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Recap of problem we wish to solve

• Given prior knowledge of the state of a system and a set of 
observations, we wish to estimate the state of the system at a 
given time, called posterior or analysis. 

• Bayes’ theorem states

Figure: 1D example of Bayes’ theorem. 

Moderate rain Heavy rainNo rain

An example: rainfall amount in a 
given grid box. 
A-priori we are unsure if there will be 
moderate or heavy rainfall. The 
observation only gives probability to 
the rainfall being moderate.  
Applying Bayes’ theorem we can now 
be certain that the rainfall was 
moderate and the uncertainty is 
reduced compared to both the 
observations and our a-priori estimate.
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p(x y)∝ p(x)p(y x)



Reality bites

Estimating these pdf's in large dimensional systems is virtually 
impossible. Approximate solutions lead to DA methods: 

• Variational methods: solves for the mode of the posterior. 

• Kalman-based methods: solve for the mean and covariance of the 
posterior. 

• Particle filters: find a weak (sample) representation of the 
posterior pdf.
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p(x y) = p(x)p(y x)
p(y)



Recap of 4DVar

xa
xb

observation 
uncertainty, 
characterised by R

timeAssimilation window

• 4DVar aims to find the most likely state at time t0, given an initial 
estimate, xb, and a window of observations.

t0

analysis 
uncertainty

•    J (the cost function) is derived assuming Gaussian error distributions 
and a perfect model. 

forecast
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Recap of 4DVar: why do any different? 

Advantages 
• Gaussian and near-linear assumption makes this an efficient algorithm. 
• Minimisation of the cost function is a well posed problem (the B-matrix is designed 

to be full rank). 
• Analysis is consistent with the model (balanced). 
• Lots of theory and techniques to modify the basic algorithm to make it a 

pragmatic method for various applications, e.g. incremental 4DVar, 
preconditioning, control variable transforms, weak constraint 4DVar... 

• Met Office and ECMWF both use methods based on 4DVar for their atmospheric 
assimilation. 

Disadvantages 
• Gaussian assumption is not always valid. 
• Relies on  the validity of TL and perfect model assumption. This tends to restrict 

the length of the assimilation window. 
• Development of TL model, M, and adjoint, MT, is very time consuming  and 

difficult to update as the non-linear model is developed. 
• B-matrix is predominately static. 

This motivates a different approach…
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Sequential DA 

• Instead of assimilating all observations at one time, assimilate them 
sequentially in time:

**

*

*

*

timeAssimilation window
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• The Kalman Filter, (Kalman, 1960) is a sequential filter. 

The Kalman filter  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Remember the Bayes theorem:

Solving this for mean and covariance of 
the posterior. 

For a Gaussian case this is equal to the 
mean is equal to the mode. 

p(x y) = p(x)p(y x)
p(y)

x

xb yxa



The Kalman filter  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x

xb yxa

In Gaussian case the posterior becomes:

p(x y)∝ exp − 1
2
x -xb( )T P-1 x - xb( )+ y -H(x)( )T R-1 y -H(x)( )⎡

⎣
⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭

Hence, the maximum probability occurs when x minimises:

J(x) = x -xb( )T P-1 x - xb( )+ y -H(x)( )T R-1 y -H(x)( )

When H is linear,             gives Kalman analysis update:∇Jx = 0

xa = xb + PTH HPHT +R( )-1 (y -H(xb ))



Prediction or forecast step: 
• Evolve the mean state from to next observation,  
 

• Evolve the covariance allowing for model error,  

The Kalman filter algorithm
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Analysis or update step: 
• Compute Kalman Gain,  
 

• Update, mean state and associated covariances, 

The Kalman filter algorithm
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Analysis or update step: 
• Compute Kalman Gain,  
 

• Update, mean state and associated covariances, 

The Kalman filter algorithm
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Majority of dynamical models of the environment are not linear. How can we 
apply the idea of the KF to non-linear models? 

Initial solution: The Extended Kalman Filter (Grewal and Andrews (2008)). 

While, the EKF can be applied to non-linear models and/or non-linear 
observation operators by linearising around the model state, it did not solve 
the other major disadvantage of the KF: 

• the huge and often impossible computational requirements associated with 
the storage and forward integration of the forecast error covariance 
matrix,     . 

Further, the EKF requires the Tangent Linear and adjoint model to propagate 
the covariance matrix, which as in variational methods are difficult to 
develop and expensive to maintain. 

Motivation for the ensemble Kalman 
filter (EnKF) 

Pf



Extended Kalman filter approach 
Explicitly evolve the mean and covariances forward in time using M, M and MT.

Ensemble Kalman filter approach 
Evolve each state forward in time using M, then estimate the mean and 
covariance from the evolved sample.

Time 1 Time 2
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Ensemble notation
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Given a state vector containing all the state variables,      , we define:  

• ensemble matrix as, 
 
 

• ensemble mean as,  
 
 
 
 

• ensemble perturbation matrix as,

xi
a,f

Xa,f = x1
a,f ,x2

a,f ,...,xNe

a,f⎡⎣ ⎤⎦
T
∈ℜNx×Ne . (1)

xa,f = 1
Ne

xi
a,f

i=1

Ne

∑ ∈ℜNx . (2)

′X a,f = x1
a,f − xa,f ,x2

a,f − xa,f ,...,xNe

a,f − xa,f⎡⎣ ⎤⎦
T
∈ℜNx×Ne . (3)

Where, superscripts a,f stand for analysis and forecast, respectively.



Ensemble notation

15

The ensemble estimate of the forecast error covariance matrix is given 
by,  
 
 
 
 
 
which in matrix form can be written as a matrix outer product

Time index has been removed for the ease of readability as all the 
calculations happen at the same time.

Pa,f ≈ Pe
a,f = 1

Ne −1
xi
a,f − xa,f( ) xia,f − xa,f( )T

i=1

Ne

∑

Pe
a,f = 1

Ne −1
′X a,f ′X a,f( )T . (5)



• The EnKF (Envensen 1994) merges the KF theory with the Monte 
Carlo estimation methods. 

• There are many many different flavours of the EnKF, but they all 
can be represented with the same schematic:

EnKF algorithms
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• The EnKF (Envensen 1994) merges the KF theory with the Monte 
Carlo estimation methods. 

• There are many many different flavours of the EnKF, but they all 
can be represented with the same schematic:

EnKF algorithms
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Note: xi
a,f = x1

a,f , x2
a,f ,…, xNe

a,f⎡⎣ ⎤⎦
where      is a number of ensemble membersNe



EnKF algorithm
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All of the EnKF variants have these two common steps: 

• Ensemble forecast (same for all variants). 

• Ensemble update or analysis (different for each variant). 

Ensemble forecast step is the same for all ensemble Kalman filter 
methods: 
• Forward each ensemble member in time from the previous analysis time to 

the next observation time using the dynamical model: 
 
 
 
where  
 
 
and

xi
f = M xi

a( )+ηi , (4)

x

i = 1,...,Ne

ηi ∼ N(0,Q).



The EnKF algorithms can be generalised into two main categories: 

– Stochastic ensemble Kalman filters, where the use of 
perturbed observations was introduced simultaneously by 
Burgers et al. (1998) and Houtekamer and Mitchell (1998) to 
correct the previously too low spread of the analysis ensemble.  

– Deterministic ensemble Kalman filters, were designed to avoid 
the use of perturbed observations, which were found to 
introduce an additional sampling error into the filter solution. 
Includes filters: 
– Serial EnSRF (Whitaker and Hamill, 2002) 
– Ensemble Adjustment Kalman Filter (Anderson, 2001) 
– Ensemble Transform Kalman Filter (Bishop et al, 2001), 

LETKF (Hunt et al, 2007) 

EnKF algorithms
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The Stochastic Ensemble Kalman Filter

20

The original version introduced by Burgers et al. (1998) and Hautekamer and 
Mitchell (1998) added the perturbation noise onto actual observations. However, 

a much more consistent way is to perturb model predicted observations with 
the measurement noise, since actual observations already contain errors.  

Analysis step 
• Create perturbed model observations for each ensemble member, i,  
 
 
 
where                     .  
  

• Compute innovations for each ensemble member,  
 
 

 
 

ym,i = H (xi
f )+ εm,i , (6)

di = y − ym,i . (7)

εm,i ∼ N(0,R)
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The Stochastic Ensemble Kalman Filter

• Compute Kalman gain,  
 
 
 

• Finally, update each ensemble member 
 
 
 

Note,  
- the ensemble forecast error covariances are updated implicitly through the 

analysis ensemble. 
- the forecast error covariance matrix is never explicitly computed, instead 

we work with ensemble perturbation matrix, remembering that

Ke = Pe
fHT (HPe

fHT +R)−1. (8)

xi
a = xi

f +Kedm,i . (9)

Pe
f = 1

Ne −1
′X f ′X f( )T .



Summary of the Stochastic EnKF

Advantages: 
• very simple to implement and understand.  
• for large ensemble sizes, stochastic filters can handle nonlinearity 

better than the deterministic filters due to the additional Gaussian 
observation spread normalising the ensemble update which tends to 
erase the higher non-Gaussian moments the non-linear error growth 
has generated (see Lawson and Hansen (2004)).
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This motivates the development of square-root or deterministic 
forms of the EnKF that do not need to perturb the observations.

Disadvantages: 
• due to computational cost we can only afford small ensemble sizes 

thus offering minimal if any benefit for strongly non-linear problems. 
• introduces additional sampling noise.



Deterministic Ensemble Kalman Filters

There is a growing number of deterministic EnKFs all varying in how 
the transform matrix, T, is calculated in the analysis step, 

  
The idea of the deterministic EnKFs is to create an updated ensemble 
with covariance consistent with the analysis covariance from KF,  
 
 
Thus, using eqn. (5) we can write (11) in the square root form, 
 
 
or defining model observation perturbations as  

in a simpler form
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Xa = XfT. (10)

Pe
a = I−KeH( )Pef . (11)

′X a ′X a( )T = I− ′X f H ′X f( )T H ′X f H ′X f( )T + (Ne −1)R( )−1H⎛
⎝⎜

⎞
⎠⎟ ′X f ′X f( )T ,

S = H ′X f (12)

′X a ′X a( )T = I− ′X fST SST + (Ne −1)R( )−1H( ) ′X f ′X f( )T .



Deterministic Ensemble Kalman Filters

Hence,  

If we define innovation matrix as  

then we see that we need to find the square root of 

to find analysis ensemble perturbation matrix.  
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′X a ′X a( )T = ′X f I− ST SST + (Ne −1)R( )−1S( ) ′X f( )T .

F = SST + (Ne −1)R, (13)

TTT = I− STF−1S (14)



Ensemble Weight Matrix
• The matrix T is chosen such that  
 
 
 
 

• This does not uniquely define T which is why there are so many 
different variants of the square root filters, e.g. the Ensemble 
Adjustment Kalman Filter (Anderson (2001), and the Ensemble 
Transform Kalman Filter Bishop et al. (2001)). 

• There are a number of good reviews and comparisons on the 
growing number of square root filters, e.g. Tippett et al (2003), 
Nerger (2005, 2012), Vetra-Carvalho et al. (2018).
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Pe
a = ′X a ′X a( )T

= ′X fT ′X fT( )T
≈ I−KH( )Pf
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Deterministic Ensemble Kalman Filters

In general, we can write the analysis updates for deterministic filters as 
follows: 
• Ensemble analysis mean 
 
 

• Ensemble analysis perturbations 
 
 
where       is a weight vector and        is a weight matrix containing 
the transform matrix.

xa = xf + ′X fw, (16)

′X a = ′X f ′W , (17)

The weight matrices are filter specific. For example, next we will 
summarise a very popular ensemble Kalman filter called Ensemble 
Transform Kalman Filter (ETKF). 

w ′W



The Ensemble Transform Kalman Filter

Here we use Morrison-Woodbury identity to rewrite  

Then T is computed from the eigenvalue decomposition of  

Hence,  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TTT = I+ 1
Ne −1

STR−1S
⎛
⎝⎜

⎞
⎠⎟

−1

TTT( )−1 = UΣUT .

′W = UΣ−1/2UT .

w = 1
Ne −1

UΣ−1UT ′X f( )T HTR−1d,



The Ensemble Transform Kalman Filter

ETKF was first introduced by Bishop et al. (2001) and later revised by 
Wang et al. (2004). 
 
The revision by Wang et al. highlighted that any T which satisfies the 
estimate of the analysis error covariance does not necessarily lead to 
an unbiased analysis ensemble. Taking a simple single-sided square 
root could lead to implementations with a biased transformation, such 
that the transformation by       would not preserve the ensemble 
mean.  

However, using the symmetric square-root approach this bias is 
avoided. For more detail on what conditions T must satisfy for the 
analysis ensemble to be entered on the mean see Livings et al. (2008).
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Model error
• The ensemble Kalman filter allows for an imperfect model by adding 

noise at each time step of the model evolution. 

• The matrix Q is not explicitly needed in the algorithm, only the effect 
of the model error in the evolution of the state. 

• There have been many different strategies to including model error in 
the ensemble, based on where you think the source of the error lies. A 
few examples are 
– Multiphysics- different physical models are used in each ensemble member 
– Stochastic kinetic energy backscatter- replaces upscale kinetic energy 

loss due to unresolved processes and numerical integration. 
– Stochastically perturbed physical tendencies 
– Perturbed parameters 
– Or combinations of the above
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xi (n) = M x i (n −1)( )+ηi (n), ηi (n) ∼ N(0,Q)



Extending the state vector
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The state vector can be extended with the parameters of the model, 
called state augmentation. Thought this we can use the ensemble 
covariance to update values of poorly known parameters. 

!xfi = x1,i
f , x2,i

f ,..., xNx ,i
f ,θ1,i

f ,...,θNp ,i
f⎡⎣ ⎤⎦

T
= xi

f ,θi
f⎡⎣ ⎤⎦
T

!Pe
f =

Pe
f cov(xf ,θ f )

cov(θ f ,xf ) cov(θ f ,θ f )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

The ‘cross-covariance’ carries information from state variables to 
parameters.



Extending the state vector
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!Pe
f =

Pe
f cov(xf ,θ f )

cov(θ f ,xf ) cov(θ f ,θ f )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

• During each data-assimilation step the uncertainty in the parameters will 
decrease. 

• Unlike for the model variables, this variance will never increase if we keep 
the parameters the same between assimilation cycles. 

• Often this variance decreases to very small values before the parameters 
have reached their correct values. 

• But very small variance means very small updates, so parameters do not 
converge to true values.  

• Solution is to either perturb parameters with additive noise each model time 
step, or to include parameters in the inflation.



Example using Lorenz 1963
Using Lorenz 1963, estimate the values of the state variables and the 
parameters.



Summary of the Ensemble Kalman Filter

Advantages 
– The a-priori uncertainty is flow-dependent. 
– The code can be developed separately from the dynamical model e.g. EMPIRE 

and PDAF systems which allow for any model to assimilate observations using 
ensemble techniques (see http://www.met.reading.ac.uk/~darc/empire). 

– No need to linearise the model, only linear assumption is that statistics 
remain close to Gaussian. 

– Easy to account for model error. 
– Easy to parallelise. 

Disadvantages 
– Sensitive to ensemble size. Undersampling can lead to filter divergence. Ideas 

to mitigate this include localisation and inflation (see next EnKF lecture). 
– Assumes Gaussian statistics, for highly non-linear models this may not be a 

valid assumption (see lecture on particle filters.
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Summary of the Ensemble Kalman Filter

The different EnKF algorithms 
– Many different algorithms exist. 
– Stochastic methods update each ensemble member separately 

and then estimate the first two sample moments to give the 
ensemble mean and covariance. 

– Deterministic methods update the ensemble simultaneously 
based on linear/Gaussian theory. May allow for a smaller 
ensemble than the stochastic methods as avoids some of the 
sampling error. 

EnKF vs 4DVar 
– Each method has its own advantages and disadvantages- there is 

no clear winner. 
– Hybrid methods aim to combine the best bits of both.
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