakobsson, and Robert D. Larter. Evidence of marine ice-cliff instability in pine island bay from iceberg-keel plough marks. Nature, 550(7677):506--510, oct 2017. [ bib | DOI | http ]
[74] Bert Wouters, Alba Martin-Español, Veit Helm, Thomas Flament, JM van Wessem, Stefan RM Ligtenberg, Michiel Roland Van den Broeke, and Jonathan L Bamber. Dynamic thinning of glaciers on the southern antarctic peninsula. Science, 348(6237):899--903, 2015. [ bib | DOI | http ]

This file was generated by bibtex2html 1.98.