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Bayes' Theorem

Bayes' Theorem

p(x|y) =
p(x)×p(y|x)

p(y)

posterior distribution =
prior distribution× likelihood

normalizing constant

Prior distribution: PDF of the state before observations are
considered (e.g. PDF of model forecast).

Likelihood: PDF of observations given that the state is x.

Posterior: PDF of the state after the observations have been
considered.
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The Gaussian assumption

PDFs are often described by Gaussians (normal distributions).

Gaussian PDFs are described by a mean and covariance only.
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P(x) =
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(2π)n det(B)
×

exp−1
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x−xb)T

B−1
(
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Lecturer: Ross Bannister, thanks: Amos Lawless Variational data assimilation



Meaning of x and y

xa analysis; xb background state; δx increment (perturbation)

y observations; ym = H (x) model observations.

H (x) is the observation operator / forward model.

Sometimes x and y are for only one time (3DVar).

x-vectors have n elements; y-vectors have p elements.
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Back to the Gaussian assumption

Prior: mean xb, covariance B

P(x) =
1√

(2π)n det(B)
exp−1

2

(
x−xb)T

B−1
(
x−xb)

Likelihood: mean H (x), covariance R

P(y|x) = 1√
(2π)p det(R)

exp−1

2
(y−H (x))TR−1 (y−H (x))

Posterior

p(x|y) =
p(x)×p(y|x)

p(y)
∝ exp−1

2

[(
x−xb)T

B−1
(
x−xb)

+(y−H (x))TR−1 (y−H (x))
]
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Variational DA � the idea

In Var., we seek a solution that maximizes the posterior
probability p(x|y) (maximum-a-posteriori).

This is the most likely state given the observations (and the
background), called the analysis, xa.

Maximizing p(x|y) is equivalent to minimizing
− lnp(x|y)≡ J(x) (a least-squares problem).

p(x|y) = C exp−1

2

[(
x−xb)T

B−1
(
x−xb)

+(y−H (x))TR−1 (y−H (x))
]

J(x) = − lnC +
1

2

(
x−xb)T

B−1
(
x−xb)

+
1

2
(y−H (x))TR−1 (y−H (x))

= constant (ignored) +Jb(x)+Jo(x)
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Four-dimensional Var (4DVar)

Aim

To �nd the `best' estimate of the true state of the system
(analysis), consistent with the observations, the background, and
the system dynamics.
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Towards a 4DVar cost function

Consider the observation operator in this case:

H (x) = H

 x0
...
xN

=

 H0 (x0)
...

HN (xN)


So the Jo is (assume that R is block diagonal):

Jo =
1

2
(y−H (x))TR−1 (y−H (x)) =

1

2

 y0−H0 (x0)
...

yN −HN (xN)


T R0 0 0

0
. . . 0

0 0 RN


−1 y0−H0 (x0)

...
yN −HN (xN)


=

1

2

N

∑
i=0

(yi −Hi (xi ))
TR−1i (yi −Hi (xi ))

where xi+1 = Mi (xi )
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The 4DVar cost function (`full 4DVar')

Let (a)TA−1 (a)≡ (a)TA−1 (•)

J(x) =
1

2

(
x0−xb

0

)T
B−10 (•)+ 1

2
(y−H (x))TR−1 (•)

=
1

2

(
x0−xb

0

)T
B−10 (•)+ 1

2

N

∑
i=0

(yi −Hi (xi ))
TR−1i (•)

subject to xi+1 = Mi (xi )

xb
0 a-priori (background) state at t0.

yi observations at ti .

Hi (xi ) observation operator at ti .

B0 background error covariance matrix at t0.

Ri observation error covariance matrix at ti .
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How to minimize this cost function?

Minimize J(x) iteratively

Use the gradient of J at
each iteration:

xk+10 = xk0 +α∇J(xk0)

The gradient of the cost
function

∇J(x0) =

 ∂J/∂ (x0)1
...

∂J/∂ (x0)n


−∇J points in the direction of
steepest descent.

Methods: steepest descent
(ine�cient), conjugate
gradient (more e�cient), . . .
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The gradient of the cost function (wrt x(t0))

Either:

1 Di�. J(x0) w.r.t. x0 with xi = Mi−1 (Mi−2 (· · ·M0(x0))).

2 Di�. J(x) = J(x0,x1, . . . ,xN) w.r.t. x0,x1, . . . ,xN subject to
the constraint

xi+1−Mi (xi ) = 0

L(x,λ ) = J(x)+
N−1

∑
i=0

λ
T
i+1 (xi+1−Mi (xi )) .

Each approach leads to the adjoint method

An e�cient means of computing the gradient.

Uses the linearized/adjoint of Mi and Hi : M
T
i and HT

i .
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The adjoint method

Equivalent gradient formula:

1

∇J ≡ ∇J(x0) = B−10
(
x0−xb

0

)
−

−
N

∑
i=0

MT
0 . . .M

T
i−1H

T
i R
−1
i (yi −Hi (xi ))

2

λN+1 = 0

λ i = HT
i R
−1
i (yi −Hi (xi ))+MT

i λ i+1

λ 0 = ∇Jo

∴ ∇J = ∇Jb +∇Jo = B−10
(
x0−xb

0

)
+λ 0
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The adjoint method
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Simpli�cations and complications

The full 4DVar method is expensive and di�cult to solve.

Model Mi is non-linear.

Observation operators, Hi can be non-linear.

Linear H → quadratic cost function � easy(er) to minimize,
Jo ∼ 1

2(y −ax)2/σ2
o .

Non-linear H → non-quadratic cost function � hard to
minimize, Jo ∼ 1

2(y − f (x))2/σ2
o .

Later will recognise that models are `wrong' !

Look for simpli�cations: Complications:

Incremental 4DVar (linearized 4DVar) Weak constraint
3D-FGAT (imperfect model)
3DVar
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Incremental 4DVar 1

definitions: xR
i+1(k) = Mi

(
xR
i(k)

)
xi = xR

i(k)+δxi xb
0 = xR

0(k)+δxb
0

xi+1 = Mi (xi ) δxi+1 ≈Mi(k)δxi

Hi (xi )≈Hi

(
xR
i(k)

)
+Hi(k)δxi

δxi ≈Mi−1(k)Mi−2(k) . . .M0(k)δx0
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Incremental 4DVar 2

J(k)(δx0) =
1

2

(
δx0−δxb

0

)T
B−10

(
•
)

1

2

N

∑
i=0

(
yi −Hi (x

R
i(k))−Hi(k)δxi

)T
R−1i

(
•
)

`Inner loop': iterations to �nd δx0 (as adjoint method).

`Outer loop' (k): iterate xR
0(k+1) = xR

0(k)+δx0

Inner loop is exactly quadratic (e.g. has a unique minimum).

Inner loop can be simpli�ed (lower res., simpli�ed physics).
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Simpli�cation 1: 3D-FGAT

Three dimensional variational data assimilation with first guess
(i.e. xR

i(k)) is computed at the appropriate time.

Simpli�cation is that Mi(k)→ I, i.e.
δxi =Mi−1(k) . . .M0(k)δx0→ δx0.

J3DFGAT
(k) (δx0) =

1

2

(
δx0−δxb

0

)T
B−10

(
•
)

1

2

N

∑
i=0

(
yi −Hi (x

R
i(k))−Hi(k)δx0

)T
R−1i

(
•
)

↑
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Simpli�cation 2: 3DVar

This has no time dependence within the assimilation window.

Not used (these days �3D-Var� really means 3D-FGAT).

J3DVar
(k) (δx0) =

1

2

(
δx0−δxb

0

)T
B−10

(
•
)

1

2

N

∑
i=0

(
yi −Hi (x

R
0(k))−Hi(k)δx0

)T
R−1i

(
•
)

↑
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Properties of 4DVar

Observations are treated at the correct time.

Use of dynamics means that more information can be obtained
from observations.

Covariance B0 is implicitly evolved,
Bi =

(
Mi−1(k) . . .M0(k)

)
B0

(
Mi−1(k) . . .M0(k)

)T
.

In practice development of linear and adjoint models is
complex.

Mi , Hi , Mi , Hi , M
T
i , and H

T
i are subroutines, and so

`matrices' are usually not in explicit matrix form.

But note

Standard 4DVar assumes the model is perfect.

This can lead to sub-optimalities.

Weak-constraint 4DVar relaxes this assumption.
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Weak constraint 4DVar

Modify evolution equation:

xi+1 = Mi (xi )+η i

where η i ∼ N(0,Qi )

`State formulation' of WC4DVar

Jwc (x0, . . . ,xN) = Jb +Jo +
1

2

N−1

∑
i=0

(xi+1−Mi (xi ))
TQ−1i (•)

`Error formulation' of WC4DVar

Jwc (xo ,η0 . . . ,ηN−1) = Jb +Jo +
1

2

N−1

∑
i=0

η
T
i Q
−1
i η i
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Implementation of weak constraint 4DVar

Vector to be determined (`control vector') increases from n in
4DVar to n+n(N−1) in WC4DVar.

The model error covariance matrices, Qi , need to be
estimated. How?

The `state' formulation (determine x0, . . . ,xN) and the `error'
formulation (determine x0,η0 . . . ,ηN−1) are mathematically
equivalent, but can behave di�erently in practice.

There is an incremental form of WC4DVar.
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Summary of 4DVar

The variational method forms the basis of many operational
weather and ocean forecasting systems, including at ECMWF,
the Met O�ce, Météo-France, etc.

It allows complicated observation operators to be used (e.g.
for assimilation of satellite data).

It has been very successful.

Incremental (quasi-linear) versions are usually implemented.

It requires speci�cation of B0, the background error cov.
matrix, and Ri , the observation error cov. matrix.

4DVar requires the development of linear and adjoint models �
not a simple task!

Weak constraint formulations require the additional
speci�cation of Qi .
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Some challenges ahead

Methods assume that error cov. matrices are correctly known.

Representing B0.

Better models of B0.
Flow dependency (e.g. Ensemble-Var or hybrid methods).

Representing Ri .

Allowing for observation error covariances.

Representing Qi .

Numerical conditioning of the problem.

Application to more complicated systems (e.g. high-resolution
models, coupled atmosphere-ocean DA, chemical DA).

Variational bias correction.

Moist processes, inc. clouds.

E�ective use on massively parallel computer architectures.
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