
Introduction to Machine Learning in Data
Assimilation

Eviatar Bach
10 June 2025



Machine learning (ML) is increasingly being used in
combination with data assimilation.

In this lecture, we will discuss:

• Types of ML algorithms, including some important
architectures.

• How ML can be incorporated into DA (more on this on
Friday).

• Some important topics in ML:

• Introduction to optimisation
• Automatic differentiation
• Train and test error, cross-validation

1 / 24



Machine learning (ML) is increasingly being used in
combination with data assimilation.

In this lecture, we will discuss:

• Types of ML algorithms, including some important
architectures.

• How ML can be incorporated into DA (more on this on
Friday).

• Some important topics in ML:

• Introduction to optimisation
• Automatic differentiation
• Train and test error, cross-validation

1 / 24



Machine learning (ML) is increasingly being used in
combination with data assimilation.

In this lecture, we will discuss:

• Types of ML algorithms, including some important
architectures.

• How ML can be incorporated into DA (more on this on
Friday).

• Some important topics in ML:

• Introduction to optimisation
• Automatic differentiation
• Train and test error, cross-validation

1 / 24



Machine learning (ML) is increasingly being used in
combination with data assimilation.

In this lecture, we will discuss:

• Types of ML algorithms, including some important
architectures.

• How ML can be incorporated into DA (more on this on
Friday).

• Some important topics in ML:

• Introduction to optimisation
• Automatic differentiation
• Train and test error, cross-validation

1 / 24



Machine learning (ML) is increasingly being used in
combination with data assimilation.

In this lecture, we will discuss:

• Types of ML algorithms, including some important
architectures.

• How ML can be incorporated into DA (more on this on
Friday).

• Some important topics in ML:
• Introduction to optimisation

• Automatic differentiation
• Train and test error, cross-validation

1 / 24



Machine learning (ML) is increasingly being used in
combination with data assimilation.

In this lecture, we will discuss:

• Types of ML algorithms, including some important
architectures.

• How ML can be incorporated into DA (more on this on
Friday).

• Some important topics in ML:
• Introduction to optimisation
• Automatic differentiation

• Train and test error, cross-validation

1 / 24



Machine learning (ML) is increasingly being used in
combination with data assimilation.

In this lecture, we will discuss:

• Types of ML algorithms, including some important
architectures.

• How ML can be incorporated into DA (more on this on
Friday).

• Some important topics in ML:
• Introduction to optimisation
• Automatic differentiation
• Train and test error, cross-validation

1 / 24



ML in DA

How to incorporate machine learning (ML) into DA?

• Unknown or partially unknown system dynamics: Learning
forecast model

• Using a learned forecast model in DA
• Learning the assimilation step, or the forecast +
assimilation step jointly.

2 / 24



ML in DA

How to incorporate machine learning (ML) into DA?

• Unknown or partially unknown system dynamics: Learning
forecast model

• Using a learned forecast model in DA

• Learning the assimilation step, or the forecast +
assimilation step jointly.

2 / 24



ML in DA

How to incorporate machine learning (ML) into DA?

• Unknown or partially unknown system dynamics: Learning
forecast model

• Using a learned forecast model in DA
• Learning the assimilation step, or the forecast +
assimilation step jointly.

2 / 24



https://www.arxiv.org/abs/2410.10523

2 / 24

https://www.arxiv.org/abs/2410.10523


Types of machine learning



Machine learning algorithms can broadly be classified into

• Supervised learning: data is given “labelled”, objective is
to learn relationship to predict on new data.

• Unsupervised learning: data is unlabelled, and objective
is to learn some patterns in the data.

3 / 24



Machine learning algorithms can broadly be classified into

• Supervised learning: data is given “labelled”, objective is
to learn relationship to predict on new data.

• Unsupervised learning: data is unlabelled, and objective
is to learn some patterns in the data.

3 / 24



Supervised learning



Supervised learning

Assume we have a dataset of N pairs of points

{(xn, yn)}
N
n=1 ,

that is, (x1, y1), . . . , (xN, yN).

Labels: the xn are inputs, yn are outputs.

We assume that the yn are related to the xn through some
possibly noisy function, i.e.,

yn = f (xn; θ) + noise.

The objective is to learn the parameters θ for some specific
form of f.

4 / 24



Supervised learning

Assume we have a dataset of N pairs of points

{(xn, yn)}
N
n=1 ,

that is, (x1, y1), . . . , (xN, yN).

Labels: the xn are inputs, yn are outputs.

We assume that the yn are related to the xn through some
possibly noisy function, i.e.,

yn = f (xn; θ) + noise.

The objective is to learn the parameters θ for some specific
form of f.

4 / 24



Supervised learning

Assume we have a dataset of N pairs of points

{(xn, yn)}
N
n=1 ,

that is, (x1, y1), . . . , (xN, yN).

Labels: the xn are inputs, yn are outputs.

We assume that the yn are related to the xn through some
possibly noisy function, i.e.,

yn = f (xn; θ) + noise.

The objective is to learn the parameters θ for some specific
form of f.

4 / 24



Regression

In regression, the outputs yn take continuous values.

A common cost function is the mean-squared loss:

J(θ) = 1
N

N∑
n=1

‖f(xn;θ)− yn‖2.

Example: in linear regression,

yn = β>xn + noise.

In this case, θ = β.

5 / 24



Regression

In regression, the outputs yn take continuous values.

A common cost function is the mean-squared loss:

J(θ) = 1
N

N∑
n=1

‖f(xn;θ)− yn‖2.

Example: in linear regression,

yn = β>xn + noise.

In this case, θ = β.

5 / 24



Regression

In regression, the outputs yn take continuous values.

A common cost function is the mean-squared loss:

J(θ) = 1
N

N∑
n=1

‖f(xn;θ)− yn‖2.

Example: in linear regression,

yn = β>xn + noise.

In this case, θ = β.

5 / 24



In some cases, the minimizer of J(θ) can be found analytically
using calculus (or its extension, matrix calculus).

Otherwise, we will need to minimise approximately.

Example: neural networks.

6 / 24



In some cases, the minimizer of J(θ) can be found analytically
using calculus (or its extension, matrix calculus).

Otherwise, we will need to minimise approximately.

Example: neural networks.

6 / 24



In some cases, the minimizer of J(θ) can be found analytically
using calculus (or its extension, matrix calculus).

Otherwise, we will need to minimise approximately.

Example: neural networks.

6 / 24



Neural networks

7 / 24



Neural networks

Deep learning: many hidden layers, often overparameterised.

Nonlinearity of activation function allows for universal
approximation properties.

Can build in spatial structure: convolutional neural networks.

8 / 24



Neural networks

Deep learning: many hidden layers, often overparameterised.

Nonlinearity of activation function allows for universal
approximation properties.

Can build in spatial structure: convolutional neural networks.

8 / 24



Neural networks

Deep learning: many hidden layers, often overparameterised.

Nonlinearity of activation function allows for universal
approximation properties.

Can build in spatial structure: convolutional neural networks.

8 / 24



Time-series forecasting

A special case of regression. Assume data is a time-series: that
is, given by points ordered in time:

{x(t)}Tt=1.

A Markovian time-series forecasting model takes

x(t + 1) = f(x(t);θ) + noise,

or memory can be incorporated as

x(t + 1) = f({x(s)}ts=t−τ ;θ) + noise,

where τ is the amount of memory. If x includes all the relevant
variables, memory will in general not be needed. If there are
unobserved variables it can be useful.

9 / 24



Time-series forecasting

A special case of regression. Assume data is a time-series: that
is, given by points ordered in time:

{x(t)}Tt=1.

A Markovian time-series forecasting model takes

x(t + 1) = f(x(t);θ) + noise,

or memory can be incorporated as

x(t + 1) = f({x(s)}ts=t−τ ;θ) + noise,

where τ is the amount of memory.

If x includes all the relevant
variables, memory will in general not be needed. If there are
unobserved variables it can be useful.

9 / 24



Time-series forecasting

A special case of regression. Assume data is a time-series: that
is, given by points ordered in time:

{x(t)}Tt=1.

A Markovian time-series forecasting model takes

x(t + 1) = f(x(t);θ) + noise,

or memory can be incorporated as

x(t + 1) = f({x(s)}ts=t−τ ;θ) + noise,

where τ is the amount of memory. If x includes all the relevant
variables, memory will in general not be needed. If there are
unobserved variables it can be useful.

9 / 24



Classification

A type of supervised learning where the outputs yn take on
discrete values.

Example: MNIST

10 / 24



Classification

A type of supervised learning where the outputs yn take on
discrete values.

Example: MNIST

10 / 24



Unsupervised learning



Generative models

Suppose we have a dataset

{xn}Nn=1,

where xn ∼ p(x;θ). That is, the data points are assumed to
have come from a probability distribution p(x;θ).

For generative models, we first estimate θ in some class, and
then produce new samples from this distribution.

Example: diffusion models

11 / 24



Generative models

Suppose we have a dataset

{xn}Nn=1,

where xn ∼ p(x;θ). That is, the data points are assumed to
have come from a probability distribution p(x;θ).

For generative models, we first estimate θ in some class, and
then produce new samples from this distribution.

Example: diffusion models

11 / 24



Generative models

Suppose we have a dataset

{xn}Nn=1,

where xn ∼ p(x;θ). That is, the data points are assumed to
have come from a probability distribution p(x;θ).

For generative models, we first estimate θ in some class, and
then produce new samples from this distribution.

Example: diffusion models

11 / 24



Optimisation



Convexity

A function f : Rd → R is called convex if, for all s1, s2 and for all
θ ∈ [0, 1], we have that

f (θs1 + (1− θ)s2) ≤ θf (s1) + (1− θ)f (s2).

A function is called strictly convex if the inequality is strict for
s1 6= s2.

12 / 24



Convexity

A function f : Rd → R is called convex if, for all s1, s2 and for all
θ ∈ [0, 1], we have that

f (θs1 + (1− θ)s2) ≤ θf (s1) + (1− θ)f (s2).

A function is called strictly convex if the inequality is strict for
s1 6= s2.

12 / 24



Convexity

Strictly convex functions have a unique global minimum x∗.

Positive definite Hessian (positive second derivative) =⇒
strictly convex, and positive semidefinite Hessian (nonnegative
second derivative) ⇐⇒ convex.

13 / 24



Convexity

Strictly convex functions have a unique global minimum x∗.

Positive definite Hessian (positive second derivative) =⇒
strictly convex, and positive semidefinite Hessian (nonnegative
second derivative) ⇐⇒ convex.

13 / 24



Gradient descent

Given f : Rd → R, gradient descent is computed from a
sequence of step-sizes {αj}j∈Z+ by picking an x0 ∈ Rd and then
iterating as follows:

xj+1 = xj − αj∇f (xj), j ∈ Z+.

14 / 24



Gradient descent

Given f : Rd → R, gradient descent is computed from a
sequence of step-sizes {αj}j∈Z+ by picking an x0 ∈ Rd and then
iterating as follows:

xj+1 = xj − αj∇f (xj), j ∈ Z+.

14 / 24



Convexity

For strongly convex functions, gradient descent converges to
global minimum.

Typically, cost functions encountered in ML may be highly
nonconvex.

We generally will not find the global minimum, and may only
find a local one.

Optimisation algorithms for nonconvex functions try to
balance exploration and exploitation:

• Exploitation: pursue the most promising current avenue
(e.g., gradient descent)

• Exploration: venture out to find new avenues in the hope
of finding a more promising avenue (e.g., stochasticity)

15 / 24



Convexity

For strongly convex functions, gradient descent converges to
global minimum.

Typically, cost functions encountered in ML may be highly
nonconvex.

We generally will not find the global minimum, and may only
find a local one.

Optimisation algorithms for nonconvex functions try to
balance exploration and exploitation:

• Exploitation: pursue the most promising current avenue
(e.g., gradient descent)

• Exploration: venture out to find new avenues in the hope
of finding a more promising avenue (e.g., stochasticity)

15 / 24



Convexity

For strongly convex functions, gradient descent converges to
global minimum.

Typically, cost functions encountered in ML may be highly
nonconvex.

We generally will not find the global minimum, and may only
find a local one.

Optimisation algorithms for nonconvex functions try to
balance exploration and exploitation:

• Exploitation: pursue the most promising current avenue
(e.g., gradient descent)

• Exploration: venture out to find new avenues in the hope
of finding a more promising avenue (e.g., stochasticity)

15 / 24



Convexity

For strongly convex functions, gradient descent converges to
global minimum.

Typically, cost functions encountered in ML may be highly
nonconvex.

We generally will not find the global minimum, and may only
find a local one.

Optimisation algorithms for nonconvex functions try to
balance exploration and exploitation:

• Exploitation: pursue the most promising current avenue
(e.g., gradient descent)

• Exploration: venture out to find new avenues in the hope
of finding a more promising avenue (e.g., stochasticity)

15 / 24



Stochastic gradient descent (SGD)

Suppose the cost function can be written as a mean over data
points, e.g., recall

J(θ) = 1
N

N∑
n=1

(f (xn;θ)− yn)2.

Computing the gradient,

∇J(θ) = 2
N

N∑
n=1

∇f (xn)(f (xn;θ)− yn).

It may be expensive to compute this gradient when N is large,
such as when f is a large neural network.

Stochastic gradient descent (SGD) instead computes the
gradient with respect to a random subset: a mini-batch.

16 / 24



Stochastic gradient descent (SGD)

Suppose the cost function can be written as a mean over data
points, e.g., recall

J(θ) = 1
N

N∑
n=1

(f (xn;θ)− yn)2.

Computing the gradient,

∇J(θ) = 2
N

N∑
n=1

∇f (xn)(f (xn;θ)− yn).

It may be expensive to compute this gradient when N is large,
such as when f is a large neural network.

Stochastic gradient descent (SGD) instead computes the
gradient with respect to a random subset: a mini-batch.

16 / 24



Stochastic gradient descent (SGD)

Suppose the cost function can be written as a mean over data
points, e.g., recall

J(θ) = 1
N

N∑
n=1

(f (xn;θ)− yn)2.

Computing the gradient,

∇J(θ) = 2
N

N∑
n=1

∇f (xn)(f (xn;θ)− yn).

It may be expensive to compute this gradient when N is large,
such as when f is a large neural network.

Stochastic gradient descent (SGD) instead computes the
gradient with respect to a random subset: a mini-batch.

16 / 24



Stochastic gradient descent (SGD)

Suppose the cost function can be written as a mean over data
points, e.g., recall

J(θ) = 1
N

N∑
n=1

(f (xn;θ)− yn)2.

Computing the gradient,

∇J(θ) = 2
N

N∑
n=1

∇f (xn)(f (xn;θ)− yn).

It may be expensive to compute this gradient when N is large,
such as when f is a large neural network.

Stochastic gradient descent (SGD) instead computes the
gradient with respect to a random subset: a mini-batch.

16 / 24



Stochastic gradient descent (SGD)

One full sweep through the data (consisting of multiple SGD
steps) is called an epoch.

This reduces computational cost but also encourages
exploration.

Popular optimisation methods used in ML (e.g., ADAM) are
variants of stochastic gradient descent.

17 / 24



Stochastic gradient descent (SGD)

One full sweep through the data (consisting of multiple SGD
steps) is called an epoch.

This reduces computational cost but also encourages
exploration.

Popular optimisation methods used in ML (e.g., ADAM) are
variants of stochastic gradient descent.

17 / 24



Stochastic gradient descent (SGD)

One full sweep through the data (consisting of multiple SGD
steps) is called an epoch.

This reduces computational cost but also encourages
exploration.

Popular optimisation methods used in ML (e.g., ADAM) are
variants of stochastic gradient descent.

17 / 24



Automatic differentiation

Gradients are often difficult to obtain in closed form for
complex cost functions.

Finite difference approximations are often inaccurate and
expensive for high-dimensional problems.

Automatic differentiation (autodiff) involves repeated
application of chain rule on elementary operations that
enables computing derivatives accurately to working precision.

This can allow differentiation through model states (adjoint),
model parameters, and DA algorithms, and enable use of
gradient-based optimization.

18 / 24



Automatic differentiation

Gradients are often difficult to obtain in closed form for
complex cost functions.

Finite difference approximations are often inaccurate and
expensive for high-dimensional problems.

Automatic differentiation (autodiff) involves repeated
application of chain rule on elementary operations that
enables computing derivatives accurately to working precision.

This can allow differentiation through model states (adjoint),
model parameters, and DA algorithms, and enable use of
gradient-based optimization.

18 / 24



Automatic differentiation

Gradients are often difficult to obtain in closed form for
complex cost functions.

Finite difference approximations are often inaccurate and
expensive for high-dimensional problems.

Automatic differentiation (autodiff) involves repeated
application of chain rule on elementary operations that
enables computing derivatives accurately to working precision.

This can allow differentiation through model states (adjoint),
model parameters, and DA algorithms, and enable use of
gradient-based optimization.

18 / 24



Automatic differentiation

Gradients are often difficult to obtain in closed form for
complex cost functions.

Finite difference approximations are often inaccurate and
expensive for high-dimensional problems.

Automatic differentiation (autodiff) involves repeated
application of chain rule on elementary operations that
enables computing derivatives accurately to working precision.

This can allow differentiation through model states (adjoint),
model parameters, and DA algorithms, and enable use of
gradient-based optimization.

18 / 24



Automatic differentiation

Suppose y = f (x), where y ∈ Rdn and x ∈ Rd0 , and the
derivative of f is not readily available in closed-form.

We assume the implementation of f in computer code is made
up of n elementary operations fi : Rdi−1 → Rdi (for instance,
addition, multiplication, logarithms, etc.), such that

f (x) = fn ◦ fn−1 ◦ · · · ◦ f1(x), (1)

where the Jacobians for these elementary operations,
Dfi : Rdi−1 → Rdi×di−1 , are available in closed form.

Writing the partial evaluations up to i ≤ n as

gi = (fi ◦ · · · ◦ f1)(x),

by the chain rule we have that

Dxf (x) = (Dgn−1fn(gn−1)) · · · (Dg1f2(g1))(Dxf1(x)). (2)

19 / 24



Automatic differentiation

Suppose y = f (x), where y ∈ Rdn and x ∈ Rd0 , and the
derivative of f is not readily available in closed-form.

We assume the implementation of f in computer code is made
up of n elementary operations fi : Rdi−1 → Rdi (for instance,
addition, multiplication, logarithms, etc.), such that

f (x) = fn ◦ fn−1 ◦ · · · ◦ f1(x), (1)

where the Jacobians for these elementary operations,
Dfi : Rdi−1 → Rdi×di−1 , are available in closed form.

Writing the partial evaluations up to i ≤ n as

gi = (fi ◦ · · · ◦ f1)(x),

by the chain rule we have that

Dxf (x) = (Dgn−1fn(gn−1)) · · · (Dg1f2(g1))(Dxf1(x)). (2)

19 / 24



Automatic differentiation

Suppose y = f (x), where y ∈ Rdn and x ∈ Rd0 , and the
derivative of f is not readily available in closed-form.

We assume the implementation of f in computer code is made
up of n elementary operations fi : Rdi−1 → Rdi (for instance,
addition, multiplication, logarithms, etc.), such that

f (x) = fn ◦ fn−1 ◦ · · · ◦ f1(x), (1)

where the Jacobians for these elementary operations,
Dfi : Rdi−1 → Rdi×di−1 , are available in closed form.

Writing the partial evaluations up to i ≤ n as

gi = (fi ◦ · · · ◦ f1)(x),

by the chain rule we have that

Dxf (x) = (Dgn−1fn(gn−1)) · · · (Dg1f2(g1))(Dxf1(x)). (2)
19 / 24



Automatic differentiation

This suggests the following algorithm (forward mode automatic
differentiation):
1: Input: The functions {fi(·)}ni=1, their corresponding
Jacobians {Dfi(·)}ni=1, and the function input x.

2: Set g1 = f1(x) and J1 = Df1(x).
3: For i = 2, . . . ,n: set gi = fi(gi−1) and Ji = (Dfi(gi−1))Ji−1.
4: Output: The function output y = f (x) = gn and the
derivative Df (x) = Jn.

Reverse mode autodiff requires a backwards pass to compute
the derivative, and is more efficient when d0 � dn (many
inputs), whereas forward mode is more efficient when dn � d0
(many outputs).

20 / 24



Automatic differentiation

This suggests the following algorithm (forward mode automatic
differentiation):
1: Input: The functions {fi(·)}ni=1, their corresponding
Jacobians {Dfi(·)}ni=1, and the function input x.

2: Set g1 = f1(x) and J1 = Df1(x).
3: For i = 2, . . . ,n: set gi = fi(gi−1) and Ji = (Dfi(gi−1))Ji−1.
4: Output: The function output y = f (x) = gn and the
derivative Df (x) = Jn.

Reverse mode autodiff requires a backwards pass to compute
the derivative, and is more efficient when d0 � dn (many
inputs), whereas forward mode is more efficient when dn � d0
(many outputs).

20 / 24



Generalisation



Under- and over-fitting

ML models usually have parameters that can be adjusted,
called hyperparameters, to vary the level of complexity; e.g.,
depth of a neural network, degree of polynomial fit.

Models that are complex enough will often be able to do
arbitrarily well on the training data. However, this may not do
well with new data points.

This
failure to generalise is called overfitting. The performance on
the training set is misleading.

21 / 24



Under- and over-fitting

ML models usually have parameters that can be adjusted,
called hyperparameters, to vary the level of complexity; e.g.,
depth of a neural network, degree of polynomial fit.

Models that are complex enough will often be able to do
arbitrarily well on the training data. However, this may not do
well with new data points.

This
failure to generalise is called overfitting. The performance on
the training set is misleading.

21 / 24



Under- and over-fitting

ML models usually have parameters that can be adjusted,
called hyperparameters, to vary the level of complexity; e.g.,
depth of a neural network, degree of polynomial fit.

Models that are complex enough will often be able to do
arbitrarily well on the training data. However, this may not do
well with new data points.

This
failure to generalise is called overfitting. The performance on
the training set is misleading. 21 / 24



Train and test set

How do we get a better estimate of the performance of the
model on unseen data?

Split dataset into a training set and test set. Train on the
training set and only validate model performance on test data

If the test error is significantly higher than the training error,
this is a symptom of overfitting. Need to make the model
simpler.

How to choose hyperparameters? Split data again, and
validate performance on a validation set.

22 / 24



Train and test set

How do we get a better estimate of the performance of the
model on unseen data?

Split dataset into a training set and test set. Train on the
training set and only validate model performance on test data

If the test error is significantly higher than the training error,
this is a symptom of overfitting. Need to make the model
simpler.

How to choose hyperparameters? Split data again, and
validate performance on a validation set.

22 / 24



Train and test set

How do we get a better estimate of the performance of the
model on unseen data?

Split dataset into a training set and test set. Train on the
training set and only validate model performance on test data

If the test error is significantly higher than the training error,
this is a symptom of overfitting. Need to make the model
simpler.

How to choose hyperparameters? Split data again, and
validate performance on a validation set.

22 / 24



Train and test set

How do we get a better estimate of the performance of the
model on unseen data?

Split dataset into a training set and test set. Train on the
training set and only validate model performance on test data

If the test error is significantly higher than the training error,
this is a symptom of overfitting. Need to make the model
simpler.

How to choose hyperparameters? Split data again, and
validate performance on a validation set.

22 / 24



Cross-validation

We can still overfit on the validation data!

Cross-validation is a popular technique to try to fix this.

Set aside test set, and rotate training and validation sets:

With k splits, called k-fold cross-validation.

23 / 24



Cross-validation

We can still overfit on the validation data!

Cross-validation is a popular technique to try to fix this.

Set aside test set, and rotate training and validation sets:

With k splits, called k-fold cross-validation.

23 / 24



Cross-validation

We can still overfit on the validation data!

Cross-validation is a popular technique to try to fix this.

Set aside test set, and rotate training and validation sets:

With k splits, called k-fold cross-validation.

23 / 24



Cross-validation

We can still overfit on the validation data!

Cross-validation is a popular technique to try to fix this.

Set aside test set, and rotate training and validation sets:

With k splits, called k-fold cross-validation.

23 / 24



References i

24 / 24


	Types of machine learning
	Supervised learning
	Unsupervised learning
	Optimisation
	Generalisation

