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Aim of lecture

- Give an overview of the different approaches to solving the data 
assimilation problem by building on a common framework. 

- Introduce the frequently used terminology
- Highlight the similarities and differences between the different 

approaches.

- More detailed descriptions of the algorithms will be presented in 
the rest of the week.
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Recap aims of DA

The DA problem is to combine prior knowledge and relevant observations to give an updated 
estimate of the state of the atmosphere/oceans/land surface etc.

• To initialize a forecast – the better the initial conditions the better the forecast.

• Create reanalyses to understand the recent past.

• Estimate parameters in the model to give a better understanding of the processes represented.
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Linking observations to models

𝐱 ∈ ℝ𝒏 is a vector of 
the model variables 
that we want to 
estimate. Referred to 
as the STATE.

𝐲 ∈ ℝ𝒑 is a 
vector of the 
available 
observations

As 𝐱 and 𝐲  lie in different 
spaces it is necessary to 
define an OBSERVATION 
OPERATOR, ℎ: ℝ𝒏 ⟶ ℝ𝒑, 
that maps 𝐱 from state 
space to observation 
space.



The inverse problem

The observation operator, which maps from state to observation space, is often known as the 
FORWARD MODEL.

Reconstructing 𝐱 from 𝐲 is often referred to as the INVERSE PROBLEM.

If the observation operator were linear, we could write 𝐲 = 𝐇𝐱, where  𝐇 ∈ ℝ𝑝×𝑛.

Usually 𝐇 is non-square (𝑛 ≠ 𝑝) and/or rank deficient. Therefore, we cannot invert 𝐇 to find 𝐱 =
𝐇−𝟏𝒚 directly. 

Additionally, the observations are not perfect and contain errors.

Data assimilation provides a framework for solving the inverse problem by introducing prior 
information about 𝐱.
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Bayes’ theorem
Most DA algorithms can be derived from Bayes’ theorem:

𝑝 𝐱 𝐲 =
𝑝 𝐱 𝑝(𝐲|𝐱)

𝑝(𝐲)

𝐱 is a vector of the 
model variables that 
we want to estimate. 

𝐲 is a vector of the available 
observations

posterior
prior likelihood

marginal



Bayes’ theorem
Most DA algorithms can be derived from Bayes’ theorem:

 𝑝 𝐱 𝐲 ∝ 𝑝 𝐱 𝑝(𝐲|𝐱)

𝐱 is a vector of the 
model variables that 
we want to estimate

𝐲 is a vector of the available 
observations

posterior prior likelihood



Bayes’ theorem:  Scalar illustration 𝑝 𝐱 𝐲 ∝ 𝑝 𝐱 𝑝(𝐲|𝐱)

• The prior PDF, p(x), describes 
the probability of your state 
variables. Often, this 
knowledge comes from a 
previous forecast. 



Bayes’ theorem:  Scalar illustration 𝑝 𝐱 𝐲 ∝ 𝑝 𝐱 𝑝(𝐲|𝐱)

• Likelihood PDF, p(y|x), 
describes the probability of 
observations given that they 
are measuring the state we 
are interested in. P(y|x)=L(x|y) 
so that we can think of it as a 
function of x. 



Bayes’ theorem:  Scalar illustration 𝑝 𝐱 𝐲 ∝ 𝑝 𝐱 𝑝(𝐲|𝐱)

• The posterior PDF is given by 
multiplying the two together and 
normalising. Updating the prior 
with information from the 
observations has shifted the 
probability mass and reduced the 
range of probable values of x (i.e. 
the uncertainty in x is reduced!) 



Bayes’ theorem: 2 variable example
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Let our state x be a vector of zonal and meridional winds, u and v at one location. 
Observe u only.

Compared to the Prior, the region of high probability in the Posterior for u is reduced 
and is shifted towards that of the likelihood.



Bayes’ theorem: 2 variable example

How do you think the Posterior would change if the Prior was correlated?

When the Prior is correlated, observations of one variable can be used to update the 
analysis of both variables. This helps to ensure the analysis is physically realistic.
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Ambiguity in the sign of u

Bayes’ theorem: 2 variable example

In this example the prior is non-Gaussian. Let us observe 𝑢2, how will this change the 
likelihood?
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How to solve Bayes’ theorem?
A naïve approach could be to discretize the whole of the state space, evaluate 𝑝 𝑥 = 𝑥𝑖  and 
𝑝 𝑦|𝑥 = 𝑥𝑖  and multiply (this is exactly what I did in the 2D examples)

We will discuss two different, more efficient, approaches to solving Bayes’ theorem

1. Non-Parametric approaches: No assumptions are made about the form of Prior or 
likelihood and consequently the Posterior. These methods include MCMC and the Particle 
filter

2. Parametric approaches: The prior, likelihood and hence the Posterior are assumed to 
follow a given distribution. These methods include variational techniques and the EnKF.
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 Might miss the regions of high 
probability
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PDFs in regions of near-zero 
probability



Non-parametric approaches
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MCMC

Markov Chain Monte Carlo (MCMC) are a 
class of algorithms that allow you to sample 
from the Posterior distribution.
The basic algorithm is:

16



MCMC

The accept/reject procedure ensures that samples that provide a better fit to 
the observations are immediately accepted, those that provide a similar fit are 
considered, and those that lead to simulated observations that are very 
different from the measurements are rejected. 
Regions with relatively high probability are therefore preferentially sampled, 
whereas regions with low probability are avoided, and a sample of the posterior 
distribution is produced using far fewer iterations than direct computation of 
the PDF.
The theoretical underpinnings of the MCMC algorithm can be found in 
Mosegaard and Tarantola(2002) and Tarantola (2005). 
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The Particle filter

Like the MCMC the Particle filter (PF, also known as sequential MC) 
aims to produce a sample representation of the posterior 
distribution.
The basic idea is:

The posterior is then given by 

Prior sample Posterior sample



Application of Bayes’ to large problems

Non-parametric methods that make no assumption about the nature of the prior and the 
likelihood are inefficient for large-scale problems because the number of samples needed to 
represent the whole distribution grows exponentially with the size of the state to be estimated.

The efficiency of the MCMC method can be quantified by the acceptance/reject ratio (0.33 in 
the example).
The efficiency of the particle filter can be measured by the effective sample size:

If the weights are very uneven the ess can approach 1 and the weighted sample will be 
overwhelmed by sampling noise (4.7 with N=50 in the example).
To increase the ess, PFs are being developed to increase the chance that the sample is the 
region of high likelihood, see van Leeuwen et al. 2019.
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Parametric approaches - Gaussian 
assumption
In NWP we are interested in applying Bayes’ theorem to approximately 108 

dimensions.

In many cases, it is appropriate to assume that the prior and likelihood are Gaussian

Mean vector

Error covariance matrix
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Gaussian assumption

The prior:

𝑝 𝐱 =
1

2𝜋 𝑛/2 𝐁 1/2
𝑒𝑥𝑝 −

1

2
(𝐱 − 𝐱b)𝑇𝐁−1(𝐱 − 𝐱b)

The likelihood:

𝑝 𝐲|𝐱 =
1

2𝜋 𝑛/2 𝐑 1/2
𝑒𝑥𝑝 −

1

2
(𝐲 − ℎ(𝐱))𝑇𝐑−1(𝐲 − ℎ(𝐱)) 

Applying Bayes’ theorem the posterior is:

𝑝 𝐱|𝐲 ∝ 𝑒𝑥𝑝 −
1

2
(𝐱 − 𝐱b)𝑇𝐁−1(𝐱 − 𝐱b) −

1

2
(𝐲 − ℎ(𝐱))𝑇𝐑−1(𝐲 − ℎ(𝐱)) 

If h is linear then the posterior is also Gaussian and can be parameterized according 
to its mean (xa, the analysis) and its (analysis error) covariance matrix.

Mean of the prior 
distribution

Vector of 
observations

Observation operator, 
mapping from state to 
observation space

Prior error 
covariance matrix

observation error 
covariance matrix
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Bayes’ theorem scalar Gaussian illustration

The mean of p(y|x) and p(x) are the observed 
and background/forecast model values 
respectively.

The standard deviations of p(y|x) and p(x) are the 
uncertainties of the observed and background 
values respectively.

e.g. temperature °C 
Innovation =𝑦 − ℎ(𝑥𝑏)



The uncertainty of the 
posterior is smaller than 
either the likelihood or the 
prior. 

The mean = mode of p(x|y) 
gives the ‘analysis’, which is 
also the minimum variance 
estimate!

Analysis increment

Bayes’ theorem scalar Gaussian illustration



Analytical solution – the Kalman equations

The analysis (the maximum a posteriori state) can be derived analytically as
      where
and H is the linearized observation operator.
K (known as the Kalman gain) prescribes the weight given to the observations 
versus the prior. We see that the K increases as the prior uncertainty (B) 
increases and the observation uncertainty (R) decreases.
The analysis error covariance can also be derived analytically

We see as K increases Pa decreases.
In practice, we can not evaluate these expressions directly.
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Variational and Ensemble Kalman 
Filter techniques
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Variational (Var) DA

Var algorithms aim to find Maximum a-posterioiri (MAP) state/parameter set, 
which is also the mean of the Posterior distribution (assuming Gaussianity) and 
hence the same as the minimum variance estimate (Lorenc 1986).
In Var the analysis (the MAP estimate) is found by minimising the following cost 
function:

If the observation operator is linear then the cost function is quadratic

P (y | x) ~ N (y , R)

P (x) ~ N (xb , B)

Jb  +  Jo

P (x|y) ~ N (xa , Pa)
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Variational DA

1 variable 
Example:

The minimum of the cost function, xa, is known as the analysis.

xby xbyxa xa
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The assimilation window (4DVar)

**

*

*

*

xa
xb

*Observations
       background 
uncertainty, 
characterised by B
        observation 
uncertainty, 
characterised by R

timeAssimilation windowt0

M(xa)
analysis 
uncertainty.

forecast
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The general form of variational DA is called 4DVar. This allows for observations 
over a window to be assimilated.

The 4DVar cost function is:

Can think of                                 as a generalized ob operator:



4DVar
The minimum of the cost function (the analysis) can be 
found iteratively by searching in the direction of the 
gradient
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The gradient of the cost function is given by 
∇J 𝑥0

𝑘 = 𝐁−1 𝐱0 − 𝐱0
𝑘 + σ𝑖=1

𝑝
 𝐌𝑡0→𝑡𝑖

T 𝐇T𝐑𝑖
−1 𝐲𝒊 − ℎ(𝑀𝑡0→𝑡𝑖

(𝐱0) ,

where M is the tangent linear of the forecast model, 𝐌 ∈ ℝ𝒏×𝒏 =
𝜕𝐱𝑖

𝜕𝐱0
 evaluated at 𝐱0

𝑘. MT is the 

model adjoint.



An alternative approach 

A major disadvantage of variational techniques is that B is generally not 
updated on each assimilation cycle. In variational DA B is only designed to 
represent a climatological estimate of the error covariances. However, the 
errors can be highly flow-dependent.
This has motivated the development of the Ensemble Kalman Filter (EnKF).
The EnKF also based on linear/Gaussian theory so is a retractable method for 
large systems.
Unlike Var the EnKF represents B using an ensemble (and calls it Pf).
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The ensemble Kalman filter (EnKF)

The EnKF (Evensen 1994) merges KF theory with Monte Carlo estimation methods
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*
*

*

*

*

time

xb

Update step. 
Prior -> Posterior

Prediction step. 
Posterior -> Prior

Update step. 
Prior -> Posterior



The ensemble Kalman filter (EnKF)

The EnKF makes use of an ensemble approximation of the forecast error covariance matrix 
(previously the B matrix) to allow us to compute the Kalman equations directly.

𝐏𝑓 =
1

𝑁 − 1
෍

𝑖=1

𝑁

𝐱𝑘
𝑖 ,f − ത𝐱𝑘

f 𝐱𝑘
𝑖 ,f − ത𝐱𝑘

f
T

=
1

𝑁 − 1
𝐗′𝑓(𝐗′𝑓)𝑇

The update step for the mean:  ത𝐱a = ത𝐱f + 𝐊(𝐲 − ℎ(ത𝐱f)),  𝐊 = 𝐏𝑓𝐇T 𝐇𝑷𝒇𝐇T + 𝐑
−1

Forecast 
perturbation 
matrix . 
Dimension 𝑛 ×
𝑁

Number of 
ensemble 
members
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EnKF – the update step for the covariance

The analysis error covariance matrix can be estimated in two ways

• Stochastic methods: Samples from the posterior distribution are created 

 𝐱𝑘
𝑖 ,a = 𝐱𝑘

𝑖 ,f + 𝐊𝑘(𝒚𝑘 + 𝛜y
𝑖 − ℎ 𝐱𝑘

𝑖 ,f ), where 𝛜y ∼ 𝑁(𝟎, 𝐑). Then the sample 
covariance matrix is computed as:

𝐏𝑎 =
1

𝑁 − 1
෍

𝑖=1

𝑁

𝐱𝑘
𝑖 ,𝑎 − ത𝐱𝑘

a 𝐱𝑘
𝑖 ,𝑎 − ത𝐱𝑘

a
T

• Deterministic methods: An analysis perturbation matrix is generated by applying a 
transformation to the forecast perturbation matrix 𝐗𝑘

′a= 𝐗𝑘
′f𝐓𝑘 . The transform T is derived to 

ensure 𝐏a = 𝐈 − 𝐊𝐇 𝐏𝑓  holds. 

𝐏𝑎 =
1

𝑁 − 1
𝐗′𝑎(𝐗′𝑎)𝑇
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EnKF and Sample errors

Because the ensemble size is limited, 𝑁 ≪ 𝑛. This means 
that the ensemble estimate of 𝐏f will be low rank and 
affected by sample errors.

The sample errors will affect
• The estimate of the error variances so that the wrong 

weight is given to the observations. When the the error 
variances are underestimated this can lead to filter 
divergence!!!!

• The error correlations such that observations can 
update variables which they do not contain information 
about.
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EnKF and Sample errors

To mitigate these two problems, we use a 
combination of 
• variance inflation (e.g. Mitchell and Houtekamer, 

2000; Anderson and Anderson, 1999, Whitaker 
and Hamill, 2012) and 

- covariance localization (Houtekamer and 
Mitchell, 2001, Hunt et al. 2007).
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There are many different data assimilation algorithms proposed. The ones 
presented all aim to solve Bayes’ theorem to find the probability distribution of 
the state consistent with the uncertainty in the observations and model.
Many methods used operationally rely on the Gaussian assumption to make 
the DA problem tractable for large dimensions and efficient to run as part of a 
cycled forecasting system.
These methods include the variational and Ensemble Kalman Filter 
techniques.
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Summary

However, there are many reasons why the Gaussian assumption may not hold: 
• Non-linear model
• Non-linear observation operator
• Non-Gaussian errors e.g. if the variable is bounded

Assuming Gaussianity in these cases can result in:
• High probabilities assigned to unphysical states that may result in numerical instabilities
• Low probabilities assigned to important regimes
• Extreme events not represented

Even within Var and EnKF, there is room for the relaxation of the Gaussian 
assumption e.g. inner/outer loops, Gaussian anamorphosis.
Can reformulate the problem to not make Gaussian assumptions e.g. the 
particle filter.
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A note on parameter estimation

Each of the DA methods can be modified to estimate parameters instead of (or 
as well as) estimating the initial state. For example,
• Model parameters describing physical processes
• Parameters to describe the bias correction of the model or observations

Need to consider 
• How the prior uncertainty is represented. If you updating the parameters 

using variational or EnKF methods, does a Gaussian error make sense?
• How can the observations be related to these parameters? Often, you do not 

observe parameters directly, so instead rely on their errors being correlated 
with state variables that are observed.

NERC/NCEO/DARC Training course on data assimilation 
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DA software

On Wednesday and Thursday we will dedicate more time to learning 
about Variational and EnKF algorithms with computer practicals. 

Our code is available on https://github.com/darc-reading/darc-
training-2025/

Tomorrow Yumeng and Chris will give a lecture DA software 
packages

NERC/NCEO/DARC Training course on data assimilation 
and its interface with machine learning 2025

https://github.com/darc-reading/darc-training-2025/
https://github.com/darc-reading/darc-training-2025/
https://github.com/darc-reading/darc-training-2025/
https://github.com/darc-reading/darc-training-2025/
https://github.com/darc-reading/darc-training-2025/
https://github.com/darc-reading/darc-training-2025/
https://github.com/darc-reading/darc-training-2025/


NERC/NCEO/DARC Training course on data assimilation 
and its interface with machine learning 2025

Schematic comparison of 
techniques

Direct 
computation

Variational

MCMC

Particle 
Filter

EnKF

Can combine the best bits of (hybridise) the different 
algorithms
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