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The data assimilation problem

To combine imperfect data from models, from observations distributed
in time and space, exploiting any relevant physical constraints, to
produce a more accurate and comprehensive picture of the system as it
evolves in time.

Traditionally we are interested in a state of the system.

This is just a �rst moment of the posterior PDF.

�All models are wrong . . . � (George Box)

�All models are wrong and all observations are inaccurate/imprecise.�

George Box
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Bayes' Theorem

Thomas Bayes

p(x|y) =
p(x)×p(y|x)

p(y)

posterior density =
prior density× likelihood

normalizing constant

Prior dens.: PDF of the state before observations are considered (e.g.
PDF of model forecast).

Likelihood: PDF of observations given that the state is x.

Posterior dens.: PDF of the state after the obs. have been considered.

(The �p�s in the above are actually di�erent functions.)
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The Gaussian assumption

A PDF is often described by a Gaussian (aka a normal density).

Gaussian PDFs are described by a mean and covariance only.
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ε = x−⟨x⟩

For 1 variable (1D): x ∼ N(⟨x⟩ ,σ2)

p(x) =
1√
2πσ2

exp−(x−⟨x⟩)2

2σ2

For n variables (nD): x∼ N(⟨x⟩ ,C)

p(x) =
1√

(2π)n det(C)
×

exp−1
2
(x−⟨x⟩)TC−1 (x−⟨x⟩)

Carl Friedrich
Gauss
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Meaning of x and y

Vectors of vectors . . .

xa analysis; xb background state; δx increment (perturbation).

y observations; ym = H (x) model observations.

H (x) is the observation operator / forward model (see next slide).

Sometimes x and y are for only one time (3DVar).

x-vectors have n elements; y-vectors have p elements.
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Mapping between model and observation space

Data assimilation ultimately brings information from observation space
to model space.

In order to do this, we need to solve the forward problem: H (x) is the
observation operator / forward model.

Data assimilation can be seen as the `solution' of the inverse problem.
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Back to the Gaussian assumption

Prior: mean xb, covariance B

p(x) =
1√

(2π)n det(B)
exp−1

2

(
x− xb)T

B−1
(
x− xb)

Likelihood: mean H (x), covariance R

p(y|x) = 1√
(2π)p det(R)

exp−1
2
(y−H (x))TR−1 (y−H (x))

Posterior

p(x|y) =
p(x)×p(y|x)

p(y)
∝ exp−1

2

[(
x− xb)T

B−1
(
x− xb)

+(y−H (x))TR−1 (y−H (x))
]
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Variational DA � the idea

In Var., we seek a solution that maximizes the posterior probability
p(x|y) (maximum-a-posteriori, MAP).

This is the most likely state given the observations (and the background),
called the analysis, xa.
Maximizing p(x|y) is equivalent to minimizing − lnp(x|y)≡ J(x) (a
least-squares problem).

p(x|y) = C exp

{
−1

2

[(
x−xb)T

B−1
(
x−xb)

+(y−H (x))TR−1 (y−H (x))

]}
J(x) = − lnC +

1

2

(
x−xb)T

B−1
(
x−xb)

+
1

2
(y−H (x))TR−1 (y−H (x))

= constant (ignored) +Jb(x)+Jo(x)

Yoshi Sasaki
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Four-dimensional Var (�strong constraint� 4DVar)

Aim

To �nd the `best' estimate of the true state of the system (analysis),
consistent with the observations, the background, and the system dynamics.
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Towards a 4DVar cost function

Consider the observation operator in this case:

H (x) = H

 x0
...
xT

=

 H0 (x0)
...

HT (xT )


So the Jo is (assume that R is block diagonal):

Jo =
1

2
(y−H (x))TR−1 (y−H (x)) =

1

2

 y0−H0 (x0)
...

yT −HT (xT )


T R0 0 0

0
. . . 0

0 0 RT


−1 y0−H0 (x0)

...
yT −HT (xT )


=

1

2

T

∑
i=0

(yi −Hi (xi ))
TR−1i (yi −Hi (xi ))

subject to the strong constraint xi+1 = Mi (xi )
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The 4DVar cost function (`full 4DVar')

Let (a)TA−1 (a)≡ (a)TA−1 (•)

J(x) =
1

2

(
x0− xb

0

)T
B−10 (•)+ 1

2

T

∑
i=0

(yi −Hi (xi ))
TR−1i (•)

subject to the strong constraint xi+1 = Mi (xi )

xb
0 a-priori (background) state at t0; xi state at ti ; yi obs at ti .

Hi (xi ) observation operator at ti .

B0 background error covariance matrix at t0.

Ri observation error covariance matrix at ti .

Ultimately J is a fn of x0 as xi = Mi−1 (Mi−2 (· · ·M0(x0))).
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How to minimize this (`full 4DVar') cost function?

Minimize J(x0) iteratively

Use the gradient of J at
each iteration:

xk+1
0 = xk0 +α∇J(xk0)

The gradient of the cost
function

∇J(x0) =

 ∂J/∂ [x0]1
...

∂J/∂ [x0]n


−∇J points in the direction of
steepest descent.

Methods: steepest descent
(ine�cient), conjugate
gradient, quasi-Newton (more
e�cient), . . .
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The gradient of the cost function (wrt x(t0))

Either:

1 Minimise J(x0) w.r.t. x0 with xi = Mi−1 (Mi−2 (· · ·M0(x0))).

2 Minimise J(x) = J(x0,x1, . . . ,xT ) w.r.t. x0,x1, . . . ,xT subject to the
constraint

xi+1−Mi (xi ) = 0

L(x,λ ) = J(x)+
T−1

∑
i=0

λ
T
i+1 (xi+1−Mi (xi )) .

Each approach leads to the
adjoint method

An e�cient means of
computing the gradient.

Uses the linearised/adjoint
of Mi and Hi : M

T
i and

HT
i (see next slides).

Francois-Xavier
LeDimet &
Olivier

Talagrand
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The adjoint method

Equivalent gradient formula:
1

∇J ≡ ∇J(x0) = ∇Jb(x0)+∇Jo(x0)

= B−10
(
x0− xb

0

)
−

T

∑
i=0

MT
0 . . .M

T
i−1H

T
i R
−1
i (yi −Hi (xi ))

where Mi = ∂Mi (xi )/∂xi and Hi = ∂Hi (xi )/∂xi

2

λT+1 = 0

λ i = HT
i R
−1
i (yi −Hi (xi ))+MT

i λ i+1

λ 0 = −∇Jo

∴ ∇J = ∇Jb +∇Jo

= B−10
(
x0− xb

0

)
−λ 0
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The adjoint method
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Simpli�cations and complications

The full 4DVar method is expensive and di�cult to solve.

Model Mi is non-linear.

Observation operators, Hi can be non-linear.

Linear H → quadratic cost function � easy(er) to minimize,
Jo ∼ 1

2(y −ax)2/σ2
o .

Non-linear H → non-quadratic cost function � hard to minimize,
Jo ∼ 1

2(y − f (x))2/σ2
o .

Later will recognise that models are `wrong' !

Look for simpli�cations: Complications:

Incremental 4DVar (linearised 4DVar) Weak constraint
3D-FGAT (imperfect model)
3DVar
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Incremental 4DVar (1)

define reference trajectory: xR
i+1 = Mi

(
xR
i

)
ymR
i = Hi

(
xR
i

)
xi = xR

i +δxi xb
0 = xR

0 +δxb
0

xi+1 = Mi (xi ) = Mi

(
xR
i +δxi

)
xR
i+1+δxi+1 ≈ Mi

(
xR
i

)
+Miδxi δxi+1 ≈Miδxi

ym
i = Hi (xi ) = Hi

(
xR
i +δxi

)
ymR
i +δym

i ≈ Hi

(
xR
i

)
+Hiδxi δym

i ≈ Hiδxi
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Incremental 4DVar (2)

J(δx0) =
1

2

(
δx0−δxb

0

)T
B−10

(
•
)
+

1

2

T

∑
i=0

(
yi −Hi (x

R
i )−Hiδxi

)T
R−1i

(
•
)

δxi ≈ Mi−1Mi−2 . . .M0δx0

Initially set reference to background, xR
0 = xb

0.

`Inner loop': iterations to �nd δxa
0 = argminJ(δx0) (use adjoint

method).

`Outer loop': iterate xR
0 → xR

0 +δxa
0

Inner loop is exactly quadratic (e.g. has a unique minimum).

Inner loop can be simpli�ed (lower res., simpli�ed physics).
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How to minimize this (`incremental 4DVar') cost function?

Minimize J(δx0) iteratively

Use the gradient of J at each
iteration:

δxk+1
0 = δxk0 +α∇J(δxk0)

The gradient of the cost
function

∇J(δx0) =

 ∂J/∂ [δx0]1
...

∂J/∂ [δx0]n


−∇J points in the direction of
steepest descent.

Methods: steepest descent
(ine�cient), conjugate
gradient, quasi-Newton (more
e�cient), . . .
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Simpli�cation 1: incremental 3D-FGAT

Three dimensional variational data assimilation with first guess (i.e. xR
i )

is computed at the appropriate time.

Simpli�cation is that Mi → I, i.e. δxi =Mi−1 . . .M0δx0→ δx0:

J3DFGAT(δx0) =
1

2

(
δx0−δxb

0

)T
B−10

(
•
)
+

1

2

T/2

∑
i=−T/2

(
yi −Hi (x

R
i )−Hiδx0

)T
R−1i

(
•
)
.

Note the centring of the assimilation window about t0 (to reduce the
impact of the 3D-FGAT approximation).
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Simpli�cation 2: incremental 3DVar

This has no time dependence within the assimilation window.

Not used (these days �3DVar� really means 3D-FGAT).

J3DVar(δx0) =
1

2

(
δx0−δxb

0

)T
B−10

(
•
)
+

1

2

T/2

∑
i=−T/2

(
yi −Hi (x

R
0 )−Hiδx0

)T
R−1i

(
•
)

But note: 3DVar is not an approx. if all obs. in this cycle are at t = 0
(no time index t = 0). For xR = xb:

J3DVar(δx) =
1

2
δxTB−1δx+

1

2

(
y−H (xb)−Hδx

)T
R−1

(
•
)

Setting ∇J3DVar = B−1δx−HTR−1
(
y−H (xb)−Hδx

)
= 0

Gives xa = xb +δx = xb +
(
B−1+HTR−1H

)−1
HTR−1

(
y−H (xb)

)
As the Kalman Filter! = xb +BHT (R+HBHT)−1 (y−H (xb)

)
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Reminder: the Kalman Filter

xa
t = xf

t +Kt

(
yt−Ht(x

f
t)
)

Pa
t = (I−KtHt)P

f
t

Kt = Pf
tH

T
t

(
Rt +HtP

f
tH

T
t

)−1
xf
t+1 = Mt(x

a
t)

Pf
t+1 = MtP

a
tM

T
t +Qt

Ht =
∂ (Ht(x))

x

∣∣∣∣
x=xf

t

Mt =
∂ (Mt(x))

x

∣∣∣∣
x=xa

t

←−
Rudolf Kalman

(
B−1+HTR−1H

)
BHT

= HTR−1
(
R+HBHT)

(S-M-W formula)
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Properties of 4DVar

Observations are treated at the correct time.

Use of dynamics means that more information can be obtained from
observations.

Covariance B0 is implicitly evolved, Bi = (Mi−1 . . .M0)B0 (Mi−1 . . .M0)
T.

In practice development of linear and adjoint models is complex.

Mi , Hi , Mi , Hi , M
T
i , and HT

i are subroutines, and so `matrices' are
usually not in explicit matrix form.

But note

Standard 4DVar assumes the model is perfect.

This can lead to sub-optimalities.

Weak-constraint 4DVar relaxes this assumption.
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Weak constraint 4DVar

Modify evolution equation:

xi+1 = Mi (xi )+η i

where η i ∼ N(0,Qi )

`State formulation' of WC4DVar

Jwc
state (x0, . . . ,xT ) = Jb +Jo +

1

2

T−1

∑
i=0

(xi+1−Mi (xi ))
TQ−1i (•)

`Error formulation' of WC4DVar

Jwc
error (x0,η0 . . . ,ηT−1) = Jb +Jo +

1

2

T−1

∑
i=0

η
T
i Q
−1
i η i
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Implementation of weak constraint 4DVar

Vector to be determined (`control vector') increases from n in 4DVar to
n+nT in WC4DVar.

The model error covariance matrices, Qi , need to be estimated. How?

The `state' formulation (determine x0, . . . ,xT ) and the `error'
formulation (determine x0,η0 . . . ,ηT−1) are mathematically equivalent,
but can behave di�erently in practice.

There is an incremental form of WC4DVar.
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Summary of 4DVar

The variational method forms the basis of many operational weather and
ocean forecasting systems, including at ECMWF, the Met O�ce,
Météo-France, etc.

It allows complicated observation operators to be used (e.g. for
assimilation of satellite data).

It has been very successful.

Incremental (quasi-linear) versions are usually implemented.

It requires speci�cation of B0, the background error cov. matrix, and Ri ,
the observation error cov. matrix.

4DVar requires the development of linear and adjoint models � not a
simple task!

Weak constraint formulations require the additional speci�cation of Qi .
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Quiz

Assuming B, R, H , M are all perfect, H and M are linear, what is the
expected value of Jmin = J(xa) in strong constraint 4D-Var?

1 No predicted value

2 p/2 (p number of observations)

3 n/2 (n elements in state vector)

4 (p+n)/2
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