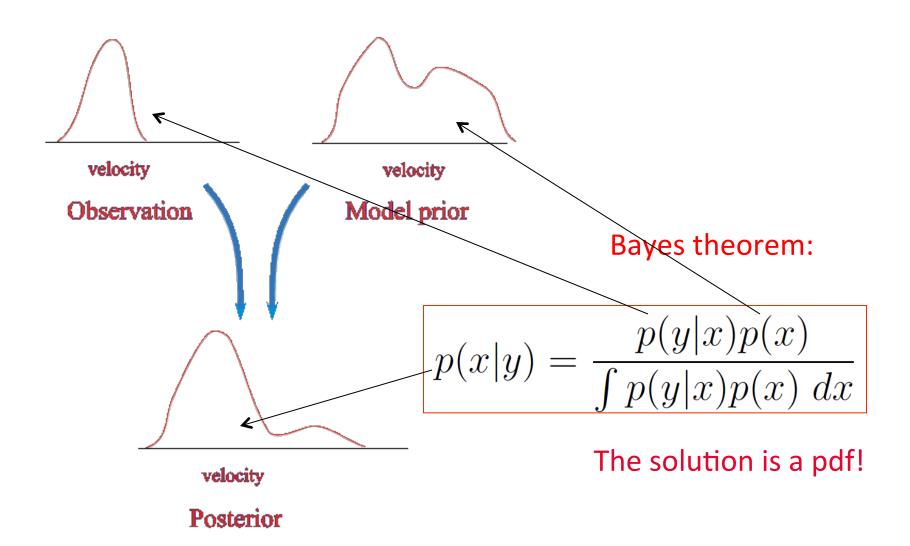
Overview of data-assimilation methods (and what to use when...)

Peter Jan van Leeuwen Data-Assimilation Research Centre University of Reading United Kingdom p.j.vanleeuwen@reading.ac.uk

Data assimilation: general formulation



3DVar and Optimal Interpolation

Assumptions:

- Prior is Gaussian
- Observation errors are Gaussian
 - a) H linear -> Optimal interpolation
 - b) H nonlinear -> 3DVar

$$p(x|y) \propto \exp\left[-\frac{1}{2}J\right]$$

$$J = (x - x_b)^T B^{-1} (x - x_b) + (y - H(x))^T R^{-1} (y - H(x))$$

3DVar and Optimal Interpolation

Characteristics:

- Both find the mode of the posterior pdf
- Both typically do not provide an error estimate
- Extensively used in real systems
- Strong theoretical background

Ingredients:

- B error covariance of the model state
- H observation operator
- R Observation error covariance

- Rely heavily on correct B matrix
- Doesn't take system evolution into account
- Can end up in local minima:

4DVar

Assumptions:

- Prior is Gaussian
- Observation errors are Gaussian
- H can be nonlinear
- strong and weak constraint

$$p(x|y) \propto \exp\left[-\frac{1}{2}J\right]$$

$$J = (x - x_b)^T B^{-1} (x - x_b) + (y - H(x))^T R^{-1} (y - H(x))$$

in which H contains the model operator, and H^T its adjoint.

4DVar

Characteristics:

- Finds the mode of the posterior pdf joint in time
- Needs adjoint equations
- Extensively used in real systems
- Strong theoretical background

Ingredients:

- B error covariance of the model state
- H_k observation operator at each observation time k
- R Observation error covariance
- (Q model evolution error covariance)
- Tangent-linear model and adjoint

- Relies heavily on correct B matrix
- Typically no error estimate
- Difficult to make parallel
- Can end up in local minima:

Kalman Filter

Assumptions:

- Prior is Gaussian
- Observation errors are Gaussian
- H is linear (nonlinear extension: Extended KF)

$$x_a = x_b + BH^T (HBH^T + R)^{-1} (y - Hx_b)$$
$$P = (1 - KH)B$$

Kalman Filter

Characteristics:

- Propagates model and error covariance with linear (linearised) model
- Finds mean of posterior pdf, assuming linearity/Gaussianity
- Finds covariance of posterior pdf, assuming linearity/Gausianity
- Strong theoretical background

Ingredients:

- H observation operator
- R observation error covariance
- M linear (linearised) model operator
- (Q model evolution error covariance)

Potential problems:

• P too large to store for large-dimensional problems

Ensemble Kalman Filters

Assumptions:

- Prior is assumed Gaussian
- Observation errors are Gaussian
- H can be nonlinear
- Prior and posterior can be represented by small number of ensemble members

$$T = \left[1 + (X_b H)^T R^{-1} H X_b\right]^{-1/2} K = X^f T T^T (H X^f)^T R^{-1}$$

$$\overline{x^a} = \overline{x^f} + K(y - H\overline{x^f})$$

$$X_a = X_b T$$

Ensemble Kalman Filters

Characteristics:

- Finds mean of the posterior pdf, assuming linearity/Gaussianity
- Finds 'covariance' of posterior pdf, assuming linearity/Gausianity
- Uses full nonlinear model through ensemble integrations
- Used extensively in real large-dimensional systems
- Rather weak theoretical background
- Extremely easy to make parallel

Ingredients:

- H observation operator
- R Observation error covariance
- (Q model evolution error covariance)
- Ensemble of model states

- Needs inflation to avoid filter divergence, this needs tuning
- Needs localisation to counter rank deficiency and spurious correlations, localisation radius needs tuning

Hybrid 4DVar-EnKF

Assumptions:

- Prior is assumed Gaussian
- Observation errors are Gaussian
- H can be nonlinear (but needs linearisations)

Several different variants, the field is strongly in development

Hybrid 4DVar-EnKF

Characteristics:

- Flow-dependent B matrix
- Well-defined for linear problems
- Weak theoretical background for nonlinear problems
- Some variants can be made parallel and avoid adjoint Ingredients:
- B model error covariance
- H observation oprator
- R observation error covariance
- (Q model evolution error covariance)
- (Tangent linear model and adjoint)
- Ensemble of model states

- Needs inflation to avoid filter divergence. This needs tuning
- Needs localisation, localisation radius needs tuning
- Can end up in local minima

Particle Filters

Assumptions:

• Prior and Posterior pdf can be represented by small number of particles

$$p(x) = \sum_{i=1}^{N} \frac{1}{N} \delta(x - x_i)$$

$$p(x|y) = \sum_{i=1}^{N} w_i \delta(x - x_i)$$

$$w_i = \frac{p(y|x_i)}{\sum_j p(y|x_j)}$$

Particle Filters

Characteristics:

- Uses full nonlinear model through ensemble integrations
- Uses fully nonlinear update through Bayes theorem
- Needs to explore proposal density for efficiency
- Extremely parallel
- Strong theoretical background

Ingredients:

- H Observation operator
- R observation error covariance
- Q model evolution error covariance
- Ensemble of model states
- Efficient proposal density

- Proposal density has tuning parameters
- No experience with real large-dimensional systems

Summary

Method	Description	Pros	Cons
A . Data insertion	Set grid points to observation values	1. Easy to do	 No respect of uncertainty What about observation voids? Can't deal with indirect observations
B . Variational data assimilation	Minimize a cost function Many flavours: 3D, 4D, weak/ strong constraint	 Respect of data uncertainty Direct and indirect observations P_f gives smooth and balanced fields Efficient Can deal with (weakly) non- linear h 	 P_f is difficult to know, often static and suboptimal High development costs h: need tangent linear, H and adjoint, H^T Gaussian pdf
C . Kalman filtering	Evaluate KF equations	1. As B.1, B.2, B.3 2.P _f adapts with the state	 As B.3, B.4 Difficult to use with non-linear h Prohibitively expensive for large n
D . Ensemble Kalman filtering	Approximate KF equations with ensemble of <i>N</i> model runs Many flavours	 As B.1,B.2, B.4, B.5, C.2 2.h: do not need H and H^T Have measure of analysis spread 	 As B.4 Serious sampling issues when <i>N</i> << <i>n</i> Need ensemble inflation and localization schemes to overcome D.2
E. Hybrid	Cross between C/ D	1. As B.1, B.2, B.3, B.4, B.5, C.2	1. As D.2
F . Particle filter	Assign weights to ensemble members to represent any pdf	 As. B.1, B.2 Can deal with non-linear h Can deal with non-Gaussian pdf Have measure of analysis spread 	 As D.2 Inefficient – members often become redundant Need special techniques to overcome F.2

When to use what?

- When an adjoint is available use it!
- If not, it is hard to code up.
- Ensemble software code is available, relatively easy to add model
- If your system is not strongly nonlinear use 3/4DVar or EnKF
- If your system is strongly nonlinear use Particle Filter

Software support

- Explore TAF TAMC automatic adjoint compiler e.g. Ralph Giering Expensive, few 1000£ a year. Free compilers available, but not as fully featured. (Tapenade, ...) <u>http://www.fastopt.com/</u> for TAMC <u>http://www-sop.inria.fr/tropics/tapenade.html</u> for Tapenade
- Explore ensemble DA software packages like DART, PDAF and EMPIRE, typically no adjoint (but EMPIRE developing)
 Particle filters are now being implemented too in these packages. http://www.image.ucar.edu/DAReS/DART/ for DART
 http://pdaf.awi.de/trac/wiki for PDAF
 http://www.met.reading.ac.uk/~darc/empire/index.php for EMPIRE
 http://www.data-assimilation.net/ for DA tools in SANGOMA

Outlook

We will provide aftercare: keep in touch, and ask for help if needed.

We hope you ENJOYED it!!!