
Copyright University of Reading

Data assimilation software (general)

Yumeng Chen

yumeng.chen@reading.ac.uk

1

Department of Meteorology

Data assimilation research centre (DARC)

2

Model
forecasts

Observations

A lot of
annoying

maths
Analysis

DA software does the maths for you

DA algorithms

3

Why bother with
DA software?

When do we want to write our own code?

• Not very complicated algorithms

• Learning details of an algorithm

• Sense of control

• Easier modifications

• Tailored to our own applications

• Fewer dependent libraries

… Source: Data Assimilation: Methods, Algorithms, and Applications by
Maëlle Nodet, Marc Bocquet, Mark Asch

4

Why bother with
DA software?

• Convenience

• Prefer np.mean to writing loops

• Optimised and efficient

• Well-maintained and reliable

• Focus on the scientific questions

• Ensures reproducible and consistent

scientific research
Source: Data Assimilation: Methods, Algorithms, and Applications by
Maëlle Nodet, Marc Bocquet, Mark Asch

One may even argue that we can build a DA
system without a team using good software.

5

Example DA software/libraries/framework

Name Developers Primary
Language

JEDI JCSDA + collaborators C++

PDAF AWI Fortran

DART NCAR Fortran

NEDAS NERSC Python

MIDAS ECCC Fortran

…

Name Developers Primary
Language

DAPPER NERSC Python

EnKF-C Sakov C

TorchDA Cheng Python

…

There is also software for specific purposes, e.g. land DA, snow DA, weather
DA, etc.

Data Assimilation with Python: a Package for Experimental Research (DAPPER)

6

https://github.com/nansencenter/DAPPER

• DAPPER is a set of templates to provide a

benchmark for different DA methods

• The typical set-up is a synthetic (twin) experiment

• Ease of adding new DA methods and models

• Pure Python implementation with multiprocessing

support

• It is not suited for very big models (>60k unknowns)

https://github.com/nansencenter/DAPPER

Data Assimilation with Python: a Package for Experimental Research (DAPPER)

7

import dapper.mods as modelling
import dapper.da_methods as da

HMM = modelling.HiddenMarkovModel(dyn, obs, tseq, x0)
xx, yy = HMM.simulate()

xp = da.EnKF("Sqrt", N=10, infl=1.02)
xp.assimilate(HMM, xx, yy)

Model
setup

Obs. setup Time steps,
observation
frequency, etc.

Initial
condition

Truth (xx) and synthetic
observations (yy)

DA set up and run
DA

Check model-specific configuration files for setting
up dyn, obs, tseq, x0

https://github.com/nansencenter/DAPPER

9

Using DA for large models: JEDI or PDAF

Functionalities PDAF JEDI

Methods Focuses on EnKF; also supports
(Hybrid) 3DVar and nonlinear filters

EnKF + Var + Hybrid

Language Fortran/Python Primarily C++

Model Coupling Adjustments in user-supplied
functions. Non-intrusive to the
model.

C++ interface class which needs
to wrap the model components +
YAML files manipulation.

Observation operator User-defined by user-supplied code
(can utilise existing Fortran code)

Various built-in operators and QC
processes

Error covariance modelling Ensemble generation method Ensemble and parametric B-
matrix modelling

Software installation Minimal dependencies Requires specific machine or
correct container configuration

Communities Research-driven Operational centres but also used
by the research community

10

Parallel Data Assimilation Framework (PDAF)

• Suitable for weather and climate models,

e.g. AWI-CM, MITgcm, MPI-ESM, NEMO,

etc.

• Implementation is in general efficient and

reliable

• Good protocols and well-documented to be

used with any models and observations

• Recently PDAF version 3.0 is released

Global filter Local filter Smoother

ETKF ✓ ✓

ESTKF ✓ ✓

EnKF ✓ ✓

SEIK ✓ ✓

SEEK

NETKF ✓ ✓

Particle filter

3DVar

3DEnVar

Hyb3DVar

EnKF

Nonlinear
filtering

3DVar

https://pdaf.awi.de/trac/wiki

11

Parallel Data Assimilation Framework (PDAF)

• A typical workflow of PDAF:

CALL PDAF_init(filtertype, subtype, 0, filter_param_i, 2, filter_param_r, 1,

COMM_model, COMM_filter, COMM_couple, task_id, n_modeltasks,

filterpe, init_ens, screen, status_pdaf)

CALL PDAF_init_forecast(next_observation, distribute_state, prepoststep,

status_pdaf)

CALL PDAF3_assimilate(collect_state, distribute_state, init_dim_obs,

obs_op, init_n_domains, init_dim_l, init_dim_obs_l, prepoststep,

next_observation, status_pdaf)

CALL finalize_pdaf()

Initialise PDAF

Assimilation in
model time

stepping

Finalise PDAF

Blue: user-supplied
functions

12

• Adding addition subroutines

with limited subroutine calls

in existing model

13

Parallel Data Assimilation Framework (PDAF)

• Flexibility of PDAF relies on user-supplied routines (grey boxes)

• Types of user-supplied routines

vary for different filters; check the

PDAF website for references.

14

Parallel Data Assimilation Framework (PDAF)

• PDAF also has a Python version, pyPDAF:

o https://github.com/yumengch/pypdaf

• Build a simple DA system using pyPDAF:

o https://colab.research.google.com/github/yumengch/pyPDAF/

o If you run the notebook on your local computer:

▪ conda create -n pypdaf -c conda-forge yumengch::pypdaf

jupyter matplotlib

o Any feedback on pyPDAF and the tutorials are welcome!

https://github.com/yumengch/pypdaf

	Slide 1: Data assimilation software (general)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Data Assimilation with Python: a Package for Experimental Research (DAPPER)
	Slide 7: Data Assimilation with Python: a Package for Experimental Research (DAPPER)
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

