Department of Meteorology Department of Mathematics & Statistics

Introduction to Data Assimilation

Prof Sarah L Dance s.l.dance@reading.ac.uk

@DrSarahDance.bsky.social (me) @unirdg-darc.bsky.social (DARC group)

With thanks to Prof Amos Lawless for a previous version of the slides

Outline

- Why data assimilation?
- What is data assimilation?
- How some basic info more detail in the rest of the week!

Data assimilation

Physics-constrained machine learning technique: updating model information using observations, taking account of uncertainty

Why data assimilation? Key uses

- Forecasting Using recent observations to improve initial conditions for short-term predictions
- **Re-analysis:** Learning more about how the Earth works, by using models to interpret/extend different types of data
- **Diagnosis, including parameter estimation:** Testing and improving models by comparing predictions to observations
- Real-time Control: Use continually changing estimates of system state to determine control actions

Why data assimilation?

Initial conditions for a forecast

 Example - Steady improvement in global numerical weather prediction skill

National Centre for

Earth Observation

- Corresponding improvements in regional forecasts
- In large part due to improved initial conditions for weather forecasts.

Bauer et al. (2015). A measure of forecast skill at 3, 5, 7 and 10-day ranges, computed over the extra-tropical northern and southern hemispheres.

University of

Reading

000

Why data assimilation? Key uses

- Forecasting Using recent observations to improve initial conditions for short-term predictions
- **Re-analysis:** Learning more about how the Earth works, by using models to interpret/extend different types of data
- **Diagnosis, including parameter estimation:** Testing and improving models by comparing predictions to observations
- Real-time Control: Use continually changing estimates of system state to determine control actions

Reanalysis Example – ozone hole

Why data assimilation? Key uses

- Forecasting Using recent observations to improve initial conditions for short-term predictions
- **Re-analysis:** Learning more about how the Earth works, by using models to interpret/extend different types of data
- **Diagnosis, including parameter estimation:** Testing and improving models by comparing predictions to observations
- Real-time Control: Use continually changing estimates of system state to determine control actions

Parameter diagnosis example

- Estimation of key parameters during the COVID-19 pandemic using observed data and SEIR models
- Approach was used to provide decision-support in Norway, regarding lockdowns and planning for healthcare resource management (hospital beds, ventilators etc)

Parameter estimation example

Estuary bathymetry

- Dynamic river channels
- Affects which areas are flooded during a stormsurge event
- Morphodynamic models can predict evolution
- BUT highly uncertain model parameters
- Use observations to constrain the parameters via data assimilation

e.g. Smith et al (2013) https://doi.org/10.1002/qj.194 4

Why data assimilation? Key uses

- Forecasting Using recent observations to improve initial conditions for short-term predictions
- **Re-analysis:** Learning more about how the Earth works, by using models to interpret/extend different types of data
- **Diagnosis, including parameter estimation:** Testing and improving models by comparing predictions to observations
- Real-time Control: Use continually changing estimates of system state to determine control actions

Control example – robotic gliders measuring phytoplankton blooms and dissolved oxygen level

- Robotic ocean gliders from the Plymouth Marine Laboratory
- Measuring phytoplankton blooms and dissolved oxygen levels
- Data assimilation with a coupled shelf-sea biogeochemistry model
- Informs gliders where to go next to maximize value of observations for predictions

Poll

Which uses of data assimilation are you most interested in? (Choose as many as you like)

https://forms.office.com/e/aH32TBpFzM

Data Assimilation Introduction

What is data assimilation?

- Data assimilation is the process of estimating the state of a dynamical system by combining observational data with an *a priori* estimate of the state (often from a numerical model forecast).
- We may also make use of other information such as
 - The system dynamics
 - Known physical properties
 - Knowledge of uncertainties

Dynamical model

- A model is a simplified representation of the real world
- In earth-system-modelling we usually solve mathematical equations describing a physical (biological, chemical) process as a function of time
- This enables us to make predictions of the future, or study events from the past
- "Data driven" models that are developed through deep learning are becoming more popular, but they still need to be initialized.

Data assimilation is often thought of as a way of keeping a model "on track" by constantly correcting it with fresh observations

Initial value problems

- In data assimilation we often estimate the initial conditions for a model prediction
- Often the models are described by (partial) differential equations discretized in a computer
- We have an "initial value problem"

Why not just use the observations?

• 1. We may only observe part of the state

Surface

Radiosonde

Why not just use the observations?

• 2. We may observe a nonlinear function of the state, e.g. satellite radiances.

Image from https://www.satnavi.jaxa.jp/en/satellite-knowledge/whats-eosatellite/observation/index.html

Let the state vector consists of the E-W and N-S components of the wind, *u* and *v*.

Suppose we observe the wind speed w_s .

Then we have $\mathbf{x} = \begin{pmatrix} u \\ v \end{pmatrix}$, $\mathbf{y} = w_s$ and $\mathbf{y} = H(\mathbf{x})$

with
$$H(\mathbf{x}) = \sqrt{u^2 + v^2}$$

H is known as the observation operator.

Example

How do we do data assimilation ?

Example - 3D-Variational Data Assimilation (3D-Var)

Handling the uncertainty

• We need to use probability density functions (pdfs) to represent the uncertainty and give the correct weight to the observations and prior model state. p(x)

Bayes theorem

- We assume that we have
 - A prior distribution of the state **x** given by $p(\mathbf{x})$
 - A vector of observations **y** with conditional probability $p(\mathbf{y}|\mathbf{x})$

•Then Bayes theorem states

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y}|\mathbf{x})}{p(\mathbf{y})}$$

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y}|\mathbf{x})}{p(\mathbf{y})}$$

Example

• Model temperature prediction (prior) $-2^{\circ}C \pm 2$

• Observed temperature (likelihood) +2°C ± 2

> Equal weight to observation and prior

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y}|\mathbf{x})}{p(\mathbf{y})}$$

Pause

Can you explain this plot?

Hint: think about whether you are more confident (less uncertain) in the observations or prior.

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y}|\mathbf{x})}{p(\mathbf{y})}$$

Not all probability distributions are Gaussian

Practical considerations

In practice the pdfs may be very high dimensional (e.g. 10⁹ in Numerical Weather Prediction).

Time constrained (both start and finish)

Practical considerations

This means

- We cannot calculate the full pdf.
- Consider using numerical approximations and/or machine learning techniques to accelerate our computations
- E.g. ensemble estimates of the prior

Bauer et al. (2015). https://doi.org/10.1038/nature14956

Summary and knowledge check

- Data assimilation has important uses in forecasting, reanalysis, model diagnosis and real-time control
- Data assimilation provides the best way of using partial observational data with numerical models, taking into account what we know (uncertainty, physics, ...).
- Bayes' theorem is a natural way of expressing the problem in theory.
- Dealing with the problem in practice is more challenging ... This is the story of the rest of the week!

Introduction to data assimilation knowledge check quiz

<u>https://forms.office.com/e/hCJnH7Un2v</u> View results to see feedback