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The	  solu)on	  is	  a	  pdf!	  

Bayes	  theorem:	  

Data assimilation: general formulation 



3DVar and Optimal Interpolation 
Assumptions: 
•  Prior is Gaussian 
•  Observation errors are Gaussian

a) H linear -> Optimal interpolation
b) H nonlinear -> 3DVar



3DVar and Optimal Interpolation 
Characteristics: 
•  Both find the mode of the posterior pdf
•  Both typically do not provide an error estimate
•  Extensively used in real systems
•  Strong theoretical background

Ingredients:
•  B error covariance of the model state
•  H observation operator
•  R Observation error covariance

Potential problems: 
•  Rely heavily on correct B matrix
•  Doesn’t take system evolution into account
•  Can end up in local minima:



4DVar 
Assumptions: 
•  Prior is Gaussian 
•  Observation errors are Gaussian
•  H can be nonlinear 
•  strong and weak constraint

in which H contains the model operator, and HT its adjoint.



4DVar Characteristics: 
•  Finds the mode of the posterior pdf joint in time
•  Needs adjoint equations
•  Extensively used in real systems
•  Strong theoretical background

Ingredients:
•  B error covariance of the model state
•  Hk observation operator at each observation time k
•  R Observation error covariance
•  (Q model evolution error covariance)
•  Tangent-linear model and adjoint

Potential problems: 
•  Relies heavily on correct B matrix
•  Typically no error estimate
•  Difficult to make parallel
•  Can end up in local minima:



Kalman Filter 
Assumptions: 
•  Prior is Gaussian 
•  Observation errors are Gaussian
•  H is linear (nonlinear extension: Extended KF)



Kalman Filter 
Characteristics: 
•  Propagates model and error covariance with linear (linearised) 

model
•  Finds mean of posterior pdf, assuming linearity/Gaussianity
•  Finds covariance of posterior pdf, assuming linearity/Gausianity
•  Strong theoretical background

Ingredients:
•  H observation operator
•  R observation error covariance
•  M linear (linearised) model operator
•  (Q model evolution error covariance)

Potential problems: 
•  P too large to store for large-dimensional problems



Ensemble Kalman Filters 
Assumptions: 
•  Prior is assumed Gaussian 
•  Observation errors are Gaussian
•  H can be nonlinear
•  Prior and posterior can be represented by small number of 

ensemble members



Ensemble Kalman Filters 
Characteristics: 
•  Finds mean of the posterior pdf, assuming linearity/Gaussianity
•  Finds ‘covariance’ of posterior pdf, assuming linearity/Gausianity
•  Uses full nonlinear model through ensemble integrations
•  Used extensively in real large-dimensional systems
•  Rather weak theoretical background
•  Extremely easy to make parallel

Ingredients:
•  H observation operator
•  R Observation error covariance
•  (Q model evolution error covariance)
•  Ensemble of model states

Potential problems: 
•  Needs inflation to avoid filter divergence, this needs tuning
•  Needs localisation to counter rank deficiency and spurious 

correlations, localisation radius needs tuning



Hybrid 4DVar-EnKF 
Assumptions: 
•  Prior is assumed Gaussian 
•  Observation errors are Gaussian
•  H can be nonlinear (but needs linearisations)

Several different variants, the field is strongly in development



Hybrid 4DVar-EnKF 
Characteristics: 
•  Flow-dependent B matrix
•  Well-defined for linear problems
•  Weak theoretical background for nonlinear problems
•  Some variants can be made parallel and avoid adjoint
Ingredients:
•  B model error covariance
•  H observation oprator
•  R observation error covariance
•  (Q model evolution error covariance)
•  (Tangent linear model and adjoint)
•  Ensemble of model states

Potential problems: 
•  Needs inflation to avoid filter divergence. This needs tuning
•  Needs localisation, localisation radius needs tuning
•  Can end up in local minima



Particle Filters 
Assumptions: 
•  Prior and Posterior pdf can be represented by small number

of particles



Particle Filters 
Characteristics: 
•  Uses full nonlinear model through ensemble integrations
•  Uses fully nonlinear update through Bayes theorem
•  Needs to explore proposal density for efficiency
•  Extremely parallel
•  Strong theoretical background

Ingredients:
•  H Observation operator
•  R observation error covariance
•  Q model evolution error covariance
•  Ensemble of model states
•  Efficient proposal density

Potential problems: 
•  Proposal density has tuning parameters
•  No experience with real large-dimensional systems



Summary 
Method Description Pros Cons 

A. Data 
insertion 

Set grid points to 
observation 
values 

1. Easy to do 1. No respect of uncertainty 
2. What about observation voids? 
3. Can’t deal with indirect observations 

B. 
Variational 
data 
assimilation 

Minimize a cost 
function 
Many flavours: 
3D, 4D, weak/
strong constraint 

1. Respect of data uncertainty 
2. Direct  and indirect observations 
3. Pf gives smooth and balanced 

fields 
4. Efficient 
5. Can deal with (weakly) non-

linear h 

1. Pf  is difficult to know, often static and 
suboptimal 

2. High development costs 
3. h: need tangent linear, H and adjoint, 

HT 
4. Gaussian pdf 

C. Kalman 
filtering 

Evaluate KF 
equations 

1. As B.1, B.2, B.3 
2. Pf adapts with the state 

1. As B.3, B.4 
2. Difficult to use with non-linear h 
3. Prohibitively expensive for large n 

D. Ensemble 
Kalman 
filtering 

Approximate KF 
equations with 
ensemble of N 
model runs 
Many flavours 

1. As B.1,B.2, B.4, B.5, C.2 
2. h: do not need H and HT 
3. Have measure of analysis 

spread 

1. As B.4 
2. Serious sampling issues when N << n 
3. Need ensemble inflation and 

localization schemes to overcome D.2 

E. Hybrid Cross between C/
D 

1. As B.1, B.2, B.3, B.4, B.5, C.2 1. As D.2 

F. Particle 
filter 

Assign weights to 
ensemble 
members to 
represent any pdf 

1. As. B.1, B.2 
2. Can deal with non-linear h 
3. Can deal with non-Gaussian pdf 
4. Have measure of analysis 

spread 

1. As D.2 
2. Inefficient – members  often become 

redundant 
3. Need special techniques to overcome 

F.2 



When to use what? 
•  When an adjoint is available use it!
•  If not, it is hard to code up.
•  Ensemble software code is available, relatively easy to add model
•  If your system is not strongly nonlinear use 3/4DVar or EnKF
•  If your system is strongly nonlinear use Particle Filter



Software support 
•  Explore TAF TAMC automatic adjoint compiler e.g. Ralph Giering

Expensive, few 1000£ a year. Free compilers available, but not
as fully featured. (Tapenade, …)
http://www.fastopt.com/ for TAMC
http://www-sop.inria.fr/tropics/tapenade.html for Tapenade

•  Explore ensemble DA software packages like DART, PDAF and 
      EMPIRE, typically no adjoint (but EMPIRE developing)

Particle filters are now being implemented too in these packages.
http://www.image.ucar.edu/DAReS/DART/ for DART

 http://pdaf.awi.de/trac/wiki for PDAF
      http://www.met.reading.ac.uk/~darc/empire/index.php for EMPIRE

http://www.data-assimilation.net/ for DA tools in SANGOMA



Outlook 

We	  will	  provide	  aftercare:	  	  
	  	  keep	  in	  touch,	  and	  ask	  for	  help	  if	  needed.	  

We hope you ENJOYED it!!!


