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Outlook

• Issued due to ensemble size 

• Possible solutions 

• Localisation 

• Inflation 

• Hybrid methods 

• Other issues 

• Parallelisation 

• Nonlinearity

2



Issues due to limited 
ensemble size
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Ensemble vs. State size
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In NWP applications:  
- state dimension O(10^8) 
- ensemble size O(10-100)

Can ensemble with 
e.g. 100 members 

represent sufficiently 
well ensemble 

covariances in an NWP 
model?



EnKF Recap
• Recall at each analysis time we update the ensemble using 

ensemble mean and perturbations 
 
 
 
 
 

•      is the size of the ensemble (typically 20-100) 

•      is the size of the state vector (typically 109 in NWP)  

• Therefore                       and 
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Sampling error
The ensemble Kalman Filter theory assumes that the ensemble is large 
enough to give an accurate estimate of the sample mean and 
covariance.  
 
The success of the EnKF methods is highly dependent on the size of the 
ensemble being adequate for the system we apply these methods to.  

For large scale problems, where               , ensemble undersampling 
can cause major problems in EnDA methods:  
• underestimated ensemble variance,  
• filter divergence, 
• errors in estimated correlations, in particular spurious long-range 

correlations.  
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Ne ≪ Nx
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Images from  
Vetra-Carvalho (2012) 
Properties of the Ensemble 
Kalman Filter for 
Convective-Scale 
Numerical Weather 
Forecasting, PhD Thesis, 
University of Reading

Sampling error
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Images from  
Vetra-Carvalho (2012) 
Properties of the Ensemble 
Kalman Filter for 
Convective-Scale 
Numerical Weather 
Forecasting, PhD Thesis, 
University of Reading

Sampling error



from Hamill, Chapter 6 of  “Predictability of Weather and Climate”

Spurious correlations



The analysis increments are in the sub-space spanned by the forecast 
ensemble 

– The analysis increments are given by  
 
 

– The analysis increments are therefore a linear combination of 
the forecast error ensemble. 

– Therefore, even if the observations indicate otherwise, the 
analysis is restricted to the space spanned by the ensemble 
which has at the most a dimension of         .
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Underestimated ensemble variance

The forecast ensemble spread will be subject to sampling error. 
 
If the spread is too small, the ensemble will underfit to the 
observations.  
 
If the ensemble repeatedly underestimates the forecast error and the 
information in the observations is ignored then it is difficult to regain 
spread in the ensemble. This is called ‘filter divergence’. 
 
If the spread is too large, the analysis ensemble will overfit to the 
observations.
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Underestimated ensemble variance
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Underfitting                       vs.                     Overfitting



Validation of ensemble spread
Method 1: rank histograms 
• For the ensemble to be reliable it is assumed that it is sampling the same distribution as the truth.  
• A rank histrogram is constructed by considering a point in space that is well observed. 

– The values of the ensemble members at that point are ranked from highest to lowest creating N-1 
bins. 

– Then each observation is binned to give a frequency diagram. 

Interpretation: 
• Concave shape- the ensemble is underspread 
• Convex shaped- the ensemble is overspread 
• Flat- the ensemble is correctly spread 
• Asymmetric- the ensemble is biased 

Need for caution (Hamill, T., 2001): 
• A flat histogram does not necessarily indicate reliability of the ensemble 
• A flat histogram does not ensure the covariances are correctly specified 
• A concave shaped histogram could also be the result of conditional biases- need to look at sub-populations 
• Observation errors should be accounted for by adding random noise to each ensemble member consistent 

with the observational error statistics
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Possible solutions
1. Use more ensemble members (see Miyoshi et al. 2014)  

2. Localisation 
– Addresses problem of spurious correlations 
– Splits problem into quasi-independent problems 
– Increases the effective ensemble size  

3. Ensemble inflation 
– Addresses problem of filter divergence  

4. Combine ensemble with variational approaches 
– These are known as hybrid methods

14



Localisation

The aim of localisation is to minimise the issues caused by the rank 
problem. Two most popular localisation methods are: 

• Covariance localisation: this modifies the forecast error covariance 
matrix to reduce long-range correlations. 

• Observation localisation: This restricts observations which are 
allowed to influence each grid point.
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The underlying assumption of localisation is that correlation length 
scales are much shorter than the extent of the model grid so that only 
correlations over short distances are relevant while for long distances 
the sampling error in the ensemble-estimated covariance matrices 
dominates (see, e.g., Morzfeld et al., 2017).  



Localisation can be performed by multiplying the ensemble covariances 
with a smooth correlation function.

Covariance localisation
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Since in practice we don’t form the ensemble covariance matrix direct 
application of a localisation function    is not possible, 

Petrie (2008) showed that we cannot apply localisation to ensemble 
perturbation matrix directly, i.e. 

However, if structure of H is close to diagonal we can justify an 
approximation such that 

Hence, 
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In the case of the stochastic ensemble Kalman filter where analysis 
update is computed separately for each ensemble member and model 
predicted observations are perturbed we can solve for     instead of 
inverting the matrix 

Then our analysis update is  

However, for ensemble square root filters we cannot do this since the 
updated ensemble is constructed from analysis mean and analysis 
perturbations, i.e. 
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For square root filters such as Ensemble Adjustment Kalman Filter 
(EAKF, Anderson 2001) and Ensemble Square Root Filter (EnSRF, Whitaker 
and Hamill 2002) which have been developed with serial  observations 
it is possible to apply covariance localisation. 

Let j indicate the jth observation loop, then analysis mean is   

where 

With the Kalman gain given by
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And analysis ensemble perturbations are given by   

with 

The scalar in front of the gain       reduces the Kalman gain.  

This reduction is required for statistical consistency as without it the 
analysis error variances would be underestimated unless an ensemble of 
perturbed observations would be used (Burgers et al. 1998).  
 
For more detail see Whitaker and Hamill (2002) and Nerger (2015).
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Covariance localisation

Image credit: Lars Nerger, AWI
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From Fig. 6.4 of Hamill, 2006

Covariance localisation



Summary of covariance localisation
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+ Can be applied to stochastic EnKF and serial versions of EAKF and 
EnSRF. 

+ Reduces the spurious ensemble correlations.  
+ Increases the effective degrees of freedom - more ways the 

ensemble can adjust to the data. 
- Can affect balance e.g. geostrophic balance which has lenghtscale 

O(1000)km 
- Need to choose the localisation function and its length scale, this 

may be state-dependent. 
- Not clear how to define distance between observations which have 

no clear defined location in space, e.g. satellite observations. 
- In case if the observations have a strong influence, Nerger (2015) 

showed that the interaction of serial observation processing and 
localisation can destabilise the analysis process.



Observation localisation
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Observation localisation reduces the influence of observations far 
away from analysis point by inverse scaling observation-error 
covariances.

For many square root ensemble Kalman filters, e.g. LETKF (Hunt et 
al., 2007), ESTKF (error subspace transform Kalman filter, Nerger et 
al. 2012), observation localisation is a much more natural choice since 
covariances are never explicitly calculated in these filters. 

For a smooth analysis Hunt et al. (2007) 
proposed to use a gradual observation 

localisation in the LETKF acting on R−1.  
 

This smoothly reduces the observation 
influence and excludes observations outside 
a defined radius by prescribing their error to 

be infinitely large. 
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Localisation and LETKF

LETKF analysis updates, similarly to ETKF, are given by 

through finding 

 

This gave the LETKF weight vector and matrix as follows, 
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To obtain the LETKF as a localised form of the ETKF, the analysis and 
the ensemble transformation are performed in a loop through 
disjoint local analysis domains.  
 
For each local analysis domain, the observations are weighted by 
their distance from this domain using 

where localisation matrix is usually constructed from a correlation 
function with compact support, e.g. see Gaspari and Cohn, (1999). 
 
Note that      is not a correlation matrix, because the diagonal 
elements vary with the distance.
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Localisation and LETKF

!R = !D "R

!D



+ Observation localisation can be implemented in more filters. 

+ The optimal lengthscale for R-localisation is found to be shorter than 
for Pf-localisation (Greybush, 2011). 

+ Using the optimal lengthscales, R-localisation and Pf-localisation have 
comparable performance in terms of analysis RMSE and balance. 

+ Reduces spurious ensemble correlations. 

+ Increases effective ensemble size. 

- Optimal lengthscales need to be found.  

- Need to take care to not produce a patchy analysis. 

- In case if the observations have a strong influence, Nerger (2015) 
showed that the interaction of serial observation processing and 
localisation can destabilise the analysis process.
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Summary of observation localisation



Localisation length scale
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“Localisation scale is a tuning 
parameter that trades off 

computational effort, sampling 
error, and imbalance error.” 

(Ref: Zhou et al., 2008, MWR, 136, 678-698.)

The optimal localisation 
radius is a priori unknown 
and needs to be tuned in 
numerical experiments: 

- perform several DA 
experiments with 
different localisation 
radii.  

- select the localisation 
length scale which 
results in smaller 
estimation errors. 

Kirchgessner et al. (2014) showed that the 
optimal localisation radius should be reached 
when the sum over the observation weights 
(using Gaspari and Cohn, 1999 correlation 
function) equals the ensemble size.  

- allows for a simple form of adaptivity or a 
starting point for further tuning.  



Other localisation ideas
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• Multiscale filter: at each update time replaces the sample covariance 
with a multiscale tree composed of nodes distributed over a relatively 
small number of discrete scales, Zhou et al. (2008). 

• Spectral localisation: filter covariances after transformation to 
spectral space, or combine spectral and grid-point localisation, 
Buehner and Charron, (2007). 

• Adaptive localisation: adaptively specify the localisation function or 
radius according to the dynamically generated covariance structure. 

• Localisation in different variables (i.e. stream function, velocity 
potential, Kepert (2006)).

Active research field!  
 

Many interesting ideas but none yet accepted as standard.   
Alternatives tend to have their own set of  strengths and weaknesses.



Ensemble inflation
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Localisation is one method to reduce the undersampling.  

However, for high-dimensional systems, localisation alone is not 
sufficient to ensure a stable assimilation process and covariance 
inflation is applied to further increase the sampled variance and thus 
stabilise the filter.  

In addition, the inflation can partly account for model error in case of 
an imperfect model (Pham et al., 1998b; Hamill, 2001; Anderson, 
2001; Whitaker and Hamill, 2002; Hunt et al., 2007). 



Ensemble inflation
Most common is a fixed multiplicative covariance inflation 
(Anderson and Anderson, 1999).  
 
The method uses the inflation factor r to perform a multiplicative 
inflation for each ensemble member xa,f with i = 1, ..., Ne  

where r is slightly greater than 1.  

The specification of an optimal inflation factor may vary according to 
the size of the ensemble (Hamill, 2001; Whitaker and Hamill, 2002) 
and the choice of r will depend on various factors, such as dynamics of 
the model, type of the ensemble filter used as well as the length scale 
of covariance localisation. 
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Ensemble inflation
Related to covariance inflation is the so-called forgetting factor ρ 
introduced by Pham et al. (1998b).  

The forgetting factor is usually chosen to be slightly lower than one 
and is typically applied in the square-root filters like the ETKF, SEIK, 
and ESTKF. For example, in the ETKF it is applied to 

In this way, the inflation and forgetting factors are related as             .  

Forgetting factor allows one to apply inflation in a computationally 
very efficient way because          is much smaller than the ensemble 
states to which the inflation is applied to.
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Ensemble inflation
The multiplicative inflation leads to an inflation that is relative to the 
variance level. Thus, large variances will be inflated much more than 
small variances.  

An additive inflation (Ott et al., 2004) inflates all variances by the 
same amount, rather than a relative factor, , 

This difference can be useful if the variances vary strongly as in this 
case the additive inflation acts stronger on the very small variances. 

Apply additive and multiplicative inflations separately or together 
depending on your system.
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x̂i
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Hybrid methods
Hybrid methods combine the best parts of the EnKF (flow-dependent 
Pf) with the best parts of variational methods (full rank Ps). 

The earliest hybrid method was proposed by Hamill and Snyder (2004), 
in which the representation of the error covariance of the prior 
information is a weighted combination of the flow-dependent estimate 
from the EnKF and the full rank estimate used in variational methods 

where β is a tuneable parameter. 

Note localisation and inflation are still necessary.
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Summary 1.
The success of the EnDA methods is highly dependent on the size of the 

ensemble being adequate for the system we apply these methods to.  

However, in reality the ensemble size is much much smaller than the state 
space resulting in sampling errors in ensemble covariances causing: 
• Rank deficiency, 
• Filter divergence, 
• Spurious correlations, 
• Analysis degradation. 

Hence, to make ensemble DA practical 
• Ensemble inflation 
• Localisation 
• Hybrid methods
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Other practical issues
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Parallelisation of EnKF
The most costly part of the ensemble data assimilation is the model  
runs between observations.  

However, the integration of each ensemble state is independent from 
the other states -> run the numerical model Ne times.  

We can parallelise:  
• offline where the dynamical model is kept independent of the data 

assimilation system.  
• by coupling the dynamical model with the data assimilation system, 

e.g. EMPIRE, PDAF.  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Parallelisation of EnKF
Using for example Message Passing Interfaces (MPI) to couple the 
dynamical model to the DA system parallelising not only the model 
runs but also the analysis step.  
 
Parallelisation differs depending: 
• which filter is used; 
• if localisation is used; 
• if observations are assimilated serially or in bulk; using the domain-

decomposition of a model was found to be more efficient than using 
serial observations since the amount of data that has to be 
exchanged using MPI is smaller for domain-decomposition (Nerger et 
al., 2005a)  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Non-linearity and EnKF
Due to technological and scientific advances, three significant 
developments have occurred in the last decade that force us to look 
beyond standard Ensemble Kalman Filtering, which is based on linear and/
or Gaussian assumptions. 

• Continuous increase in computational capability has recently allowed to 
run operational models at high resolutions so that the dynamical models 
have become increasingly nonlinear due to the direct resolution of small-
scale nonlinear processes in these models, e.g. small-scale turbulence. 

• In several fields such as atmosphere, ocean, land surface, hydrology, and 
sea-ice, it is of interest to estimate bounded variables or parameters 
requiring DA methods that can deal with non-Gaussian distributions.  

• observational network around the world has increased manyfold for 
weather, ocean and land surface areas providing more information about 
the real system with greater accuracy and higher spatial and temporal 
resolution.
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Non-linearity and EnKF
All EnKFs update ensemble using Gaussian assumption. Is this a valid 
assumption when the dynamical model is non-linear?  

The optimality of the Kalman filters is no longer preserved when 
applied to non-linear problems resulting in an suboptimal analysis 
state and the error estimates.  

This is a common issue for all ensemble filters whose analysis step is 
based on the equations of the Kalman filter.  

Nonetheless, the many existing data assimilation studies with 
nonlinear models, e.g. of the ocean or atmosphere, with different 
formulations of the ensemble Kalman Filters show that these filters 
are rather stable with regard to nonlinearity. 
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Non-linearity and EnKF

This is a very hot topic right now!  

Current methods are assessed for the application to non-linear 
problems and numerous new data assimilation methods are being 
developed within ensemble data assimilation framework and other 
fields, e.g. particle filters.  

As well as hybrids between the various data assimilation methods to 
bring the best of the methods in one.  
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Summary 2.

The idea of the data 
assimilation is easy! 

To make it work in the real 
world is the hard part.
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Open source DA code/systems

• PDAF - MPI based DA system developed by L. Nerger 
(2004) http://pdaf.awi.de/trac/wiki  

• SANGOMA DA library in Matlab and Fortran - 
consistently written and well tested, http://www.data-
assimilation.net/Tools/ 
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