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Forecasting systems require verification!

Forecasts (e.g. of meteorological or economical variables) are
indispensable for decision support . . . . . . but only if they have a
clear statistical interpretation! For instance (proper definition will
come later)

Probabilistic forecasts – The forecasts represent the probability
distribution of the verification, conditionally on the information
available at forecast time.

Mean forecasts – The forecasts represent the conditional mean
(expectation value) of the verification.

Quantile forecasts – The forecasts represent a specific conditional
quantile of the verification.

Hence, verification has to be in a statistical sense.
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Forecasting systems require verification!

Forecast verification uses verification–forecast data sets to answer
questions regarding “average” forecast behaviour, for instance:

1. Is the proposed statistical interpretation
consistent with the actual statistical behaviour
(calibration or reliability)?

2. How much “information” about the verification
do the forecasts contain (e.g. when compared to
a benchmark forecast) (resolution)?

According to the prequential principles [Dawid(1984)], forecast
verification should only take into account

1. the forecasts that have actually been issued,
2. the verifications that have actually materialised,
3. the statistical interpretation of the forecasts, as stated by the

forecaster.
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Mathematical setup and notation

Indices in round brackets (.) denote time, subscripts denote vector
components (or ensemble members). We are given
▶ the verifications {Y (n)}n=1,2,..., a series of random variables

with values in E ,
▶ state space E is typically either finite or some subset of Rd .
▶ the forecasts {f (n)}n=1,2,..., a series of random variables with

values in some F (depending on type of forecasts),
Note: Forecast f (n) corresponds to verification Y (n); the index n
refers to verification time. Typically, the forecast f (n) is issued at
time n − L where L is the lead time.
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Types of forecasts

Forecasts can be distinguished based on
Statistical interpretation – Mean, quantile, expectile, cumulative

distribution functions, ensembles, . . .
Type of verification – categorical, real, multidimensional, spatial,

temporal duration (e.g. of droughts), . . .
Lead time – short range, medium range, seasonal, . . .
We will not cover the entire spectrum. Aim is to explain a few core
ideas through typical examples. For each example we discuss
▶ What is the statistical interpretation of the forecast?
▶ What are desirable forecast attributes?
▶ How to we verify/quantify these attributes?
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Probability forecasts
. . . have a long history!

From [2], observations taken at Parc Montsouris, Paris.



Probability forecasts
Statistical interpretation

Consider probability forecasts for binary verifications: Y (n) ∈ {0, 1}
for all n = 1, 2, . . .. (Extension to more categories straight
forward.) Forecasts f (n), n = 1, 2, . . . are numbers in [0, 1].

Statistical interpretation:
For n = 1, 2, . . ., the forecast f (n) should be the conditional
probability of Y (n) given the information available at time n − L
(i.e. when the forecast f (n) is issued).
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Probability forecasts
Desirable forecast attributes

Specialise our general goals of forecast verification to probability
forecasts:

Reliability or Calibration
For probability forecasts, this means

f (n) = P(Y (n) = 1|f (n))
“Forecast at time n” = “Distr. of Y (n), given forecast f (n)”

(1)

Resolution
P(Y (n) = 1|f (n)) exhibits strong variability, i.e. is typically very
different from climatology P(Y (n) = 1) [6].

Sharpness
Forecasts f (n) are either close to zero or close to one.
Attention: Only desirable if forecasts are
reliable [Gneiting et al.(2007)Gneiting, Balabdaoui, and Raftery]!
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Probability forecasts
Scoring rules

To quantify performance of individual forecasts, we use scoring rules

S(y , f ), where y = verification, f = forecast. (2)

Examples for probability forecasts for several categories, i.e.
y ∈ {1, . . . ,K} and f = (f1, . . . , fk) with

∑
fk = 1:

Logarithmic score – S(y , f ) = log(fy )

Quadratic score – S(y , f ) = 1
2
∑

k f
2
k − fy

(CRP score, energy score, . . . )
Convention: Smaller score means better forecast.
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Probability forecasts
Scoring rules

The mentioned scores are (strictly) proper scoring rules: For any
probability forecasts f , g we have∑

k

S(k , f )gk ≥
∑
k

S(k , g)gk (3)

i.e. assuming g is correct distribution of Y ,
expected score of f ≥ expected score of g itself.

We have [3]: ES(Y (n), f (n)) = UNC − RES + REL, (note signs)
where for strictly proper scoring rules
▶ UNC depends only on Y (n), not on f (n),
▶ RES is positive, unless f (n) has no resolution,
▶ REL is positive, unless f (n) is calibrated.

ES(Y (n), f (n))
est.
≈ 1

N

∑N
n=1 S(Y (n), f (n))

but separate estimates of RES, REL are more difficult to obtain [5].
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Probability forecasts
Identification functions

More relevant for testing are identification functions, i.e. functions
V(y , f ) [13, 9] so that ∑

k

V(k , f )fk = 0 (4)

(but typically
∑

k V(k , g)fk ̸= 0 if f ̸= g). Note: V can be
multi–dimensional.
Example: Identification function V with components
Vd(y , f ) = 1{y=d} − fd for d = 1, . . . ,K . For Conditional mean
forecasts or binary probability forecasts take V(f , y) = f − y .

If forecasts are reliable . . .

E(V(Y (n), f (n))|f (n)) = 0 for n = 1, 2, . . . . (5)
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Ensemble forecasts
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Verification

Meteorological ensemble forecasts typically are numerical
simulations of the atmosphere with heterogenous initial con-
ditions (obtained using data assimilation).

Notation: Let X(n) = (X1(n), . . . ,XK−1(n)), n = 1, 2, . . . ensemble
forecasts. Let F(n), n = 1, 2, . . . be information available to
forecaster at time n − L.
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Ensemble forecasts
Statistical interpretation and desirable forecast attributes

Reliability
Ensemble members (X1(n), . . . ,XK−1(n)) and verification Y (n)
should be “independent draws” from the conditional distribution
P(Y (N)|F(n)) [3, 4, 15].

Resolution
If Y (m) and Y (n) are very different for m ̸= n, then X(m) and
X(n) should also be very different.

Sharpness
Ensembles X(n) is very “narrow” (i.e. little spread). Attention: Only
desirable for reliable ensembles.
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Ensemble forecasts
Scoring rules and rank histograms

We assume E = R for simplicity.
Scoring rules: The CRP Score can directly be applied to ensembles.
Other scores require postprocessing (e.g. kernel methods)
The rank histogram: Define R(n) to be the rank of Y (n) among
the ensemble members X1(n), . . . ,XK−1(n). Reliability (plus
technical conditions) implies

P(R(n) = k) =
1
K
.

In particular, the ranks have a uniform distribution.
Uniform rank distribution has long been recognized as necessary
consequence of reliability [1, 14, 11, 10]. Can be cast in terms of
identification functions.
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Ensemble forecasts
Rank histograms

Qualitative measure of reliability is the rank histogram

Quantitative tests encounter two problems:
1. ranks are serially correlated,
2. uniform histogram only necessary but not sufficient for

reliability.
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What is a “statistical test” for reliability?

The verification–forecast pairs {(Y (n), f (n)), n = 1, 2, . . .} form a
series of random variables with joint distribution P. Reliability
imposes a constraint on P. Write
H0 Null Hypothesis: – all distributions P that satisfy reliability,
H1 Alternative: – a set of distributions that do not satisfy reliability

(might be the complement of H0).
A test statistic τ is a function of the data {(Y (n), f (n))}n≤N .

Goal of testing
Find a test statistic τ and threshold c so that P(τ ≥ c) is small if
P ∈ H0, but large if P ∈ H1.
Can be seen as False Alarm Rate resp Hit Rate of the test “τ ≥ c”.
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The power function

Important points to keep in mind:
▶ P(τ ≥ c) takes different values for different P ∈ H0 so no

single “False Alarm rate”. Might define

FAR := max
P∈H0

P(τ ≥ c). (6)

▶ Same for “Hit Rate”, so define

HR := min
P∈H1

P(τ ≥ c). (7)

▶ Typically, HR ≫ FAR only for increasing amounts of data.
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How to chose test statistic τ

REL part of score decomposition Taking τ an estimate of REL
would be expected to be small under H0 yet large under H1. For
most scores, distribution of τ is classic for independent
d{(Y (n), f (n))} but otherwise FAR difficult to compute.

Identification function V Since E(V(Y (n), f (n))) = 0 under H0,

R(N) =
1√
N

N∑
k=1

V(Y (k), f (k))

satisfies CLT under fairly general conditions. May then take
τ = R(N)tΓ−1R(N) as test statistic. Issues:

1. Covariance Γ of RN – needs estimating.
2. Power – will be quite low.
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A stronger reliability condition
To deal with both issues

Recall that F(n) is the information available to the forecaster at
time n − L (i.e. when issuing forecast f (n)), for n = 1, 2, . . .. We
impose the

Stronger reliability condition

P(Y (n) = k|F(n)) = fk(n)

i.e. conditioning on all available information.
Compare with Eq. (1) where conditioning is only on current
forecast. We also impose

Stationarity
Distribution of data independent of time origin.
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How to improve power: Stratification

A stratification is any process {S(n), n ∈ N} so that S(n) is “part
of” F(n) for n = 1, 2 . . ..
Examples

1. S(k) = const (this would test for unconditional reliability)
2. S(k) = f (k) (essentially a regression based test; this often

performs very well already)
Strong reliability implies E(V(n)S(n)) = 0 for all n ∈ N, thus we
consider

R(N) =
1√
N

N∑
k=1

V(Y (k), f (k))S(k)

and take τ = R(N)tΓ−1R(N) as test statistic.
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Estimating variance of R(N)

For τ = R(N)tΓ−1R(N), we need and estimate Γ̂ of
Γ = Cov(R(N)), which is asymptotically given by

Γ = Cov(ψ(0)) + 2
∑
k

Cov(ψ(0), ψ(k)) (8)

where ψ(k) := V(Y (k), f (k))S(k). Due to strong reliability
assumption, sum has only L nonzero terms which we estimate
one-by-one.

Theorem [7]
Under H0, test statistic τ has asymptotic χ2 distribution.
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Stratified rank histograms for ensemble forecasts
Bonus material

A more detailed picture of the reliability can be obtained through
stratified rank histograms.

Define strata

S(n) := s(Y (n),X1(n), . . . ,XK−1(n)),

where s : EK → {1, . . . , L} is a symmetric function assuming only
L different values (e.g. coarse grained empirical mean or median).

Reliability implies that the ranks have a uniform distribution in each
stratum, i.e.

P(R(n) = k|S(n) = l) =
1
K

for all l = 1, . . . , L.
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A generalised GOF test for stratified rank histograms
Bonus material

Consider Nk,l := #{n;R(n) = k ,S(n) = l} for k = 1, . . . ,K and
l = 1, . . . , L, and set

Zk,l :=
Nk,l − 1

K

∑
k Nk,l√

K
∑

k Nk,l

Theorem (J.B. et al [8])
Assume all π(n) have continuous CDF’s and that
{(R(n),S(n))}n∈N is ergodic. Then (Zk,l)k,l is asymptotically
normal with mean zero and some covariance Γ, which has rank
(K − 1)L. Further, there exists a consistent estimator Γ̂+ for Γ+.
Hence, the test statistic

t := ZT Γ̂+Z

is asymptotically χ–square with (K − 1)L dof.
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Num. Example: ECMWF temperature data
Bonus material

Verification {Y (n)} are daily two-metre temperature observations
in Beauvais. Ensembles come from the ECMWF operational
medium range ensemble prediction system (lead time 5 days).
Forecasts were classified into three strata corresponding to warm,
medium, and cold situations.
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a)  Beauvais (FR), p-val: 0.0109  - #360 
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p-val: 0.23159971

b)  Beauvais (FR), p-val: 0.2316 - #360 

Unstratified histogram (right panel b) shows no evidence for lack of
reliability but stratification (left panel a) reveals significant
conditional bias (forecast is too warm in cold conditions and too
cold in warm conditions), leading to lack of reliability.



Num. Example: ECMWF temperature data
Bonus material

Verification {Y (n)} are daily two-metre temperature observations
in Beauvais. Ensembles come from the ECMWF operational
medium range ensemble prediction system (lead time 5 days).
Forecasts were classified into three strata corresponding to warm,
medium, and cold situations.

0

5

10 mean 2 m temp.: 3.08 °C
a)  Beauvais (FR), p-val: 0.0109  - #360 

0

5

10 mean 2 m temp.: 6.69 °C

0 10 20 30 40 50
0

5

10 mean 2 m temp.: 9.95 °C

0 10 20 30 40 50
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

p-val: 0.23159971

b)  Beauvais (FR), p-val: 0.2316 - #360 

Unstratified histogram (right panel b) shows no evidence for lack of
reliability but stratification (left panel a) reveals significant
conditional bias (forecast is too warm in cold conditions and too
cold in warm conditions), leading to lack of reliability.



Introduction, mathematical setup, and notation

Types of forecasts, scoring rules, and forecast attributes

Tests and p-values

How to cope with dependent data

Verification of spatial fields



Which forecast field is best?

observation 1 day forecast 3 day forecast

RMSE=0 RMSE=0.96 RMSE=0.87

(MesoVICT standardised test case 2007-07-20 11 UTC, BOLAM hourly
precipitation forecasts vs station-based VERA reference field.)
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Double penalty: Mis-placed features punished twice, grid-point
wise verification not helpful!



Which forecast field is best?

observation smoothed 1 day forecast 3 day forecast

RMSE=0 RMSE=0.67 RMSE=0.87
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wise verification not helpful!



Which forecast field is best?

observation smoothed 1 day forecast 3 day forecast zero forecast

RMSE=0 RMSE=0.67 RMSE=0.87 RMSE=0.77

Double penalty: Mis-placed features punished twice, grid-point
wise verification not helpful!
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Neighbourhood methods

observation

forecast

Idea: Threshold fields (rain yes/no), apply smoothing, then
compare grid-point wise. Repeat for different thresholds and
smoothings.



Feature-based methods

observation

forecast

Idea: Decompose fields into discrete objects, then
(a) compare statistics of object properties
(b) match forecast and observed objects, compare directly



Scale-separation methods

observation

forecast

Idea: Decompose fields into components on different scales, then
(a) compare variance distribution across scales
(b) compute grid-point wise errors on each scale



Field Deformation

observation

forecast

Idea: Search for a vector field that transforms one field into the
other, then measure the magnitude of the transformation.



Binary distance measures

observation

forecast

Idea: Compute the distance to the nearest non-zero pixel (distance
map) in each image, then compare.
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