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Abstract

Improved crop yield forecasts could enable more effective adaptation to climate vari-

ability and change. Here we explore how to combine historical observations of crop yields

and weather with climate model simulations to produce crop yield projections for decision

relevant timescales. Firstly, the effects on historical crop yields of improved technology,

precipitation and daily maximum temperatures are modelled empirically, accounting for a

non-linear technology trend and interactions between temperature and precipitation, and

applied specifically for a case study of maize in France. The relative importance of precipi-

tation variability for maize yields in France has decreased significantly since the 1960s, likely

due to increased irrigation. In addition, heat stress is found to be as important for yield

as precipitation since around 2000. A significant reduction in maize yield is found for each

day with a maximum temperature above 32◦C, in broad agreement with previous estimates.

The recent increase in such hot days has likely contributed to the observed yield stagna-

tion. Furthermore, a general method for producing near-term crop yield projections, based

on climate model simulations, is developed and utilised. We use projections of future daily

maximum temperatures to assess the likely change in yields due to variations in climate.

Importantly, we calibrate the climate model projections using observed data to ensure both
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reliable temperature mean and daily variability characteristics, and demonstrate that these

methods work using retrospective predictions. We conclude that, to offset the projected

increased daily maximum temperatures over France, improved technology will need to in-

crease base level yields by 12% to be confident about maintaining current levels of yield for

the period 2016-2035; the current rate of yield technology increase is not sufficient to meet

this target.

Keywords: climate — projections — calibration — maize — yield — France
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1 Introduction

The yield of most crops has increased over the past several decades. However, in the most

recent decade, yields have stagnated for many crops in several regions, whilst temperatures have

generally increased. The reasons for this stagnation are debated, and could include agricultural

policy (Finger, 2010), fundamental genetic limits (Calderini and Slafer, 1998), climate (Lobell

and Asner, 2003; Brisson et al., 2010), agronomic practice and crop management (Brisson et al.,

2010). Here we explore the relative importance of different climatic factors.

Crops are known to be sensitive to various aspects of climate. Persistently elevated tem-

peratures have long been known to accelerate progress towards maturity, and more recently

have been shown to have a significant impact on leaf aging (or senescence) (Asseng et al., 2011;

Lobell et al., 2012). Crop responses to shorter periods of high temperature, particularly when co-

incident with flowering, show yields falling dramatically beyond a threshold temperature (Luo,

2011). This mechanism is observed in both controlled environments and field studies (Ferris

et al., 1998; Wheeler et al., 2000). Similar responses to hot days are beginning to be found at

the regional scale: maize yields in the U.S. have been found to decrease sharply when exposed

to temperatures over around 29-30◦C, and this effect outweighs any yield increase due to higher

temperatures more generally (Schlenker and Roberts, 2009).

Crop yields are also sensitive to precipitation. Quantifying the relative effect of temperature

and precipitation variability is important for understanding impacts and developing adaptation

options for future climatic changes. Whilst this relative importance will vary regionally (e.g.

Sakurai et al., 2011), some generalisations may be possible through an analysis of mechanisms.

For regions where irrigation is increasing, for example, it seems likely that the sensitivity of yield

to rainfall will be decreasing. More detailed analyses also indicate that in particular environ-

ments (Thornton et al., 2010) or at the regional scale (Lobell and Burke, 2008), temperature

may be a more significant driver of future yields than precipitation. Since temperatures are

projected to significantly increase over the next few decades due to continuing anthropogenic

emissions of greenhouse gases, whereas precipitation changes are far less certain (Meehl et al.,

2007; Hawkins and Sutton, 2011), this suggests predictability in future crop yields.

In order to effectively guide adaptation to future changes, perhaps with different crop grow-

ing strategies (Rosenzweig and Tubiello, 2007) or selective crop breeding (Cattivelli et al., 2008),

there are several key questions to consider. Firstly, can the relative effects of improved tech-

nology, precipitation variability and increasing temperatures be quantified? If so, what is the

relative size of the effects of rainfall and hot temperatures on yields? And, what level of tech-

nology development may be required to overcome any impact of future climatic changes on
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yield?

In this analysis we develop a methodology to address these questions, focussing on one

particular crop (maize) and one country (France) as a case study to better understand the

technology trend and the influence of climate on crops. France is chosen specifically for this

case study because it has experienced recent extremes of climate. In particular, the heatwave

in summer 2003 (Schär et al., 2004) has previously been linked to a drop in crop yields across

Europe (Easterling et al., 2007; Battisti and Naylor, 2009; van der Velde et al., 2012).

2 Materials and Methods

The overall approach is to fit an empirical model to historical observations of climate and crop

yield to determine the relative importance of technology, heat stress and precipitation. Climate

model simulations are used to make calibrated projections of future heat stress, which are then

used to produce yield forecasts assuming no technological development and that the present

relationships between climate and yield variability apply in the future. Equivalently, this pro-

vides an estimate of how much technological development may be required to maintain yields at

present levels. Unless otherwise stated, all uncertainties are given as a 5−95% confidence range.

Observed climate and crop yield data

The relationships between yield and climate are examined using historical daily precipitation and

maximum temperatures from the E-OBS dataset (Haylock et al., 2008), which is available on a

0.5◦×0.5◦ grid since 1950, and annual maize yield data from FAOSTAT (http://faostat.fao.org/).

We choose to focus on national level yield data (1961-2010) to provide longer time series to

examine trends. Regional yield data (for NUTS2 regions) is only available from 1980-2007

which does not allow such a long timescale view. However, we briefly compare the analysis on

national scales with the regional data in the Supp. Info.

We consider two alternatives for measuring heat stress – a simple count of the number of

days above a certain critical threshold, and an integrated measure of the degree days above

a threshold. Both measures are defined using daily maximum temperature (Tmax) during the

growing season (June, July and August – JJA), averaged over the whole of France, but weighted

by the area of maize harvested in each region (Monfreda et al., 2008, Fig. 1). A precipitation

index is defined as the mean JJA rainfall, similarly averaged over France. Although the locations

of maize growth may have changed over time, similar conclusions are reached if no weighting is

applied. In addition, the average planting day may have changed over time (Kucharik, 2006),

but given that we are using seasonal averages of climate the effect on our analysis is likely to be
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small. Finally, we have not considered the details of the timing of the weather events, although

this may be extremely important for certain phenological stages of crop growth.

An empirical model for maize yield

A simple physical understanding for the causes of yield changes suggest that an empirical model

for maize yield in France, considering a non-linear ’technology’ trend and both the effects of

temperature and precipitation, should effectively describe the yield variability. However, the

variability in hot days and precipitation is not independent and it is also possible that the

effect on yield of an increase in hot days will depend on the precipitation, suggesting that an

interaction term may be required (e.g. Runge, 1968; Schlenker and Roberts, 2009). Hence, a

generalised additive model (Rigby and Stasinopoulos, 2005) for maize yield (Y ) is proposed,

Y (t) = g(t) + β1X(t) + β2(t)(P (t) − P̄ ) + β3X(t)P (t) + e(t) (1)

where X and P are the temperature and precipitation indices respectively, P̄ is the mean pre-

cipitation index over 1961-2010, the β parameters represent the size of the effects of the various

terms, g(t) is the expected yield in year t if there were no hot days and average precipita-

tion, and e is a stochastic error term. We let g be a cubic regression spline to represent the

increase in expected yield due to improving technology, which avoids the arbitrary, but often

used, assumption that the technology trend is linear with time. The errors are assumed to be

normally distributed and temporally independent, but we allow their variance to vary with time

to allow for changes in the influence of weather (e.g. precipitation) on yield variability due to

technological improvements such as irrigation. To facilitate this we let e(t) = h(t)ǫ(t) where

h(t) is a cubic regression spline and the ǫ(t) are independent standard normal random variables.

The unknown β parameters and the spline functions g and h are all estimated by maximising a

penalised likelihood function (see Supp. Info. for more details). Note that β2 is time dependent

- we assume a similar spline function for its variation. The justifications for the choice of this

empirical yield model, as well as tests of simpler and more complex versions, are given below,

in Section 3 and in the Supplementary Information.

Empirical yield model selection

Many different empirical models for crop yield have been proposed. A key benefit of choosing a

generalised additive model such as Eqn. 1 is that all the empirical model parameters, including

the non-linear trend component, are fitted simultaneously (e.g. Lobell et al., 2011), so as to

reduce the chances of overfitting on certain parameters, in contrast to other studies (e.g. Sakurai

et al., 2011). In addition, the choice of technology trend has been much discussed, with many

5



arbitrary assumptions used. For example, technology trends have been assumed to be linear

(e.g. Lobell and Asner, 2003), or quadratic with time (e.g. Schlenker and Roberts, 2009; Lobell

et al., 2011), or removed using local linear regression (e.g. Sakurai et al., 2011) or first-differences

(e.g. Nicholls, 1997). In some cases the technology trend has not been considered at all (e.g.

Tao et al., 2006; Knox et al., 2012).

Our choice of a cubic spline covers many of these other possibilities as a special case, but is

far more flexible. However, to examine the sensitivity to the choice of technology trend in our

analysis we considered a version of Eqn. 1 with a linear trend for g(t), rather than a cubic spline.

This version of the model produced a significantly poorer cross-validation (see Supp. Info.), and

we argue that a non-linear trend is more robust.

In addition, we advocate ‘appropriate complexity’ for an empirical yield model but addi-

tional complexity needs to be considered. For example, the validation statistics of the model

were found to be significantly improved if the direct influence of precipitation (β2) varies with

time (also see e.g. Sakurai et al., 2011), and so this factor was included. However, we also tested

versions of the empirical model with higher order terms (such as quadratic in X and P ) and also

considered time-varying β1 and β3, but found that these changes did not improve the empirical

relationship significantly (see Supp. Info.). This yield model also overcomes criticisms of sim-

pler empirical models (e.g. Gregory and Marshall, 2012; Semenov et al., 2012) by including an

interaction between temperature and precipitation, and basing the choice of possible heat stress

indices on the known physical links between hot days and crop growth. Eqn. 1 is the simplest

version which is found to produce yield estimates which are consistent with the assumptions

made in the empirical model, i.e. the residuals are consistent with being independent and ran-

dom.

Climate simulations and calibration

Our set of climate model simulations is a QUMP (Quantifying Uncertainty in Model Predictions)

ensemble, which consists of 16 variants of the HadCM3 global climate model (GCM) (Gordon

et al., 2000; Collins et al., 2011). This GCM has an atmospheric resolution of 2.5◦×3.75◦.

Each member of the ensemble differs only in values of particular atmospheric parameters which

govern physical processes which are not fully resolved in the model. This ensemble is particularly

appropriate for this analysis because it was designed specifically to sample a wide range of climate

sensitivities (Collins et al., 2011). We use the daily maximum temperature data in JJA during

1960-2035. Historical radiative forcings were used before the year 2000, and the SRES A1B

emissions scenario (Nakicenovic et al. 2000) was followed after 2000.
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Here we utilise two approaches for the calibration, both of which are fairly standard in crop

modelling, namely ‘bias correction’ (BC) and ‘change factor’ (CF). Both of these methods use

historical observations and simulations to derive corrections which can be applied to the future

projections, but using different assumptions. Additionally, we extend previous methods by also

accounting for differences in daily temperature variability between the climate simulations and

observations, as well as differences in mean climate (Ho, 2010; Ho et al., 2012; Hawkins et al.,

2012), which is particularly important when considering the hot day counts over a threshold

(see Supp. Info.).

To perform a calibration we require daily Tmax timeseries from a GCM simulation and ob-

servations for the same reference period, which we denote by TREF(t) and OREF(t) respectively.

We also need output from the GCM for some future period of the same length as the reference

period, TRAW(t). The question remains about how to best combine these three sources of infor-

mation into the most robust projections of the unknown future observations (ÔFUT) to use as

input for crop models. We consider both bias correction and change factor methods, including

corrections for the variability as well as the mean climate, to sample this source of uncertainty.

Bias correction: The usual bias correction (BC) methodology corrects the projected raw daily

GCM output using the differences only in the mean between observations and the GCM in a

particular reference period (e.g. Huntingford et al., 2005; Ines and Hansen, 2006). However, a

more general case when correcting the variability also (Ho et al., 2012) is:

ÔFUT,BC(t) = OREF +
σO,REF

σT,REF

(
TRAW(t) − TREF

)
, (2)

and σT,REF and σO,REF represent the standard deviation of the daily GCM output and obser-

vations in the reference period respectively.

Change Factor: The change factor (CF) methodology instead utilises the observed daily vari-

ability and changes the mean as simulated by the GCM (e.g. Arnell et al., 2003; Gosling et al.,

2009). The general form when correcting the daily variance also (Ho et al., 2012) is:

ÔFUT,CF(t) = TRAW +
σT,RAW

σT,REF

(
OREF(t) − TREF

)
, (3)

and σT,RAW represents the standard deviation of the daily raw model output for the future

period.

The grid point of the climate model which includes the position of the observations is used

in Eqns. 2, 3, so these methodologies also effectively downscale the simulated temperature data

to the spatial scale of the available observations. Where the observations are in a location where
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the climate model has an ocean grid point (grey areas in left column of Fig. 5 later), the nearest

land point is selected from the climate model. We use each of the 16 QUMP simulations as

independent projections and calibrate Tmax separately for each simulation as above.

The assumptions in the choice of bias correction or change factor are slightly different. If

considering future mean climate and no changes in variability, then the two methods produce

identical results. However, the more general case above can produce differences in future cal-

ibrated climates which are as large as differences between emission scenarios (Ho et al., 2012;

Hawkins et al., 2012). Both methods essentially assume that the change in climate is indepen-

dent of the mean state, but CF starts from the observations and BC starts from the model

output. These methodologies do not consider changing the shape of the distribution of climate

data, but this does not matter for a hot days metric in our analysis (see Supp. Info.), but

may be more important in other situations. Some limited idealised experiments suggested that

change factor methods may outperform bias correction methods, because they utilise the spatial

and temporal variability of the observations, but they may also under-estimate the uncertainty

because of the limited sampling of the observed variability (Hawkins et al., 2012). In the absence

of more concrete results, we assume that both methods are equally plausible.

3 Results

Observed changes to yield and climate

Maize is a widely grown crop in France (Fig. 1) and yields have gradually increased from

0.25 kg m−2 to a peak of 0.97 kg m−2 over the past 40 years1 (Fig. 2c). This increase has

been attributed to a combination of improved technology (such as fertilisers, pesticides and

machinery), more robust and productive crop varieties, as well as CO2 fertilisation effects (e.g.

Gervois et al., 2008).

In addition, the number of hot days has increased in France since the 1960s (Fig. 2b, using

a 32◦C threshold). Assuming a linear relationship with global mean temperatures suggests a

significant increase of 4.5 (0.7 to 8.3) hot days per 1◦C global temperature rise. Particularly

hot years, when compared to nearby years, occurred in 1964, 1976, 1990, 2003 and 2006 (also

see Fig. S1) and the corresponding maize yield also shows depressed yields in the same years

(Fig. 2c). There is no significant trend in precipitation since the 1960s, but variations in maize

yields in the 1960s and 1970s seem to be strongly related to precipitation variability (Fig. 2a).

During the heatwave of 2003, the maize yield in France fell to 0.71 kg m−2 – a 20% drop on

the previous year (also see e.g. van der Velde et al., 2010). It seems likely that this yield decrease

1We use SI units for yield, but 1 kg m−2 is equivalent to 10 T ha−1 or 104 kg ha−1
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was related to the hot temperatures that summer – but is this true of less extreme years? And,

what is the role of precipitation variability?

Considering temperature only

To explore these suggestive qualitative links we first utilise a simple form of Eqn. 1, considering

the effects of temperature alone, i.e. β2 = β3 = 0. We consider two choices for the temperature

index, X: firstly, a simple count of the number of days over a critical temperature threshold,

and secondly, the integrated temperature-days above a critical threshold. By fitting the sug-

gested yield model (simplified from Eqn. 1) to the observed data, it is found that a threshold

of 32◦C is the optimal choice for a simple hot day count, and 26.5◦C is optimal for the inte-

grated temperature-days (Fig. S3a). For the analysis which follows, we utilise a simple hot day

count, which produces a superior fit to the observations than an integrated measure, and also

better accounts for differences between the observed and climate model simulated temperature

variability (Fig. S4).

In addition, Fig. 3a (red line) shows the residuals from the expected yield,

residuals = observed yield − g(t) − β1X(t) (4)

when considering the count of days above 32◦C as X. The running standard deviation of the

residuals (red line in Fig. 3b) shows a noticeable decline with time, suggesting increased yield

stability recently. In addition, the residuals are well correlated with the mean precipitation

anomaly for France (r = 0.57, Fig. 3a), especially for the earlier years when there was less

irrigation (FAOSTAT; Fig. 3b). This finding demonstrates the need to include precipitation in

the empirical model and is consistent with an increase in irrigation, and/or the development of

maize varieties which are more robust to drought, reducing the impact of precipitation anoma-

lies. However, it should be noted that irrigation may also be increased by farmers during periods

of high temperature stress, such as the 2003 heatwave, as an adaptation strategy (van der Velde

et al., 2010).

Considering both temperature and precipitation

The findings above suggest improving the yield model by adding the effects of precipitation,

including an interaction term. However, the influence of precipitation should decrease over time

(Fig. 3b), suggesting that β2 should be a smooth function, rather than a constant. Note also

that the hot day index and precipitation are not independent - the correlation, r = −0.46.

Fitting the full model (Eqn. 1) to the data retains the finding that a 32◦C threshold is

optimal (Fig. S3a). When precipitation is included the residuals are consistent with having
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a constant variance and there is no significant improvement in the yield model by allowing a

time-dependent effect for h(t). For this full yield model, the h(t) term is therefore assumed to

be a constant.

The predicted yield (Y ; Eqn. 1) with associated uncertainties reliably encompasses the ob-

served yields (Fig. 2c). The red shading indicates the uncertainty in expected yield (without

the ǫ term) and the red lines indicate the total uncertainty in actual annual yields.

The derived technology trend (g) for this yield model increases non-linearly since 1961 with

a noticable plateau in the 1970s (Fig. 2c, grey shading). Although the absolute rate of increase

has also slowed again in the most recent decade, the technology trend is still increasing more

rapidly than the actual yield. This supports the hypothesis that the recent increase in the num-

ber of hot days has caused the actual yield to stagnate (Brisson et al., 2010), and is inconsistent

with suggestions that the observed plateau in yields is evidence of a fundamental genetic limit

on potential yields (Calderini and Slafer, 1998). We now only consider this full empirical yield

model.

Relative importance of temperature and precipitation

A key aspect of this analysis is the ability to determine the relative importance of temperature

and precipitation, and how this importance has changed over recent decades. Examining the

relative size of the different β parameters suggests that precipitation variability was the dominant

contributor to yield variability until around 2000 (Fig. 4). For the most recent decade, the

effects of heat stress variability are now as important as precipitation variability, perhaps due

to increased irrigation of maize in France (Fig. 3b). Although the interaction term slightly

complicates this simple interpretation, it is clear that the relative importance of temperature

has increased over time. However, it is worth noting that the presence and sign of the interaction

term means that hot days become less damaging for yields as precipitation increases.

For the near-term (2016-2035), the mean IPCC AR4 projection for summer over Europe

is an increase of around 1◦C in mean temperature and a 5% decrease in precipitation from

1980-1999 levels (Meehl et al., 2007). However, the uncertainty in precipitation projections is

far larger than for temperature (Hawkins and Sutton, 2011), and confidence in the sign of the

precipitation change is much lower (Meehl et al., 2007), partly because present day simulations

of both mean precipitation and its variability are worse than for temperature (Randall et al.,

2007). In addition, it is likely that temperature will have the largest impact as the projected

changes are far further outside the range of natural variability than for precipitation changes

(Lobell and Burke, 2008), and because of the seasonal timing of changes in climate (Semenov
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and Shewry, 2011).

So, for making future projections of crop yields we use the full empirical model considering

temperature and precipitation, but focus purely on the effects of changes in temperature, and

make the (slightly optimistic) assumption that the climatological distribution of precipitation

(from 1961-2010) will not change.

Retrospective calibrated projections of climate

The construction of the empirical model suggests that yields can be forecast if the number of

hot days is known. In principle, climate model simulations can be used to make this projection.

However, a key issue in using climate model simulations to study impacts is that the models are

biased and do not perfectly reproduce the current climate. For instance, the QUMP ensemble

of simulations used here is generally too warm over Europe and produces too many hot days

when compared to observations (Fig. 5). Other climate models are less or more biased in this

metric (Hawkins et al., 2012). Therefore, some calibration is needed before the simulations can

be used. To increase confidence in the ability of the calibrated climate model simulations to

make forecasts for the number of hot days, we test the predictions retrospectively by comparing

with historical observations.

Using the observational data from 1966-1985 only and climate model data from 1966-1985

and 1991-2010, it is possible to make an out-of-sample calibrated projection for the number of hot

days observed in the 1991-2010 period using the two different calibration methods (Fig. 5). The

calibrations correct much of the warm bias in the raw simulations and produce robust projections

of the number of hot days. Note that the variability corrections introduced in Eqns. 2, 3 are

essential to producing reliable predictions (compare Fig. 5 with Fig. S5).

Averaged over the maize growing regions of France, the raw simulations would produce a hot

day index of more than 30 for the 1991-2010 period, but the calibrated projection for the hot day

index is 6.3 (3.9-9.4) days (CF) and 4.1 (0.8-7.8) days (BC). The observed hot day index for the

1991-2010 period was 6.4 days (or 5.5 days without the extreme of 2003), an increase on 3.2 days

from the 1966-1985 period. The observations are therefore within the uncertainties predicted

by the calibrated climate model simulations. It is worth reiterating that we have not used the

observations for 1991-2010 to train this climate model prediction – it is made out-of-sample.

When considering a particular location where the largest fraction of the maize is grown (black

dots in Fig. 5), the calibrations have narrowed the QUMP spread, reduced the projected number

of hot days, and now encompass the observations for both calibration methodologies, unlike the

raw simulations (Fig. 6). Histograms are shown for the projections of the QUMP ensemble using
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raw model output (left column) and calibrated output (right column). The remaining spread in

the projected number of hot days represents differences between the climate models used, and

also different realisations of climate variability.

When considering projections on annual timescales (Fig. S6) it is shown that the projected

calibrated probability for a 2003-type summer would have been less than 0.6% for the 1991-2010

period. This suggests that the 2003 summer was extreme, even considering the climatic changes,

and consistent with other studies examining this heatwave which suggested it was a roughly a

1-in-200 year event (Stott et al., 2004).

Overall, these retrospective tests, along with previous studies in idealised situations (Hawkins

et al., 2012), provide evidence that relatively short lead time (a decade or two) calibrated pro-

jections of the number of hot days can be made.

Projections of future hot days over France

Having demonstrated that the methodology works retrospectively, it can be applied to make a

projection for the future period 2016-2035, using 1991-2010 (without 2003) as our training data.

There is a projected increase in the number of hot days for many regions (Fig. 5), particularly

in regions where maize is grown. Projections for the mean number of hot days per year in

the 2016-2035 period for an individual region in south-west France are shown in Fig. 6. The

calibrations have narrowed the QUMP range and reduced the projected number of hot days

when compared to the raw ensemble. However, the projections still indicate an increase in

the number of hot days in 2016-2035 from present, to around 15-20 days per summer for this

location. Note particularly that the observations from 2003 are deliberately excluded from the

calibration as it was such an extreme year, and could bias the projections to produce too many

hot days.

Finally, Fig. 2b shows a calibrated probabilistic near-term projection for the period 2016-

2035 for the average number of hot days per year, averaged over France, and weighted for maize

growing regions. The projected ranges for 2016-2035 show a likely increase in the number of hot

days to around 10 hot days per year, compared to the present day (1991-2010, without 2003) of

around 5.5 hot days per year. The two calibration methods do not produce significantly different

estimates – 6.8-16.9 (CF) and 4.4-14.4 (BC).

Using annual projections, the chance of a 2003-type summer in the 2016-2035 period is pro-

jected to be around 3% per year (Fig. S6), equivalent to an increase of risk of about an order of

magnitude from the historical period. This suggests that the probability of at least one summer

like 2003 is around 0.5 in this near-term period, assuming independence between years.
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Consequences for future maize yield

At the time of writing, yield data for 2011 has not been published by FAOSTAT. However, the

observed climate variability data is available from E-OBS, suggesting a summer close to the

long-term mean in terms of precipitation and hot days (Fig. 2). Applying our full empirical

model, the yield forecast for 2011 is 0.90-1.00 kg m−2, assuming no change in yield due to

technology since 2010. Over the past decade yield has increased at roughly 0.005 kg m−2 per

year due to the technological trend (g).

We also define the base level yield (0.92 kg m−2) as the mean present day yield (1991-2010,

without 2003), corrected for the technology trend increases over the same period. For the future,

we do not know the technology trend, and can only make projections for the yield assuming the

technology remains constant.

Fig. 2c shows probabilistic projections of mean maize yield for France for 2016-2035 using

both calibration methodologies (colours) and for two different assumptions on the links between

future temperature and precipitation (Fig. S7). Assuming future precipitation is independent

of temperature then the projected yield for 2016-2035 is 0.93 (0.89-0.96) kg m−2 (BC) and

0.92 (0.88-0.96) kg m−2 (CF). However, if the historical correlation between precipitation and

temperature is maintained, which we consider more likely, then the predicted yield decreases

to 0.91 (0.86-0.96) kg m−2 (BC) and 0.88 (0.81-0.92) kg m−2 (CF), demonstrating the need

to consider correlations between temperature and precipitation in yield projections. We see no

reason why a correlation of the same sign would not remain in this near term period, although

its magnitude may change.

Equivalently, according to these climate model simulations and calibration techniques, tech-

nology developments must increase yield by 0.11 kg m−2 (or around 12% of the current base

level yield) to be confident of maintaining yield at present levels. The current rate of yield

increase due to technology is not sufficient to meet this target, but would be sufficient to meet

the median projection of a required 0.04 kg m−2, or a 4% increase in base level yield.

4 Discussion

We have quantified the relative importance of temperature and precipitation for historical and

future maize yield on France. In addition, we have outlined a methodology for producing

calibrated projections of future climate and crop yields, and tested the methods retrospectively.

Our main findings are as follows:
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1. Our modelled historical technology trend for yield is non-linear, and suggests a recent

slowing in potential yield increases.

2. Maize yield stability in France has increased markedly since the 1960s, likely due to irri-

gation and technology improvements.

3. The relative importance of precipitation variability for maize yields in France has decreased

since the 1960s and the effect of heat stress variability is now as important as precipitation.

4. The number of hot days (above 32◦C), averaged over France, has increased since the 1960s

and is projected to increase further to around 10 per summer in the period 2016-2035. For

some large maize producing regions, around 15 days per summer are expected.

5. Improved technology will need to increase base level yields by 12% above current levels to

be confident about maintaining current maize yields. The current rate of yield increase

due to technology is not sufficient to meet this target.

6. Appropriate use of climate model simulations by taking account of differences in both the

mean and variability of climate is essential, and a rigorous assessment of the characteristics

of GCM output is required before its use.

Uncertainty in the projected yields comes from various sources. The component of uncer-

tainty due to the choice of calibration method is not negligible, although ‘change factor’ (CF)

performs slightly better in retrospective forecasts (see Supp. Info.) and idealised modelling

studies (Hawkins et al., 2012). Each QUMP simulation produces a different calibrated projec-

tion, and we have assumed that the QUMP ensemble spans the full range of climate response

uncertainty and climate variability for European temperatures. In addition, there are other

potential sources of uncertainty in our projections that we have not considered. For example,

we have only used a single (SRES A1B) future emissions scenario, but the relative importance

of emissions uncertainty is likely to be small for the near-term for temperature and precipitation

(Hawkins and Sutton, 2009, 2011). The effect of these caveats could be reduced by utilising

the forthcoming CMIP5 climate model simulations which will produce daily data at a higher

spatial resolution for more climate models than QUMP (Taylor et al., 2012). Finally, we have

not considered the effects of changes in ozone, which could be significant for maize yields (e.g.

Heagle et al., 1972; Hollaway et al., 2012). This will be explored in further work.

There has been recent, and we believe correct, criticism of the use of simple empirical re-

lationships between climate and crop yields to infer future yields (e.g. Gregory and Marshall,

2012; Semenov et al., 2012). We suggest that the careful consideration of non-linear technology
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trends and an interaction between temperature and precipitation is essential in any such empir-

ical model. In addition, the empirical yield model parameters, including the trend component,

should be fitted simultaneously.

The availability of smaller spatial scale crop yield data may also allow improvements in the

empirical relationships between hot days, precipitation and yield, although the regional yield

time series are not currently long enough to make robust conclusions about long term trends in

the temperature and precipitation effects (see Supp. Info.).

Although this is a case study aimed at providing decision relevant information for a single

crop for a single country, future work will aim to provide a wider scale view of future crop yields,

based on appropriate use of climate model simulations.
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Schär, C., P. L. Vidale, D. Lüthi, C. Frei, C. Häberli, M. A. Liniger, and C. Appenzeller, 2004:

The role of increasing temperature variability in European summer heatwaves. Nature, 427,

332–336, doi:10.1038/nature02300.

Schlenker, W. and M. J. Roberts, 2009: Nonlinear temperature effects indicate severe

damages to U.S. crop yields under climate change. PNAS, 106, 15 594–15 598, doi:

10.1073/pnas.0906865106.

Semenov, M. A., R. A. C. Mitchell, A. P. Whitmore, M. J. Hawkesford, M. A. J. Parry, and

P. R. Shewry, 2012: Shortcomings in wheat yield predictions. Nature Clim. Change, 2, 380–

382, doi:10.1038/nclimate1511.

Semenov, M. A. and P. R. Shewry, 2011: Modelling predicts that heat stress, not drought, will

increase vulnerability of wheat in europe. Sci. Rep., 1: 66, doi:10.1038/srep00066.

Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contribution to the European heatwave

of 2003. Nature, 432, 610–614, doi:10.1038/nature03089.

Tao, F., M. Yokozawa, Y. Xu, Y. Hayashi, and Z. Zhang, 2006: Climate changes and trends

in phenology and yields of field crops in china, 1981-2000. Ag. For. Met., 138, 82 – 92, doi:

10.1016/j.agrformet.2006.03.014.

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment

design. Bull. Amer. Meteor. Soc., 93, 485–498, doi:10.1175/BAMS-D-11-00094.1.

Thornton, P., P. Jones, G. Alagarswamy, J. Andresen, and M. Herrero, 2010: Adapting to cli-

mate change: agricultural system and household impacts in East Africa. Agricultural Systems,

103, 73–82.

19



van der Velde, M., F. Tubiello, A. Vrieling, and F. Bouraoui, 2012: Impacts of extreme weather

on wheat and maize in France: evaluating regional crop simulations against observed data.

Clim. Change, 113, 751–765, doi:10.1007/s10584-011-0368-2.

van der Velde, M., G. Wriedt, and F. Bouraoui, 2010: Estimating irrigation use and effects

on maize yield during the 2003 heatwave in france. Ag. Eco. Environ., 135, 90–97, doi:

10.1016/j.agee.2009.08.017.

Wheeler, T., P. Craufurd, R. Ellis, J. Porter, and P. Prasad, 2000: Temperature variability and

the annual yield of crops. Agric. Ecosyst. Environ., 82, 159–167.

20



Maize: percentage of area harvested

 

 

0

5

10

15

20%

Figure 1: The percentage of land harvested for maize in France in the year 2000, using data from

Monfreda et al. (2008). The France averages of hot days and precipitation shown throughout

the paper are weighted using this distribution of maize growth.
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Figure 2: Historical observations and future projections of climate and maize yield for France.

(a) Mean JJA precipitation, averaged over all grid-cells in France and weighted by the fraction

of maize grown. (b) Number of JJA days with Tmax over 32◦C from the E-OBS dataset (Haylock

et al., 2008), averaged over all grid-cells in France and weighted by the fraction of maize grown.

(c) French maize yields from FAOSTAT (black points; http://faostat.fao.org/) and empirical

model predictions for the technology trend (grey shading) and expected yield (red shading) with

total uncertainties (red lines), using Eqn. 1 and considering both temperature and precipitation.

The black errorbar indicates the forecast for 2011, assuming a flat technology trend since 2010.

For the 2016-2035 periods, the boxes show the 25th-75th percentiles and the whiskers indicate

the 5th and 95th percentiles. The climatological distribution for JJA precipitation is shown

(top), along with the projected and calibrated number of hot days using bias correction (BC)

and change factor (CF) methods (middle). The yield projections (bottom) assume a flat tech-

nology trend and are shown for both climatological precipitation and precipitation constrained

by historical correlations between temperature and precipitation.
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Figure 3: The temperature only empirical model. (a) The residuals from the expected yield

(Eqn. 4) as a function of time (red) and precipitation anomaly (black). (b) The running 11-year

standard deviation of yield residuals (red), showing a decrease over time, indicating higher yield

stability, and the area of irrigation in France from FAOSTAT (black).
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Figure 4: The relative importance of temperature and precipitation on yield, expressed per stan-

dard deviation anomaly, assuming median values for the other climate variable, with associated

uncertainties. Both effects are shown producing a reduction in yield, i.e. increasing hot days

and decreasing precipitation.
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Figure 5: Mean number of hot days in France from the raw QUMP ensemble (left) and E-OBS

observations (second column), for various time periods. The mean number of hot days are

shown for the out-of-sample prediction of 1991-2010 (second row) and of the future 2016-2035

period (third row) after applying bias correction calibration (third column) and change factor

calibration (right column), including corrections to daily temperature variability, to each QUMP

ensemble member separately.
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Figure 6: Histograms of 20-year mean projections for the number of hot days for a particular grid

point in south-west France (black dot in Fig. 5). Left column: raw QUMP output for reference

period (top) and calibrated periods (bottom). Observations are shown in each panel for both

reference periods. Right column: Calibrated projections using bias correction (BC, bottom) and

change factor (CF, top) for two time periods. The dark grey lines indicate an estimate for a

normal distribution from which the QUMP members are drawn. The open black circle indicates

the observations for 1991-2010 without 2003. Note the different range on the x-axis for the raw

and calibrated projections (columns).
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SUPPLEMENTARY INFORMATION

This supplementary information augments the analysis presented in the main paper published in
Global Change Biology.

Observed climate

Fig. S1 shows the number of days with a maximum daily temperature (Tmax) exceeding 32◦C over
France for each year from 1950 to 2011, according to the E-OBS dataset (Haylock et al., 2008).
There is considerable spatial and temporal variability in this quantity, with 1977 and 2003 being
two opposite extremes. Fig. S2 shows similar features for mean JJA precipitation, with different
extreme years (1962, 1976, 2005).

Validation of the empirical model

Eqn. 1 describes the statistical model for maize yield, using a cubic regression spline for the
smooth functions g, h and β2. The parameters of the model (the β parameters, and the smoothing
parameters in g and h) are all estimated by maximising a penalised likelihood function, performed
using the gamlss() package (Rigby and Stasinopoulos, 2005) in R (R Development Core Team,
2010). To estimate out-of-sample predictive power we use leave-one-out cross validation (LOOCV)
in which we sequentially omit a year from the data, fit the model using the remaining data, and
predict the omitted year. The optimal threshold temperature for the variable X (either hot day
count or integrated temperature-days) is found by minimising the mean squared error of the
LOOCV predictions.

Yield model for temperature alone

Fig. S3a shows the value of the LOOCV RMSE when considering temperature only (β2 = β3 = 0),
and demonstrates that 32◦C is the optimal choice using the hot days count, and 26.5◦C is optimal
using integrated-temperature days. We choose to use the hot day count for simplicity, and also

∗e.hawkins@reading.ac.uk
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because we have more confidence that the QUMP simulations can represent this quantity more
robustly (see later).

Tables S1, S2 give the best fit parameters, associated confidence ranges and validation statis-
tics for the empirical model. The effect of temperature on yield is summarised by β1, which
suggests a 1% drop in yield from 2010 levels per hot day over 32◦C.

We further examine the predictive power of the empirical yield model using a one-step-ahead
cross validation method, designed to test the model’s ability to predict outside of the range of its
fitting data. Here, the response parameter (β1) is fitted only using years which have fewer hot
days than the year under test. The fitted parameter is then used to predict the yield response
to the hotter year. Fig. S3b demonstrates that the predictions and the estimated uncertainties
are robust for predicting the response to out-of-sample years which always have more hot days.
Note especially that the yield anomaly in the extreme summer of 2003 is well predicted.

Yield model including precipitation

When considering temperature and precipitation, the optimal choice for the hot days count is
again 32◦C, and for integrated crop degree days it is 28◦C (Fig. S3a). Tables S1, S2 give the
best fit parameters, associated confidence ranges and validation statistics for this version of the
empirical model. Again, we choose to use the hot day count as it produces a smaller LOOCV
RMSE, and also because we have more confidence that the QUMP simulations can represent this
quantity more robustly (see later).

As for the yield model for temperature alone, we examine the predictive power of the empirical
yield model using a one-step-ahead cross validation method, designed to test the model’s ability
to predict outside of the range of its fitting data. Here, the response parameters are fitted only
using years which have fewer hot days (or less precipitation) than the year under test. The fitted
parameter is then used to predict the yield response to the hotter (or wetter) year. Figs. S3c,d
demonstrate that the predictions and the estimated uncertainties are robust for predicting the
response to out-of-sample years. Note especially that the yield anomaly in the extreme summer
of 2003 is well predicted (Fig. S3c).

Yield model validation - further checks

Note that the version of the empirical model assuming a linear trend has significantly poorer
cross-validation statistics (Table S2) than the non-linear version. Finally, the standard version
of the empirical model (Eqn. 1) is superior to other versions with constant or time-varying β

parameters, according to the Akaike Information Criterion (AIC, Akaike, 1974) (Table S3).

Comparing climate model variability with observations

Fig. S4 shows quantile-quantile plots for the observations and QUMP simulations for JJA Tmax

in 1991-2010 for a particular grid point in south-west France (black dots in Fig. 5). The thick
black lines represent the linear calibration between the QUMP and observational data. The
non-linearity seen in the tails of the distributions on both sides indicates that the shape of the
temperature distributions are different between the QUMP simulations and the observations.
This difference could make calibrated projections of Tmax biased.

However, the QUMP simulations are close to the correct distribution up to the 32◦C threshold
(dashed lines) in all members after linear calibration. As the hot day index simply counts numbers
of days over the threshold, and ignores how far above the threshold the temperature is, the
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errors in shape of the variability at higher temperatures does not affect this particular metric.
Although both an integrated temperature metric and hot day index might be justified physically
and empirically (Fig. S3a), the integrated temperature metric would be biased by these differences
in shape, so should not be used in this case.

In addition, Fig. S5 is similar to Fig. 5, but does not include a correction for the daily
temperature variability in Eqns. 2 & 3, i.e. it uses the standard variants of BC and CF. It can
be seen that the BC method in particular does not produce robust estimates of the number of
hot days if the variability is not corrected.

Finally, Fig. S6 is an annual version of Fig. 6, showing each individual year in each of the
QUMP ensemble members. For bias correction, the shape of the annual distribution does not
match the observed distribution particularly well, giving us less confidence in its use for annual
values. However, for the 20 year means considered in the paper, the method performs adequately.

These findings demonstrate the need to carefully examine the characteristics of climate vari-
ability in any model simulations before using them.

Future yield projections

When producing future projections of maize yield we assume that the present climatological
distribution of precipitation (estimated using data from 1961-2010) will not change (Fig. 2). We
make two different assumptions about the relationship between temperature and precipitation:
first that temperature and precipitation are independent, and second that the observed correlation
between precipitation and temperature remains constant in the future period. These cases are
illustrated in Fig. S7, which shows the relationship between temperature and precipitation in the
observations (white circles), and Monte-Carlo realisations of the future distribution under the first
assumption (green) and under the second assumption (blue). The coloured contours represent
the yield deficit (which is defined as the difference between the actual yield and the base level
of yield due to technology). We see that, under both calibration methods, assuming that the
current temperature-precipitation correlation remains constant in the future results in a stronger
shift towards large deficits than does assuming independence of temperature and precipitation.

Regional yield data

To examine the potential for using smaller scale yield data we fit our empirical yield model
(Eqn. 1) to the yield and climate data from two NUTS2 (Nomenclature of Territorial Units for
Statistics) regions in France (Fig. S8) where large fractions of the land is harvested for maize
(Fig. 1). The maize yield data is taken from EUROSTAT (http://ec.europa.eu/eurostat/) and
is only available from 1980-2007.

The E-OBS weather data (shown in Figs. S1, S2) is averaged over the same NUTS2 regions.
Note that the weather can be very different in the two regions. For example, 1990 produced a
large number of hot days in the southern region, but not the northern region, and 1992 was very
wet in the southern region, but average in the northern region. In 1987 the rainfall anomalies
were reversed.

The same empirical model is fit to both sets of regional data (Fig. S8), and produces residuals
which are consistent with the model assumptions. However, the shorter time series means that
the uncertainties are much larger and robust statements about trends in the effects sizes are not
possible. In this instance, the longer temporal information is more important than the smaller
spatial information.
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Table S1: Best-fit and uncertainty ranges of parameters (Eqn. 1) for the two different versions
of the empirical model, with and without including precipitation. The 5 − 95% confidence levels
are given in brackets.

Empirical model version
Parameter Temperature only Temperature and Precipitation

β1 −0.0101 (−0.0120 to −0.0087) −0.0277 (−0.0216 to −0.0379)
β3 0 0.0143 (0.0100 to 0.0210)
h varying 0.0235 (0.0191 to 0.0280)

Table S2: Validation statistics for maize yield (Eqn. 1) for the different versions of the empirical
model, with and without including precipitation, and the full model with a linear g(t).

Empirical model version
Statistic Temperature only Temperature and Precipitation Linear g(t)

Correlation with trend 0.984 0.993 0.983
Correlation without trend 0.762 0.899 0.819
R2 with trend 0.969 0.986 0.966
R2 without trend 0.581 0.841 0.695
LOOCV RMSE [kg m−2] 0.050 0.034 0.043

Table S3: Akaike Information Criterion (AIC, Akaike, 1974) values for different versions of the
maize yield empirical model (Eqn. 1) with constant or time-varying parameters for β1 and β2.
More negative values of AIC indicate a superior model. The standard version of the model (Eqn.
1) is shown in bold, and this has the lowest AIC.

β1 β2 AIC

Constant Constant -196.5
Constant Time-varying -202.2

Time-varying Constant -195.9
Time-varying Time-varying -201.9
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Figure S1: The number of days in each summer exceeding 32◦C over France, from the E-OBS
v5.0 dataset (Haylock et al., 2008).
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Figure S2: The mean summer (JJA) precipitation over France, from the E-OBS v5.0 dataset
(Haylock et al., 2008).
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Figure S3: Testing the empirical model. (top left) Validation statistics when fitting the
empirical crop yield models using leave-one-out cross-validation. (top right) Testing the temper-
ature only empirical model in predicting the response to higher temperatures (one-step-ahead).
(bottom) Testing the full empirical model in predicting the response to higher temperatures (left)
and precipitation (right). k is an index of years of increasing temperature or precipitation. The
black dots are the actual yield, and the red error bars are the out-of-sample predictions of the
empirical model.
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Figure S4: Quantile-quantile diagnostics for daily Tmax for JJA in 1991-2010, for the E-OBS
dataset and each QUMP member as labelled, for a particular location (the black dots in Fig. 5).
The solid black line in all panels represents the linear calibration, and the dashed black line is at
32◦C, the threshold for hot days.
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Figure S5: As Fig. 5, but without correcting the daily temperature variability.
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Figure S6: Histograms showing number of years across all QUMP members of annual calibrated
projections in 20 year periods of the number of hot days for a particular grid point in south-west
France (black dot in Fig. 5). The observations are shown with the grey histogram, and the
grey lines show a negative binomial distribution fit to the observations with (solid) and without
(dashed) 2003. The labelled percentages indicate the suggested probability of exceeding the
number of hot days (44) seen in 2003.
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Figure S7: The relationship between temperature and precipitation and the effect on yield. The
observations (white circles) are compared with predictions assuming no relationship (green) and
constant correlation (blue) for CF (left) and BC (right) calibrations. The filled contours represent
the yield deficit [kg m−2].
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Figure S8: The empirical yield model fitted to two regions of France where a large fraction of
the area is harvested for maize (Fig. 1). The maize yield data for these NUTS2 regions is only
available from 1980-2007.
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