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Ice-sheet processes
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Recent ice-sheet thickness change

dS/dt (cm/year)
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Flow speed has increased for some Greenland and Antarctic outlet glaciers, which drain ice
from the interior of the ice sheets. The corresponding increased ice sheet mass | oss has often
followed thinning, reduction or loss of ice shelves or loss of floating glacier tongues. [Mass]
losses from the ice sheets of Greenland (0.21+0.07 mm yrt) and Antarctica (0.21+0.35 mm
yr1) have very likely contributed to sealeve rise over 1993 to 2003 (3.1+0.7 mm yr?).



Ice-streams In Pine Island Bay, West Antarctica

Rignot in Payne et al. (2006)



AR4 projections of sea level rise by 2090-2099
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The projections include a contribution due to increased ice flow from Greenland and
Antarctica at the rates observed for 1993-2003, but these flow rates could increase or
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decrease in the future. ... Larger values cannot be excluded, but understanding of

these effectsistoo limited to assess their likelihood or provide a best estimate or an upper

bound for sealevel rise.



Relationship between CO, and ice volume
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Antarctic mass balance
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Ice-sheet processes
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Antarctic coast with glaciological and oceanographic processes

Without the ice rise, this ice shelf would be unstable



Cumulative thinning {m)

Modelling reaction of an ice-stream to reduced restraint
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We need models of continental ice-sheets
including dynamics of ice-streams and ice-shelves




Warming ocean promotes basal melting
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We need models relating ice-shelf basal melting to large-scale oceanography



Greenland mass balance

— n |
5,
c) I
1]
o
=
S 100
L
o0
i
_E 0.5 mm 'yr'1 sea-level rise
o
2 -200
-30 | | | | | | | | |
1095[} 1970 1880 1980 2000

Year
Alley et al., 2007, Ann. Glac.



Jakobshavn Isbrae, West Greenland
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Discharge from many
major Greenland ice
streams (outlet glaciers) |
has accelerated markedly

Source: Konrad
Steffen, Univ. of
Colorado



Jakobshavn Isbrae, West Greenland
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Retreat with speed doubling during ice-shelf loss (Alley et al., 2005).



Eleration ancmaly (m}

Jakobshavn Isbrae, West Greenland
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Jakobshavn Isbrae, West Greenland

Water temperature, 150-600 m depth-averaged

Holland et al. (2008)



Lubrication of ice-sheet flow by surface meltwater

Zwally et al. (2002)



Supraglacial meltwater lake in Greenland
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Photo courtesy lan Joughin (copyright 2008)



Drainage of meltwater lake to the ice-sheet bed

Spectacular confirmation:
observed lake drainage
through new fracture to
bed, with >Niagara Falls
for an hour, uplift of
several meters

Das et al., 2008



Lubrication of ice-sheet flow by surface meltwater
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Velocity speed up when there is large surface melting and during lake drainage.

Only a few % averaged over a large area and whole year. Joughin et al. 2008
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Lubrication of ice-sheet flow by surface meltwater

Central Greenland frozen to bed, with almost no basal motion.
Thawing a frozen bed increases motion, perhaps 2x as a first estimate.

Time for advective-diffusive propagation of surface temperature and snowfall
changes to bed: 103-104 yr.

Time for surface meltwater reaching bed to have similar effect: ~ 1 hour.

Hence inland expansion of surface melting may accelerate ice discharge and
rate of mass loss (10s%, Parizek and Alley, 2004).



Greenland surface mass balance
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Greenland temperature change (K)

Uncertainty in projected change in
Greenland surface mass balance
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CO2 emissions (Gt

Irreversible loss of the Greenland ice sheet
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ice sheet volume (%)

Evolution of ice sheet volumes

Irreversible loss and multiple states
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Fraction of initial ice-sheet volume

Irreversible loss of the Greenland ice sheet




Summary

The contribution of ice-sheets to future sea-level rise is very uncertain.

Accelerated ice-stream flow has been observed in both Antarctica and

Greenland due to reduced ice-shelf buttressing, probably related to ocean
warming.

People are working urgently on models of ocean—ice-shelf—ice-sheet
interaction. Regional ocean warming will also be a challenge to predict.

Basal lubrication by surface meltwater commonly leads to accelerated flow in
Greenland, but it is not generally a dominant effect. Increased surface melting
could lead to modest additional ice discharge.

Change in Greenland surface mass balance will determine the long-term
future of the Greenland ice sheet. There are large uncertainities in models of
SMB and regional climate change.

Partial loss of the ice-sheet could become irreversible in O(100) years but
there is huge uncertainty.



