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Bayes' Theorem

Bayes' Theorem

p(x) x p(y|x)

p(y)
prior distribution x likelihood

p(xly) =

posterior distribution =

normalizing constant

@ Prior distribution: PDF of the state before observations are
considered (e.g. PDF of model forecast).

@ Likelihood: PDF of observations given that the state is x.

o Posterior: PDF of the state after the observations have been
considered.

Lecturer: Ross Bannister, thanks: Amos Lawless Variational data assimilation



The Gaussian assumption

o PDFs are often described by Gaussians (normal distributions).

@ Gaussian PDFs are described by a mean and covariance only.

x ~ N(x°,B)
() = ——
(27)" det(B)
% " 1 TLH-
; % 8XP =5 (x=x") BT} (x—x")

epsilon1

e=x—x"
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Meaning of x and y

<

=

L -

e x* analysis; x? background state; 8x increment (perturbation)
@ y observations; y™ = .77 (x) model observations.

@ J#(x) is the observation operator / forward model.

@ Sometimes x and y are for only one time (3DVar).

@ x-vectors have n elements; y-vectors have p elements.

Lecturer: Ross Bannister, thanks: Amos Lawless Variational data assimilation



Back to the Gaussian assumption

Prior: mean xP

, covariance B

1 1 T
Px)= ———  exp—=(x—x") Bl (x—x"
&)= raa® O 5 (x=x) B (x=x))

Likelihood: mean 7#(x), covariance R

PUYB) = e P ()R (5 = ()
p(xly) = p(x);(;))(y]x) oc exp—% [(x—xb)TB_1 (x—xb)
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Variational DA — the idea

@ In Var., we seek a solution that maximizes the posterior
probability p(x|y) (maximum-a-posteriori).

@ This is the most likely state given the observations (and the
background), called the analysis, x*.

e Maximizing p(x|y) is equivalent to minimizing
—Inp(x]y) = J(x) (a least-squares problem).

pily) = Cexp—j [(x—x") "B (x—x)
+(y = A () R (y = #(x))]

S0 = —nC L (—x) B (k)
Fo = AR (y - ()

= constant (ignored) + J°(x) + J°(x)
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Four-dimensional Var (4DVar)

To find the ‘best’ estimate of the true state of the system
(analysis), consistent with the observations, the background, and
the system dynamics.

CECMWF

»-
time

t, t=t,
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Towards a 4DVar cost function

Consider the observation operator in this case:

X0 5 (xo)
XN %N(XN)
So the J is (assume that R is block diagonal):
1 —
J° = 5 (y _%(X))TR 1 (y_%(x)) _
1 yo— (%) \ /[ Ro 0 0 \ '/ yo— % (xo)
2 : 0 0 :
YN—%N (XN) 0 0 Ry YN_c%ﬂN (XN)
1N B
= 5 Z (yl _%(X/))TRI 1 (y, —%(XI))

where x; 11 = 4; (x;)
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The 4DVar cost function (‘full 4DVar')

Let (a)' A1 (a)=(a) A 1 (o)

(xo—x3) By" () +

NI~ N

(xo—x§) By' () +

subject to X1 = .#; (x;)

e x§ a-priori (background) state at to.

@ y; observations at t;.

@ J%(x;) observation operator at t;.

e By background error covariance matrix at tp.
@ R; observation error covariance matrix at t;.
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How to minimize this cost function?

Minimize J(x) iteratively

e R
A The gradient of the cost

(%) function
™ Cortouss
a‘l"coru‘hnf‘]’ aJ/a(Xo)l

Ana(ljn‘: shfe /x), VJ(XO) - :
_ dJ/d(xo0)n
Use the gradient of J at
each iteration: —VJ points in the direction of
steepest descent.
xg "t =xg +aVI(xg) ’

Methods: steepest descent
(inefficient), conjugate
gradient (more efficient),
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The gradient of the cost function (wrt x(tp))

Either:
O Diff. J(Xo) w.r.t. Xo with x; = #;_1 (:%,'_2 ( %O(XO)))

@ Diff. J(x) = J(x0,X1,...,Xn) W.r.t. Xg,X1,...,Xy subject to
the constraint

Xjy1— Ai(xj) =0

N-1
Lo A) = S0+ X A bt =4 ()

Each approach leads to the adjoint method
@ An efficient means of computing the gradient.
@ Uses the linearized/adjoint of .#; and .7: M,-T and H,-T.
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The adjoint method

Equivalent gradient formula:

o
VI=VJ(xo) = Byt (xo—x§)—
N
~ Y MJ. . MTHTR (i — #4(xi))
i=0
(2]
Avyi = 0
Ai = HIR'(yi— H(x))+ M A
Ao = Vly

VI = V4V =Byt (xo—x§) + 2o
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The adjoint method

.x" = MT ¥ - AT -:I Jv,) = -
2(te)= Xlh) : e~ H R /%/'/J /)

\ —_— F NAKD  MODE /L 4 T V: =

i —> X)) —> xlbl- > xlba)e L yilk)=

2 1 7 (xit.) Phalcti))  Myufeton)

N ! ~ ¥

\'% VAKX

RN A= Z{’(th)) d, = ﬁ'l//)[ﬂ-l)) O{N-I = mvl (lﬂ’u»:)) Ay :%/X/ILN))

N -4te) - 5#,) T -yl -ylt)

N ) J v J

S PR,V W
—4TRY, Ho By e ~Hy il

—H&J
/\NJ—!:D

VJ{x)-/\ + B (e) )
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Simplifications and complications

@ The full 4ADVar method is expensive and difficult to solve.

@ Model .#; is non-linear.

@ Observation operators, 7% can be non-linear.

@ Linear s — quadratic cost function — easy(er) to minimize,
Jo ~ %(y— ax)?/o2.

@ Non-linear /# — non-quadratic cost function — hard to

minimize, J° ~ (y — f(x))?/02.

@ Later will recognise that models are ‘wrong’!

Look for simplifications: Complications:
Incremental 4DVar (linearized 4DVar) Weak constraint
3D-FGAT (imperfect model)
3DVar
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Incremental 4DVar 1

definitions: X$+1( k) = A (x}-{( k)>
X :x]f(k)—i-Sx; xg :xﬁ(k)+5x8
Xit1 = M (X;) Oxit1 =~ M) 0x;

I (%) = A (xﬁk)> + Hi(k)5x,'
Ox; ~ M,'_l(k)Mi—2(k) e MO(k)5X0

/
2" -
e 4

&
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Incremental 4DVar 2

(6x0 — SXB)T B, ()

£ 5 ) - 7 (4

Jio(8x0) =

NI = N =

@ ‘Inner loop’: iterations to find 6xo (as adjoint method).
@ ‘Outer loop’ (k): iterate Xg(k-i-l) = XOR(k) + dxo
@ Inner loop is exactly quadratic (e.g. has a unique minimum).

@ Inner loop can be simplified (lower res., simplified physics).
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Simplification 1: 3D-FGAT

@ Three dimensional variational data assimilation with first guess
(i.e. x}.{(k)) is computed at the appropriate time.

o Simplification is that M;) — 1, i.e.
5X,’ = Mifl(k) R MO(k)5x0 — 6X0.

1
JEDFONT (5x0) = 5((sxo—éxg)TBgl (o)

1y T

5 L (i = i)~ Higgdxo) R;* (o)

Lecturer: Ross Bannister, thanks: Amos Lawless Variational data assimilation



Simplification 2: 3DVar

@ This has no time dependence within the assimilation window.
@ Not used (these days “3D-Var” really means 3D-FGAT).

3DVar(5X ) % (6x0 — 5x0) Bal (o)
% =0 (y, (g, () —H ’(k)axo)TRi_l <.>

T
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Properties of 4DVar

@ Observations are treated at the correct time.

@ Use of dynamics means that more information can be obtained
from observations.

e Covariance By is implicitly evolved,
Bi= (M 104 ---Mo(x)) Bo (Mi_1(4) - - - Mogiy) -
@ In practice development of linear and adjoint models is
complex.
o M;, H;, M;, H;, MT, and HT are subroutines, and so
‘matrices’ are usually not in explicit matrix form.

But note

@ Standard 4DVar assumes the model is perfect.
@ This can lead to sub-optimalities.

@ Weak-constraint 4DVar relaxes this assumption.
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Weak constraint 4DVar

Modify evolution equation: X "
i
Xiv1 = AMi(xi)+n; * .
where 1; ~ N(0,Q;) >
;O time t;tN
‘State formulation’ of WC4DVar
1 N-1 -
I (x0,...,xn) = Jb+J°+5 Y (xiv1— (%) Q; 1 (o)
i=0
‘Error formulation’ of WC4DVar
b 1
I (X0sMg -+, My-1) = J +JO+§ Z niQ;n;
i=0
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Implementation of weak constraint 4DVar

@ Vector to be determined (‘control vector’) increases from n in
4DVar to n+n(N —1) in WC4DVar.

@ The model error covariance matrices, Q;, need to be
estimated. How?

@ The ‘state’ formulation (determine xg,...,Xy) and the ‘error’
formulation (determine xq,Mg...,My_1) are mathematically
equivalent, but can behave differently in practice.

@ There is an incremental form of WC4DVar.
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Summary of 4DVar

@ The variational method forms the basis of many operational
weather and ocean forecasting systems, including at ECMWF,
the Met Office, Météo-France, etc.

o It allows complicated observation operators to be used (e.g.
for assimilation of satellite data).

@ It has been very successful.
@ Incremental (quasi-linear) versions are usually implemented.

@ It requires specification of By, the background error cov.
matrix, and R;, the observation error cov. matrix.

@ 4DVar requires the development of linear and adjoint models —
not a simple task!

@ Weak constraint formulations require the additional
specification of Q;.
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Some challenges ahead

@ Methods assume that error cov. matrices are correctly known.
@ Representing By.

e Better models of By.
o Flow dependency (e.g. Ensemble-Var or hybrid methods).

(]

Representing R;.
o Allowing for observation error covariances.

Representing Q.

Numerical conditioning of the problem.

Application to more complicated systems (e.g. high-resolution
models, coupled atmosphere-ocean DA, chemical DA).

Variational bias correction.

Moist processes, inc. clouds.

Effective use on massively parallel computer architectures.
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