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Introduction

» Gaussian data assimilation has proven to be a powerful tool in
NWP however...

» There are many different potential sources of non-Gaussianity
in data assimilation.

Non-Gaussian prior, p(x), errors may result from a non-linear

forecast model or be an intrinsic property of the state variable e.g.
bounds on physical values.

Non-Gaussian likelihood , p(y|x), may be due to a non-linear
observation operator or due to characteristics of the instrument.
(Quality control).

» Many different methods for dealing with these sources of non-
Gaussianity in DA

from explicitly reformulating the cost function in terms of a given
distribution

to avoiding making any assumptions and allowing the non-linearity of
the models to generate the distributions implicitly (e.g. particle filter)
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Outline of talk

» Observation impact in Gaussian data assimilation.

Introduction to different measures

» The influence of a non-Gaussian statistics on observation
impact.

PART I: the non-Gaussian prior
PART Il: the non-Gaussian likelihood

» Future work
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Measures of observation impact in
Gaussian data assimilation

» Many different measures exist

» used for targeted observations, design of new observing
systems, data thinning, monitoring the DA scheme etc.

» | will concentrate on 3:
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Measures of observation impact in
Gaussian data assimilation

» Many different measures exist

» used for targeted observations, design of new observing
systems, data thinning, monitoring the DA scheme etc.

» | will concentrate on 3:
The sensitivity of the analysis to the observations

B aHXa X, is the anal?'sis vector
= y is observation vector
ay H is the linearised ob operator (normally about the analysis)

Mutual information

MI = — [ p(x)inp(x)dx + [ p(¥) [ p(x|y)Inp(x|y)dxdy

p(x|y)
p(x) dx

Relative entropy RE = [ p(x|y)In
NOTE: MI = [ p(y)REdy
» These can all be explicitly derived in the case of Gaussian DA.
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Measures of observation impact in
Gaussian data assimilation

» Recal in Gaussian DA X, is the analysis vector
X, is the background (first guess, prior)
X, = Xp + K(y — h(xp)), vector

Yy is observation vector

h is the observation operator
where K = P,HTR™! P, is the analysis error cov matrix

—1 H is the linearised ob operator (normally

and Py= (HTR_1H+B_1) about the analysis)

R is the ob error cov matrix
B is the prior error cov matrix

» Therefore the sensitivity of the analysis to observations can be
expressed as
S = agfa = HK=HP,H R~ (Cardinali et al. 2004).
» The analysis is most sensitive to accurate observations which
give information about regions of state space for which there

is little prior knowledge.
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Measures of observation impact in
Gaussian data assimilation

» Mutual information in Gaussian DA can be shown to be
MI = %ln|BPa_1| (Rodgers, 2000).

Like the sensitivity this depends on B, R and H only
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» Mutual information in Gaussian DA can be shown to be
MI = %ln|BPa_1| (Rodgers, 2000).
Like the sensitivity this depends on B, R and H only

MI = — %Zln(l — A;), where 1; is the it"* eigenvalue of S.

» Relative entropy in Gaussian DA can be shown to be.
RE =
~ (X5 — Xp)TBL(X, — Xp)+= In|BP, "+ trace(B~1P,) —~.

Where n is the size of the state vector.

DA Meeting, 28th March 2012



Measures of observation impact in
Gaussian data assimilation

» Mutual information in Gaussian DA can be shown to be
MI = %ln|BPa_1| (Rodgers, 2000).
Like the sensitivity this depends on B, R and H only

MI = — %Zln(l — A;), where 1; is the it"* eigenvalue of S.

» Relative entropy in Gaussian DA can be shown to be.
RE =
1 To—1 1 17,1 _1 n
~(Xa = Xp) "B (X4 — Xp)+- In|BP, |+Etrace(B P,) —~.
Where n is the size of the state vector.

RE = %(xa —xp) B (x, — X)) +MI — %trace(S).
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Measures of observation impact in
Gaussian data assimilation

» Note that the sensitivity and mutual information both
depend solely on the error covariance of the background
and obs and H (the linearised relationship between the
state and ob space).

» Relative entropy is a quadratic function of y- so this
cannot be calculated before the value of the assimilated
observation is known.

» However a study by Xu et al. (2009) found that for
defining the optimal radar scan configurement it did not
matter which measure was used.
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PART I: Non-Gaussian Prior

» When the likelihood is Gaussian (and h is linear: h(x) = Hx) and
the prior distribution is arbitrary, it is possible to derive the
sensitivity of the mean of the posterior, p,, to the mean of
likelihood, W, analytically.

ap(yIx) p(ylx)
oHp, I HXPOOTGdx f GO ax

an,  [p®pylxdx Hp'afp(X)p(yIX)dX'

Jd —
» Know I;(:'}IIX) = —py|x)(1y — H(x))'R™!
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PART I: Non-Gaussian Prior

>

When the likelihood is Gaussian (and h is linear: h(x) = Hx) and
the prior distribution is arbitrary, it is possible to derive the
sensitivity of the mean of the posterior, p,, to the mean of
likelihood, W, analytically.

ap(y|x) ap(ylx)
oHp, I HXPOOTGdx f GO ax

dny [ p®p(ylxdx Hp'afp(X)p(yIX)dX'

Jd —
Know 21 = —p(y[x) 1ty — H(0)"R™!

OHp,

_ Tp—1
3 = HPHTRY.
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PART I: Non-Gaussian Prior

>

When the likelihood is Gaussian (and h is linear: h(x) = Hx) and
the prior distribution is arbitrary, it is possible to derive the
sensitivity of the mean of the posterior, p,, to the mean of
likelihood, W, analytically.

op(y|x) ap(y|x)
oHp, ] pr(x) iy —2 " dx | p(x)—aply dx

dny [ p®p(ylxdx Hp'afp(X)p(yIX)dX'

9 _
Know I;(:’lx) = —p(Y|X)(lly — H(X))TR 1 RECALL: Gaussian case
- ’ P, = (HTR-'H+B"1)"
2 = HP,H'R™ .
apy
When prior is non-Gaussian, P, becomes a function of the

observation value.
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PART I: Non-Gaussian Prior

» When the likelihood is Gaussian (and h is linear: h(x) = Hx) and
the prior distribution is arbitrary, it is possible to derive the
sensitivity of the mean of the posterior, p,, to the mean of
likelihood, W, analytically.

ap(yIx) dp(y[x)
oHp, I HXPOOTGdx f GO ax

an,  [p®pylxdx Hp'afp(X)p(yIX)dX'

9 _
» Know %(::lx) = —p(y|x)(uy — H(X))TR 1 RECALL: Gaussian case
’ P, = (HTR"H+B~1) "

OHp,

= HP,HTR™ 1.

apy

» When prior is non-Gaussian, P, becomes a function of the
observation value.

» The realisation of observation error which results in the greatest
analysis error variance also results in the greatest analysis sensitivity.
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PART I: non-Gaussian prior

» 1D example:

prior is given by a 2 component Gaussian mixture with
identical variances
1
2 (X_:ui)z}

p(x) = (2mo?) ;Wi eXp{‘ o

4 parameters: g, w; (W, = 1 — wy), Uy, Us.
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PART I: non-Gaussian prior

)

» prior p(x) = (Znaz)_E ZW exp{
» Likelihood given by N(,uy, kaz)

gL w(-w)u-pp)tem®
 k+1  (1+k)202(we— 414 (1-w)e—92)2

Where a; = (1, — 1)?)/ 2 + k)o?)
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)

» prior p(x) = (Znaz)_E ZW exp{
» Likelihood given by N(,uy, kaz)

gL w(-w)u-pp)tem®
 k+1  (1+k)202(we— 414 (1-w)e—92)2

Where a; = (1, — 1)?)/ 2 + k)o?)

» S is bounded below by ﬁ and has no upper bound.

Therefore, because § = 0,°/0,,%, it is possible for g,* > 0, when
the prior describes two highly probably but distinct regimes.
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PART I: non-Gaussian prior

)

» prior p(x) = (Znaz)_E ZW exp{
» Likelihood given by N(,uy, kaz)

» § = —-|- kw(1-w)(pg—pz)%e~ %1792
T k41 (1+k)202(we =91 +(1-w)e—92)2

Where a; = (1, — 1)?)/ 2 + k)o?)

» S is bounded below by ﬁ and has no upper bound.

Therefore, because § = 0,°/0,,%, it is possible for g,* > 0, when
the prior describes two highly probably but distinct regimes.

» Sis at a maximum when g, is at a maximum, i.e. the
posterior is symmetric.
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PART I: non-Gaussian prior

]

» prior p(x) = (27T02)_5 ZW exp{
Likelihood given by N(,uy, kaz)

Gl lw-w)-pp)te®
 k+1  (1+k)202(we— 414 (1-w)e—92)2

Where a; = (1, — 1)?)/ 2 + k)o?)

» S is bounded below by ﬁ and has no upper bound.

v

v

Therefore, because § = 0,°/0,,%, it is possible for g,* > 0, when
the prior describes two highly probably but distinct regimes.

» Sis at a maximum when g, is at a maximum, i.e. the
posterior is symmetric.

: 1
» Away from this value of u,, S asymptotes to P
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PART I: non-Gaussian prior
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Figure 1: Left: The prior distribution. The vertical blue line shows the prior
mean, j,. Right: :—j-i—: (solid) and the Gaussian approximation (dashed) for
k=2 0%=1,w=0.25 u; =—1.5, us = 1.5. p_, pg and p, explained within
the text.

Fowler and van Leeuwen (2012) submitted to Tellus A.
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PART I: non-Gaussian prior

» Can compare the sensitivity, in this case, to mutual information

and relative entropy.

In this figure all the
measures are normalised by
their Gaussian
approximations.
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PART I: non-Gaussian prior

» Application to the Lorenz 63 system using the particle filter (PF).

v

o=10,p =28, =2

3"

=

= = 7(x2 — X1)

d

-

2

= —X1X3 T PX1 — X2

-
e,

dyz _
55 = X1X2 — Pxa.

Represent a prior Gaussian distribution at the initial time by 1000 particles

to avoid sampling issues.

Allow the model to evolve each of the particles forward in time until an
observation is available. Then change the weights of the particles to take

into account the observed value.

The timestep is 0.01.

In this experiment | am only observing y; at every 50 timesteps.Assume
the observation error is Gaussian with an error variance of 10.
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PART I: non-Gaussian prior
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a) truth analysis + observation
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PART I: non-Gaussian prior

Top: The ratio of the PF
approx to the Gaussian
approx for the 4
measures of
observation impact
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PART I: non-Gaussian prior
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PART I: non-Gaussian prior
» CONCLUSIONS:

For any prior the sensitivity of the analysis to the observations can
be shown to equal HP,HTR™! when the likelihood is Gaussian.

The analysis error covariances and hence the sensitivity of the
analysis can be a strong function of observation value.

Therefore the error in approximating the sensitivity assuming Gaussian
statistics is also a strong function of the observation value.

The error in approximating relative entropy with the assumption of

Gaussian statistics is also a strong function of the observation value.
But a different function to the error in the sensitivity!

Mutual information is independent of the value of the observation.

The Gaussian approximation results in a relatively small overestimate

of observation impact.
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Outline of talk

» Observation impact in Gaussian data assimilation.

Introduction to different measures

» The influence of a non-Gaussian statistics on observation
impact.
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PART Il: the non-Gaussian likelihood

» Future work
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PART II: Non-Gaussian likelihood

» When the prior is Gaussian and the likelihood function is
arbitrary, it is possible to derive the sensitivity of the mean of
the posterior, I, to the mean of likelihood, [, analytically.

ap(y|x) dp(ylx)
OHp, J HXP(X)—auy dx _ Hp J p(X)—auy dx
Opy J pX)p(ylx)dx A [ p®plylxdx’
) 0 )
In this case POIX) is unknown.
duy

Use integration by parts and the fact that
p(x,u+A4)=plx—A4w
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PART II: Non-Gaussian likelihood

» When the prior is Gaussian and the likelihood function is
arbitrary, it is possible to derive the sensitivity of the mean of
the posterior, I, to the mean of likelihood, [, analytically.

ap(y|x) dp(ylx)
OHp, J HXP(X)—auy dx _ Hp J p(X)—auy dx
Opy J pX)p(ylx)dx A [ p®plylxdx’
) 0 )
In this case POIX) is unknown.
duy

Use integration by parts and the fact that

p(x,u+4) =p(x—A4 W
-1
O — 1, — HP,B~'HT(HHT)

4
duy
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PART II: Non-Gaussian likelihood

4

4

When the prior is Gaussian and the likelihood function is
arbitrary, it is possible to derive the sensitivity of the mean of
the posterior, I, to the mean of likelihood, [, analytically.

ap(y|x) dp(ylx)
OHp, J HXP(X)—auy dx _ Hp J p(X)—auy dx
Opy J pX)p(ylx)dx A [ p®plylxdx’
) 0 )
In this case POIX) is unknown.
duy

Use integration by parts and the fact that
p(x,u+A4)=plx—A4w

k2 _ 1, — HP,B~1HT(HHT)

duy
This is equivalent to HP,HTR ™! when the statistics are Gaussian.

DA Meeting, 28th March 2012



PART II: Non-Gaussian likelihood

4

4

When the prior is Gaussian and the likelihood function is
arbitrary, it is possible to derive the sensitivity of the mean of
the posterior, I, to the mean of likelihood, [, analytically.

ap(y|x) dp(ylx)
OHp, J HXP(X)—auy dx _ Hp J p(X)—auy dx
Opy J pX)p(ylx)dx A [ p®plylxdx’
) 0 )
In this case POIX) is unknown.
duy

Use integration by parts and the fact that
p(x,u+A4)=plx—A4w

k2 _ 1, — HP,B~1HT(HHT)

duy
This is equivalent to HP,HTR ™! when the statistics are Gaussian.

The sensitivity is now greatest when P,is at a minimum.
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PART II: non-Gaussian likelihood

|D example:

» Likelihood p(y|x) = (Znaz)_% ;Wi exp{— Ziz (X—ﬂi)z}

Hy =wig + (1 —wu,
» Prior given by N(u,, ko?)
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PART II: non-Gaussian likelihood

|D example:

» Likelihood p(y|x) = (Znaz)_% ;Wi exp{— Ziz (X—ﬂi)z}

Hy =wig + (1 —wu,
» Prior given by N (i, ko?)
K kw(1-w) (11 —Uz)’e

K+1 (1+k)202(we %1 +(1-w)e~%2)32
Where a; = ((tty — #)?)/2(1 + k)5?)

—aq1—a;
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PART II: non-Gaussian likelihood

|D example:

» Likelihood p(y|x) = (27102)_% ;Wi exp{— Ziz (X—ﬂi)z}

Hy =wig + (1 —wu,
» Prior given by N (i, ko?)
K kw(1-w) (11 —Uz)’e

K+1 (1+k)202(we %1 +(1-w)e~%2)32
Where a; = ((tty — #)?)/2(1 + k)5?)

RECALL in non-gaussian prior case:
1 kw(1 —w)(uy — pp)?e 417%

—aq1—a;

S =

k+1 * (1+ k)?0%(we % + (1 —w)e %2)?

Where a; = ((1y — 1)?)/ (1 + k)o?)
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PART II: non-Gaussian likelihood

) S — Ko Kw(1-w) (U —pp) e ™ ¥17%2
 k+1  (1+k)202(we%14(1-w)e—%2)2

Where a; = ((ttx — 1))/ (2(1 + K)0?)
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PART II: non-Gaussian likelihood

) S — Ko Kw(1-w) (U —pp) e ™ ¥17%2
 k+1  (1+k)202(we%14(1-w)e—%2)2

Where a; = ((ttx — 1))/ (2(1 + K)0?)
» S is bounded above by ﬁ and has no lower bound.
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PART II: non-Gaussian likelihood

) S — Ko Kw(1-w) (U —pp) e ™ ¥17%2
 k+1  (1+k)202(we%14(1-w)e—%2)2

Where a; = ((ttx — 1))/ (2(1 + K)0?)
» S is bounded above by ﬁ and has no lower bound.

Therefore, because S = 1 — 0,,%/0,.2, it is possible for
0,% > 0,* when the likelihood describes two highly probably
but distinct regimes.
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PART II: non-Gaussian likelihood

K Kkw(l—w —1,)%e~%17a2
) S = . ( )(U1—H2)

kK+1 (1+k)202(we=%1+(1-w)e~%2)32
Where a; = ((ux — 1)*)/ (1 + k)a?)

» S is bounded above by ﬁ and has no lower bound.

Therefore, because S = 1 — 0,,%/0,.2, it is possible for
0,% > 0,* when the likelihood describes two highly probably
but distinct regimes.

2

» S is at a minimum when g,“ is at a maximum, i.e. the

posterior is symmetric.
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PART II: non-Gaussian likelihood

K Kkw(l—w —1,)%e~%17a2
) S = . ( )(U1—H2)

kK+1 (1+k)202(we=%1+(1-w)e~%2)32
Where a; = ((ux — 1)*)/ (1 + k)a?)

» S is bounded above by ﬁ and has no lower bound.

Therefore, because S = 1 — 0,,%/0,.2, it is possible for
0,% > 0,* when the likelihood describes two highly probably
but distinct regimes.

2

» S is at a minimum when g,“ is at a maximum, i.e. the

posterior is symmetric.

. K
» Away from this value of 1, S asymptotes to —
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PART II: non-Gaussian likelihood

» Comparison to non-Gaussian prior case
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PART II: non-Gaussian likelihood

» Comparison to non-Gaussian prior case

1

* k=2 as in previous figure, non Gaussian prior
1849

K = —, so that the aal nnn-Ggusman likelihood ||
512 — — = Gaussian approx

b

Gaussian approximation
to the sensitivity is the oy
same in both cases.

sensitivity

=
[n]
T

04t

04+

-13 -10 -3 a Gl 10 14 20
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PART II: non-Gaussian likelihood

» Can compare the sensitivity, in this case, to mutual information

and relative entropy.
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PART II: non-Gaussian likelihood

» Can compare the sensitivity, in this case, to mutual information
and relative entropy.
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PART II: non-Gaussian likelihood

» | have also looked at a Huber norm likelihood which has a
very different structure to my simplified Gaussian
mixture.

- Ifkel?hmd: "ly:_1 0 non—Gaussian likelihood
likelinood, LI?ZU — — — Gaussian
likelinood, p =10 e .
¥ sensitivity to likelihnood mean
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PART II: non-Gaussian likelihood

» | have also looked at a Huber norm likelihood which has a
very different structure to my simplified Gaussian
mixture.

Similar results:

error in Gaussian approximation to sensitivity and relative entropy
very variable with observation value.Variation in error of RE greater.

Gaussian estimate to average observation impact always
underestimates.
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Future work

» | would like to look at the impact of a non-linear
observation operator on observation impact.

Unlike the examples | have shown so far the shape of the non-
Gaussian distribution is not fixed as the observation value
changes.

The simple relationship between sensitivity and analysis error
variance will no longer hold.

E.g. if prior and measurement error are Gaussian

e — g, 2 (P — pta [ 3h P Cxly)da]
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Future work

e.g. h(x) = x?
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Future work

» | would also like to move to larger and more realistic
systems with the aim of giving a full critique of the
different measures of observation impact in non-Gaussian

DA.
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