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Introduction 

 Gaussian data assimilation has proven to be a powerful tool in 
NWP, however…  

 There are many different potential sources of non-Gaussianity 
in data assimilation. 
 Non-Gaussian prior, 𝑝(𝑥), errors may result from a non-linear 

forecast model or be an intrinsic property of the state variable e.g. 
bounds on physical values. 

 Non-Gaussian likelihood , 𝑝(𝑦|𝑥), may be due to a non-linear 
observation operator or due to characteristics of the instrument. 
(Quality control). 

 Many different methods for dealing with these sources of non-
Gaussianity in DA  
 from explicitly reformulating the cost function in terms of a given 

distribution  

 to avoiding making any assumptions and allowing the non-linearity of 
the models to generate the distributions implicitly (e.g. particle filter) 

DA Meeting, 28th March 2012 



Outline of talk 

DA Meeting, 28th March 2012 

 Observation impact in Gaussian data assimilation. 

 Introduction to different measures 

 The influence of a non-Gaussian statistics on observation 

impact. 

 PART I: the non-Gaussian prior 

 PART II: the non-Gaussian likelihood 

 Future work 



Outline of talk 

DA Meeting, 28th March 2012 

 Observation impact in Gaussian data assimilation. 

 Introduction to different measures 

 The influence of a non-Gaussian statistics on observation 

impact. 

 PART I: the non-Gaussian prior 

 PART II: the non-Gaussian likelihood 

 Future work 



Measures of observation impact in 

Gaussian data assimilation  

DA Meeting, 28th March 2012 

 Many different measures exist 

 used for targeted observations, design of new observing 
systems, data thinning, monitoring the DA scheme etc. 

 I will concentrate on 3: 

 The sensitivity of the analysis to the observations 

 

 

 Mutual information 
MI = − 𝑝 𝑥 𝑙𝑛𝑝 𝑥 𝑑𝑥 +  𝑝(𝑦)  𝑝 𝑥 𝑦 𝑙𝑛𝑝 𝑥 𝑦 𝑑𝑥𝑑𝑦 

 Relative entropy 𝑅𝐸 =  𝑝 𝑥 𝑦 𝑙𝑛
𝑝(𝑥|𝑦)

𝑝(𝑥)
𝑑𝑥 

 NOTE: 𝑀𝐼 =  𝑝 𝑦 𝑅𝐸𝑑𝑦 

 These can all be explicitly derived in the case of Gaussian DA. 

 

a




Hx
S

y

xa is the analysis vector 

y is observation vector 

H is the linearised ob operator (normally about the analysis) 
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 Recal in Gaussian DA 

 𝐱a = 𝐱b + 𝐊 𝐲 − ℎ 𝐱b , 

 

 where 𝐊 = 𝐏a𝐇
T𝐑−1 

 and Pa= HTR−1H+B−1
−1

 

 

 Therefore the sensitivity of the analysis to observations can be 
expressed as 

 𝐒 =
𝜕Hxa
𝜕𝐲

= HK=HPaH
TR−1 (Cardinali et al. 2004). 

 The analysis is most sensitive to accurate observations which 
give information about regions of state space for which there 
is little prior knowledge. 
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xa is the analysis vector 

xb is the background (first guess, prior) 

 vector 

y is observation vector 

h is the observation operator 

Pa is the analysis error cov matrix 

H is the linearised ob operator (normally 

 about the analysis) 

R is the ob error cov matrix 

B is the prior error cov matrix 
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 Mutual information in Gaussian DA can be shown to be  

 𝑀𝐼 =
1

2
𝑙𝑛 𝐁𝐏𝑎

−1  (Rodgers, 2000). 

 Like the sensitivity this depends on B, R and H only 

 𝑀𝐼 =
1

2
Σ 1 − 𝜆𝑖 , where 𝜆𝑖 is the 𝑖𝑡ℎ eigenvalue of 𝐒. 

 

 Relative entropy: the entropy of the posterior relative to 

the prior.   
 𝑅𝐸 =

1

2
𝐱a − 𝐱b

T𝐁−1 𝐱a − 𝐱b +
1

2
𝑙𝑛 𝐁𝐏a

−1 +
1

2
trace 𝐁−1𝐏a −

𝑛

2
. 

 Where n is the size of the state vector. 

 𝑅𝐸 =
1

2
𝐱a − 𝐱b

T𝐁−1 𝐱a − 𝐱b +𝑀𝐼 −
1

2
trace(𝐒). 
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 Note that the sensitivity and mutual information both 

depend solely on the error covariance of the background 

and obs and H (the linearised relationship between the 

state and ob space). 

 Relative entropy is a quadratic function of y- so this 

cannot be calculated before the value of the assimilated 

observation is known. 

 However a study by Xu et al. (2009) found that for 

defining the optimal radar scan configurement it did not 

matter which measure was used. 
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 When the likelihood is Gaussian (and h is linear: ℎ 𝐱 = 𝐇𝐱) and 
the prior distribution is arbitrary, it is possible to derive the 
sensitivity of the mean of the posterior, 𝛍𝑎, to the mean of 
likelihood, 𝛍𝑦, analytically.  



𝛛𝐇𝛍𝐚

𝛛𝛍𝐲
=

 Hxp(x)
𝜕p(𝐲|𝐱)

𝜕𝛍y
dx

 p x p 𝐲 𝐱 dx
−𝐇𝛍𝐚

 p 𝐱
𝛛p 𝐲 𝐱

𝛛𝛍𝐲
𝐝𝐱

 p 𝐱 p 𝐲 𝐱 𝐝𝐱
.  

 Know 
𝛛p 𝐲 𝐱

𝛛𝛍𝐲
= −p(𝐲|𝐱)(𝛍𝐲 −𝐇 𝐱 )𝐓𝐑−𝟏 



𝛛𝐇𝛍𝐚

𝛛𝛍𝐲
= 𝐇𝐏𝒂𝐇

𝐓𝐑−𝟏. 

 When prior is non-Gaussian, Pa becomes a function of the 
observation value. 

 The realisation of observation error which results in the greatest 
analysis error variance also results in the greatest analysis sensitivity. 

RECALL: Gaussian case 

𝐏𝑎 = 𝐇T𝐑−1𝐇+ 𝐁−1 −1
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 1D example:  

 prior is given by a 2 component Gaussian mixture with 

identical variances 

 𝑝 𝑥 = 2𝜋𝜎2 −
1

2 

 

 4 parameters: 𝜎, 𝑤1(𝑤2 = 1 − 𝑤1), 𝜇1, 𝜇2. 

 

2
2

2
1

1
exp ( )

2
i i

i

w x 
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 prior 𝑝 𝑥 = 2𝜋𝜎2 −
1

2 

 Likelihood given by 𝑁 𝜇𝑦, 𝑘𝜎
2  

 𝑆 =
1

𝑘+1
+

𝑘𝑤(1−𝑤)(𝜇1−𝜇2)
2𝑒−𝑎1−𝑎2

(1+𝑘)2𝜎2(𝑤𝑒−𝑎1+(1−𝑤)𝑒−𝑎2)2
 

 Where 𝑎𝑖 = ((𝜇𝑦 − 𝜇𝑖)
2)/(2(1 + 𝑘)𝜎2) 

 S is bounded below by 
1

𝑘+1
 and has no upper bound. 

 Therefore, because 𝑆 = 𝜎𝑎
2/𝜎𝑦

2, it is possible for 𝜎𝑎
2 > 𝜎𝑦

2 when 

the prior describes two highly probably but distinct regimes.  

 S is at a maximum when 𝜎𝑎
2 is at a maximum, i.e. the 

posterior is symmetric. 

 Away from this value of 𝜇𝑦, S asymptotes to 
1

𝑘+1
. 

 

2
2

2
1

1
exp ( )

2
i i

i

w x 
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Fowler and van Leeuwen (2012) submitted to Tellus A. 
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 Can compare the sensitivity, in this case, to mutual information 

and relative entropy. 

In this figure all the 

measures are normalised by 

their Gaussian 

approximations. 
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 Application to the Lorenz 63 system using the particle filter (PF). 

 

 

 

 

 𝜎 = 10, 𝜌 = 28, 𝛽 =
8

3
. 

 Represent a prior Gaussian distribution at the initial time by 1000 particles 
to avoid sampling issues. 

 Allow the model to evolve each of the particles forward in time until an 
observation is available. Then change the weights of the particles to take 
into account the observed value. 

 The timestep is 0.01. 

 In this experiment I am only observing 𝜒1 at every 50 timesteps. Assume 
the observation error is Gaussian with an error variance of 10. 
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The prior 

distribution of 

𝜒1 at the first 

10 observation 

times 
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When the full prior is used to 

calculate observation impact 

there is no longer a close 

agreement between the different 

measures and the prior variance. 
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Top: The ratio of the PF 

approx to the Gaussian 

approx for the 4 

measures of 

observation impact 
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 Instead of looking at 

one realisation of the 

observation error can 

plot the measures as a 

function of observation 

value for a particular 

observation time. 

The vertical dash dot line gives the 

realisation of the observation used by 

the particle filter. 
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 CONCLUSIONS: 

 For any prior the sensitivity of the analysis to the observations can 

be shown to equal 𝐇𝐏𝒂𝐇
𝐓𝐑−𝟏 when the likelihood is Gaussian. 

 The analysis error covariances and hence the sensitivity of the 

analysis can be a strong function of observation value.  

 Therefore the error in approximating the sensitivity assuming Gaussian 

statistics is also a strong function of the observation value. 

 The error in approximating relative entropy with the assumption of 

Gaussian statistics is also a strong function of the observation value. 

 But a different function to the error in the sensitivity! 

 Mutual information is independent of the value of the observation. 

The Gaussian approximation results in a relatively small overestimate 

of observation impact. 



Outline of talk 

DA Meeting, 28th March 2012 

 Observation impact in Gaussian data assimilation. 

 Introduction to different measures 

 The influence of a non-Gaussian statistics on observation 

impact. 

 PART I: the non-Gaussian prior 

 PART II: the non-Gaussian likelihood 

 Future work 
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 When the prior is Gaussian and the likelihood function is 

arbitrary, it is possible to derive the sensitivity of the mean of 

the posterior, 𝛍𝑎, to the mean of likelihood, 𝛍𝑦, analytically.  



𝛛𝐇𝛍𝐚

𝛛𝛍𝐲
=

 Hxp(x)
𝜕p(𝐲|𝐱)

𝜕𝛍y
dx

 p x p 𝐲 𝐱 dx
− 𝐇𝛍𝐚

 p 𝐱
𝛛p 𝐲 𝐱

𝛛𝛍𝐲
𝐝𝐱

 p 𝐱 p 𝐲 𝐱 𝐝𝐱
.  

 In this case 
𝜕p(𝐲|𝐱)

𝜕𝛍y
 is unknown. 

 Use integration by parts and the fact that  

𝑝 𝑥, 𝜇 + Δ = 𝑝(𝑥 − Δ, 𝜇) 



𝜕𝑯𝝁a

𝜕𝝁y
= 𝐈𝒑 − 𝐇𝐏𝒂𝐁

−𝟏𝐇𝐓 𝐇𝐇𝐓 −𝟏
 

 This is equivalent to 𝐇𝐏𝒂𝐇
𝐓𝐑−𝟏 when the statistics are Gaussian. 

 The sensitivity is now greatest when 𝐏𝑎is at a minimum. 
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1D example:  

 Likelihood 𝑝 𝑦|𝑥 = 2𝜋𝜎2 −
1

2 

 𝜇𝑦 = 𝑤𝜇1 + (1 − 𝑤)𝜇2 

 Prior given by 𝑁 𝜇𝑥 , 𝜅𝜎
2  

 𝑆 =
𝜅

𝜅+1
−

𝜅𝑤(1−𝑤)(𝜇1−𝜇2)
2𝑒−𝛼1−𝛼2

(1+𝜅)2𝜎2(𝑤𝑒−𝛼1+(1−𝑤)𝑒−𝛼2)2
 

 Where 𝛼𝑖 = ((𝜇𝑥 − 𝜇𝑖)
2)/(2(1 + 𝜅)𝜎2) 

2
2

2
1

1
exp ( )

2
i i

i

w x 


 
  
 



RECALL in non-gaussian prior case: 

𝑆 =
1

𝑘 + 1
+

𝑘𝑤(1 − 𝑤)(𝜇1 − 𝜇2)
2𝑒−𝑎1−𝑎2

(1 + 𝑘)2𝜎2(𝑤𝑒−𝑎1 + (1 − 𝑤)𝑒−𝑎2)2
 

 

Where 𝑎𝑖 = ((𝜇𝑦 − 𝜇𝑖)
2)/(2(1 + 𝑘)𝜎2) 
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 Where 𝛼𝑖 = ((𝜇𝑥 − 𝜇𝑖)
2)/(2(1 + 𝜅)𝜎2) 

 S is bounded above by 
𝜅

𝜅+1
 and has no lower bound. 

 Therefore, because 𝑆 = 1 − 𝜎𝑎
2/𝜎𝑥

2, it is possible for 

𝜎𝑎
2 > 𝜎𝑥

2 when the likelihood describes two highly probably 

but distinct regimes.  

 S is at a minimum when 𝜎𝑎
2 is at a maximum, i.e. the 

posterior is symmetric. 

 Away from this value of 𝜇𝑦, S asymptotes to 
𝜅

𝜅+1
. 
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 Comparison to non-Gaussian prior case 

• k=2 as in previous figure, 

𝜅 = 2. In both cases 

𝜇𝑥 =
3

4
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 Comparison to non-Gaussian prior case 

• k=2 as in previous figure, 

𝜅 =
1849

512
, so that the 

Gaussian approximation 

to the sensitivity is the 

same in both cases.  
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 Can compare the sensitivity, in this case, to mutual information 

and relative entropy. 
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 Can compare the sensitivity, in this case, to mutual information 

and relative entropy. 

RECALL non-Gaussian prior case: 
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 I have also looked at a Huber norm likelihood which has a 
very different structure to my simplified Gaussian 
mixture.  

 

 

 

 

 

 Similar results:  

 error in Gaussian approximation to sensitivity and relative entropy 
very variable with observation value. Variation in error of RE greater.  

 Gaussian estimate to average observation impact always 
underestimates. 
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 I would like to look at the impact of a non-linear 

observation operator on observation impact. 

 Unlike the examples I have shown so far the shape of the non-

Gaussian distribution is not fixed as the observation value 

changes.  

 The simple relationship between sensitivity and analysis error 

variance will no longer hold. 

 E.g. if prior and measurement error are Gaussian 



𝜕𝜇𝑎

𝜕𝜇𝑦
= 𝜎𝑦

−2  𝑥ℎ 𝑥 𝑝 𝑥 𝑦 𝑑𝑥 − 𝜇𝑎  𝑥ℎ 𝑥 𝑝 𝑥 𝑦 𝑑𝑥  



Future work 
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e.g. ℎ 𝑥 = 𝑥2 



Future work 
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 I would also like to move to larger and more realistic 

systems with the aim of giving a full critique of the 

different measures of observation impact in non-Gaussian 

DA. 
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