Anatomy of a covariance matrix

>N Univariate background error covariance matrix (e.g. if x represents a pressure field only):
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where p' = p — (p).

Multivariate background error covariance matrix (e.g. if X represents pressure, zonal wind and
meridional wind):
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These covariances are symmetric matrices.

fix’ are forecast errors, €, then above is B-matrix.

e Observation error covariance: R = (y'y’"), y’ is observation error.



Importance of covariance matrices (demo with n=n, p=1)
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Structure functions for flow in the mid-latitude atmosphere

Pressure increment (long/lat) - Pot. T increment (long/lat)
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In this case the wind part of the structure function is in geostrophic
balance with the pressure



Modelling covariance matrices

e Observation error covariance matrices (R):

— Describes errors in the observing system (e.g. the instrument), errors in the observation operator, and representativity error.
— Often taken to be diagonal for independent obs.
— If obs. errors are not independent, then there are off-diagonal elements.

If measurements are not independent (e.g. if they are derived using some procedure) then R should not be diagonal.

e Background error covariance matrices (B):

— Describes errors in the background state (forecast from previous analysis).

— Depends on the analysis errors of the previous assimilation, and on forecast model error.
— Can be rarely represented explicitly (x € R" [n ~ 10%], B € R [n x n ~ 101%]).

— Difficult to measure (need a large sample of (unknowable) forecast errors).

— Can be modelled using a variety of methods:

'Inverse Laplacians’.

Diffusion operators (used e.g. in Ocean DA).
Recursive filters.

Spectral methods, wavelet methods.

Exploit physics (e.g. geophysical balance).

O S T

Control variable transforms (transform to a space where B is simpler - e.g. diagonal).

— Describes errors in the forecast model used within 4D-Var.

— Often completely neglected operationally.



Making variational DA work — control variable transforms (CVTs)
e Key to success of 3D/4D-Var in NWP is the B-matrix. Incremental 3dVar cost fn:
Jox] = 0x"B7'ox + [y — H(x") — Hc?x]T R [y — #(x") — Hox]
x =x" + 6x

e B can be modelled, e.g., via (linear) change of variables - a CVT:

— 0x = Ujv.

— Background errors in the dv-representation are assumed to be mutually uncorrelated:

<ebebT>B ~ B,

<5V5VT>B = 1,
([ue]ue]’) ~ 1,
- UUY ~ B.

— This problem is minimized now w.r.t. dv:
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Simple example of Control Variable Transform (CVT)

System (two correlated variables)

-------------------------------------------------------- 500 hPa
layer mean
temBerature Az = tickness

T

1000 hPa

e State vector (T in K, Az in dam):

oT
5X:<5Az).

e Constraint applies (weakly applied hypsometric equation):

0Nz = LéT + OA Zunbal ,
N~~~ N——
balanced contribution  unbalanced contribution
R 1000hPa
where L = |

109 500hPa

e Control vector ((dvov®), =1):
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Scale by background error standard deviations, §T = 0 0Upal,
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The complete CVT (dx = Udv):
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Implied covariances (B = UU1):
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Observation of T then gives information about Az (and vice-
versa) in a physically consistent way.



Methods to estimate B

Reminder
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(o) : average over population of possible backgrounds.

Problem

x! is unknowable so need a proxy for forecast error x” — x'.



Popular approaches

Method

Description and references

“Canadian quick”

x" —x' ~ (xP(t+T) —x"(T)) /V2.

method Take population from one long time run.
Polavarapu et al. (2005)
Analysis of Choose a pair of direct and independent obs separated by r:
innovations . .
d=y— HxP ly(r) —2°(r)] [y(r + Ar) = 2°(r + Ar)] =
{y(r) —2'(r)} = {z"(r) —2'(r)}] [{y(r + Ar) —2'(r + Ar)} — {a"(r + Ar) — 2" (r + Ar)}]
< {ey(r) — exb(r)} {ey(r + Ar) — exb(r + AT)}> = (e'(r)e’(r + Ar)) + <6xb(7“)exb(7“ + Ar)> :
(above assumes obs and bg errors are uncorrelated). Take population from many pairs with same Ar.
Furthermore suppose that Ar > 0: (¢Y(r)eY(r + Ar)) = 0.
Rutherford (1972), Hollingsworth and Lonnberg (1986), Jarvinen (2001)
NMC method Choose pairs of lagged forecasts valid at the same time, e.g.: x” — x' ~ (x}5(t) — x5,(2)) /V/2.

Take population from difference at many times.
Parrish and Derber (1992), Berre et al. (2006)

Ensemble method

If you have an ensemble that is correctly spread:
b _ b b /b b ot | (b _ b
X" — X'~ X[y (x") or x" — x <X(i) X<j)) /V2.
Take population from ensemble members and over many times.
Houtekamer et al. (1996), Buehner (2005), Bonavita et al. (2015)



Summary
e Covariance matrices appear in many DA methods (especially variational DA).

— A covariance matrix describes the shape of a Gaussian distribution.

— B and R appear in variational cost function (and Q in weak constraint formulations).

e Covariance matrices are important.

— E.g. B specifies how precise x" is, and how to give smooth analysis increments between positions in space and between different
variables.

e B is too large to be known (and there is too little information to know it anyway!)

— B needs to be modelled based on reasonable ideas.
— The method of “control variable transforms” is a leading method.

— Minimize J in “control variable space” (easy) which is related to model space via the control variable transform.
e |t is impossible to measure B exactly.

— Use a proxy method.
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Further reading - selected books and papers

Barlow, R.J., Statistics - A guide to the use of statistical methods in the physical sciences, John Wiley and Sons (1989). This is an elementary, readable book on statistics for the scientist (e.g. it derives the
Gaussian distribution from first principles). It also covers the least squares problem.

Rodgers C.D., Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific Publishing (2000). This is a very readable book. Even though it focuses on satellite retrieval theory (mathematically
a similar problem to data assimilation), this is a good book for virtually everything that you need to know about covariances. It also contains a summary of basic data assimilation methods and has a useful appendix
on linear algebra.

Lewis J.M., Lakshmivarahan S., Dhall S., Dynamic Data Assimilation: A Least Squares Approach, Cambridge University Press (2006). This huge book covers a lot of material with a lot of repetition. It has
some good introductory chapters and some useful results if you know where to look. (Unfortunately there are LOADS of typos.)

Kalnay E., Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press (2002). A large section of this book covers data assimilation, and there is also a lot of basic material for the
budding dynamic modeller. The data assimilation part is introductory, but covers most key ideas. It will leave you wanting to know more!

Schlatter T.W., Variational assimilation of meteorological observations in the lower atmosphere: a tutorial on how it works, J. Atmos. and Solar-Terr. Phys. 62 pp.1057-1070 (2000). [t is worth getting hold of
this paper as it is an excellent description of variational data assimilation (relevant to lectures later in the course).

Bannister R.N., A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances., Q.J. Roy. Met. Soc. 134, 1951-1970
(2008) and Bannister R.N., A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics., Q.J. Roy. Met. Soc. 134, 1971-1996
(2008). What can | say - blatant self publicity! A source of information about background error covariances and how they can be modelled.

Polavarapu S., Ren S., Rochon Y., Sankey D., Ek N., Koshyk J., Tarasick D., Data assimilation with the Canadian middle atmosphere model. Atmos.-Ocean 43: 77-100 (2005). “Canadian quick” method.
Rutherford 1.D. 1972. Data assimilation by statistical interpolation of forecast error fields. J. Atmos. Sci. 29: 809-815. Original reference to the analysis of innovations method.

Hollingsworth A., Lonnberg P., The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field. Tellus 38A: 111-136 (1986). The most famous work on the
analysis of innovations method.

Jérvinen H., Temporal evolution of innovation and residual statistics in the ECMWF variational data assimilation systems. Tellus 53A: 333-347 (2001). More recent work on the analysis of innovations method.
Parrish D.F., Derber J.C., The National Meteorological Center’s spectral statistical interpolation analysis system. Mon. Wea. Rev. 120 1747-1763 (1992). Original reference for the NMC method.
Berre L., Stefanescu S.E., Pereira M.B., The representation of the analysis effect in three error simulation techniques. Tellus 58A 196-209 (2006). In-depth analysis of the NMC method.

Houtekamer P.L., Lefaivre L., Derome J., Ritchie H., Mitchell H.L., A system simulation approach to ensemble prediction. Mon. Wea. Rev. 124, 1225-1242 (1996). Explains the ideas behind the generation
of an ensemble.

Buehner M., Ensemble derived stationary and flow dependent background error covariances: Evaluation in a quasi-operational NWP setting. Q.J.R. Meteorol. Soc. 131, 1013-1043 (2005). Example background
error covariances derived from an ensemble.

Bonavita M., Holm E., Isaksen L., Fisher M., The evolution of the ECMWF hybrid data assimilation system, Q.J.R. Meteor. Soc. (2015). Latest paper documenting the ensemble-based calibration of the
ECMWF B-matrix.



