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— GHG only Figure 4: Multi-model mean timeseries (colours) of TOA outgoing SW, latent heat flux, and near-surface
temperature for three aerosol-sensitive regions. Coloured stars indicate which forcing component is likely to be
the main driver of the all forcing trend in a given period.
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Where it is valid:
) ) » AA typically drives trends in fluxes during the historical period
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Figure 2: Individual model timeseries (colours) of TOA outgoing shortwave (SW), latent heat flux, and near-
surface temperature for three aerosol-sensitive regions. The multi-model means are shown by the black solid
line (All), black dashed line (AA), and white dashed line (GHG). All timeseries are 11-year running means.

eIndividual model timeseries are noisy, with considerable inter-model

spread
e An anthropogenic aerosol influence can be seen on the all forcing

timeseries 1n all cases

surface temperature for the regions shown

in Figure 1. % indicates when All is closer to
AA than to GHG.

Euclidean distance

» All timeseries closely follows AA for TOA outgoing SW, and latent o All closely follows AA for fluxes directly influenced by aerosol, with
heat flux weaker relationships for temperature, as seen 1n Figure 1
» AA 1Influences multi-decadal variability in near-surface temperature Next steps:

e Use our knowledge of inter-model differences to explain inter-model
diversity on a regional scale.
» Likely to be limited be internal variability and small ensemble sizes
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