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The data assimilation problem

@ To combine imperfect data from models, from observations distributed
in time and space, exploiting any relevant physical constraints, to
produce a more accurate and comprehensive picture of the system as it
evolves in time.

Traditionally we are interested in a state of the system.

This is just a first moment of the posterior PDF.

“All models are wrong ..." (George Box)

e 6 o6 o

“All models are wrong and all observations are inaccurate/imprecise.”

George Box
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Bayes' Theorem

Thomas Bayes

p(x) x p(y[x)
p(y)
prior density x likelihood

p(xly) =

posterior density = —
normalizing constant

Prior dens.: PDF of the state before observations are considered (e.g.
PDF of model forecast).

Likelihood: PDF of observations given that the state is x.

Posterior dens.: PDF of the state after the obs. have been considered.

(The “p’s in the above are actually different functions.)
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The Gaussian assumption

e A PDF is often described by a Gaussian (aka a normal density).

@ Gaussian PDFs are described by a mean and covariance only.

For n variables (nD): x ~ N({(x),C)

1
P~ Ty aa@)”
exp— (x— ()T C (x— (1)

For 1 variable (1D): x ~ N((x),c?)
_ 1 (x— ()2
PH)= =P

Carl Friedrich
Gauss
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Meaning of x and y

x (4D)

I X (3D)
x(0)
WA Xa“ State space, n=3

@ Vectors of vectors ...

@ x® analysis; x° background state; dx increment (perturbation).

@ y observations; y™ = J#(x) model observations.

e J7(x) is the observation operator / forward model (see next slide).
@ Sometimes x and y are for only one time (3DVar).

@ x-vectors have n elements; y-vectors have p elements.
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Mapping between model and observation space

State space,
ndimensions

Observation space,
Y3, pdimensions

e Data assimilation ultimately brings information from observation space
to model space.

@ In order to do this, we need to solve the forward problem: 7 (x) is the
observation operator / forward model.

@ Data assimilation can be seen as the ‘solution’ of the inverse problem.
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Back to the Gaussian assumption

p(x) = ———exp— 2(x x) B~ (x x°)

(2 ) det(B)
Likelihood: mean .7#(x), covariance R
PYIX) = ————exp— > (y— #(x)) "R (y — #(x))

(n)Pdet(R) = 2

Posterior

p(xly) = p(x)><(:/7)(y|x) o expf% [(x—xb)TB—l (x —x°)

+(y = A () R (y = /()]
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Variational DA — the idea

@ In Var., we seek a solution that maximizes the posterior probability
p(x|ly) (maximum-a-posteriori, MAP).
o This is the most likely state given the observations (and the background),
called the analysis, x2.
o Maximizing p(x|y) is equivalent to minimizing —Inp(x|y) = J(x) (a
least-squares problem).

p(xly) = Cexp{—; [(x—xb)TBfl(x—xb)

Jx) = —InC—i—%(x—xb)TB_1 (x—xb) |
Yoshi Sasaki

4 % (y—A#(x)) R (y — #(x))

= constant (ignored) + Jp(x) + Jo(x)
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Four-dimensional Var (“strong constraint” 4DVar)

To find the ‘best’ estimate of the true state of the system (analysis),
consistent with the observations, the background, and the system dynamics.

X A Xa0 yr A
XbO / (xaT
77777777777777777777777777777 Xb
6XO { 7777777777777777777777777777 A/ T
CECMWF
>
B time
t, t=t,
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Towards a 4DVar cost function

Consider the observation operator in this case:

X0 6 (x0)
ww=n| o | =
XT 0 (x1)
So the J° is (assume that R is block diagonal):
1 _ .,
P= 3= AR (- () =
) yo — 7 (x0) T/Ro 0 0\ " yo — 7 (%0)
5 : 0o . 0 :
yT — AT (xT) 0 0 Ry yT — AT (xT)

1 & - ,
=5 Y (vi— (%)) R (yi — Hi(xi))
i=0
subject to the strong constraint x;41 = . (x;)
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The 4DVar cost function (‘full 4DVar')

1 T o1 1 & ) T 1
J(X)ZE(Xo—Xo) Bo (-)+§Z(yi—/ﬁ(><i)) R (o)

subject to the strong constraint x; 41 = . (x;)

xg a-priori (background) state at tp; x; state at t;; y; obs at t;.
A(x;) observation operator at t;.

Bp background error covariance matrix at tg.

R; observation error covariance matrix at t;.

Ultimately J is a fn of xg as x; = Ai—1 (Mi—2 (- - #o(x0)))-

e 6 6 o o
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How to minimize this (‘full 4DVar') cost function?

Minimize J(xq) iteratively

n=2 ?ackJrounJ

A i o The gradient of the cost

(%) function
™ Cortours
of constant T aJ/a[XO]l

Anabn‘s stafe %), VJ(XO) - :
. 8J/8[x0],,
Use the gradient of J at
each iteration: —VJ points in the direction of
steepest descent.
& =+ av () J

Methods: steepest descent
(inefficient), conjugate
gradient, quasi-Newton (more
efficient),
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The gradient of the cost function (wrt x(tp))

Either:
@ Minimise J(xg) w.r.t. xo with x; = Aj_1 (Mi_2 (- #o(x0))).
@ Minimise J(x) = J(x0,X1,...,XT) W.r.t. Xo,X1,...,XT subject to the

constraint
Xip1— i (x;)) =0
T-1
L(x,A) = J()+ Y Ajpq (i1 — 4 (x7)).
i=0

Each approach leads to the
adjoint method

o An efficient means of Francois-Xavier

computing the gradient. LeDimet &
@ Uses the linearised/adjoint Olivier
of .#; and 7 MT and Talagrand

T .
H; (see next slides).
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The adjoint method

Equivalent gradient formula:

o
VJ=VJ(xp)

where M;

AT
A
Ao
AN/

VJb (XO ) —+ VJO (Xo)

Bgl (xo —XB)
” 1

Y M ME IR (i i)
i=0

8///,-(x,-)/8x,- and H,' = 8%(x;)/8x;

0

HIR ™ (vi = (xi)) + M A1
-V,

Vh+Vl

Bal (xo —xg) — Ao
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The adjoint method

2(t)> Xlt)

N

Nos MINi - HR (6~ 1:)

——— FORWARD MODEL INTEGRATION

>
) Y (t) —> ()= —> . X(try)= A1) =
é‘"“'*fia 1) 7 (21t.)) 77/771/1/%)) - M,_,/x/@_,))
: | J %
e e (8 Gt b
= L)
§ A - ,4,\‘ - x;g[xf D ATsMI A, L ArsMrw
i & 4 AR Hrbrdey TR
\ ADJOINT MODEL INTEGRATION ’\
Arys =2

VT{x) =) + B (2U8) -5k

)
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Simplifications and complications

The full 4DVar method is expensive and difficult to solve.
Model .#; is non-linear.

Observation operators, 77 can be non-linear.

Linear .7 — quadratic cost function — easy(er) to minimize,

Jo~ Iy —ax)?/c2.

@ Non-linear 57 — non-quadratic cost function — hard to minimize,
S~ 5y = F(x))?/08.

o Later will recognise that models are ‘wrong’!

Look for simplifications: Complications:
Incremental 4DVar (linearised 4DVar) Weak constraint
3D-FGAT (imperfect model)
3DVar

Ross Bannister Variational data assimilation |



Incremental 4DVar (1)

define reference trajectory: x5, = .#; (x?) ymR = 7 (XF)
x; = xR 4 §x; x5 = x§ 4 8x5
Xiv1 = Mi(x;)= (x + Ox; )

X$+1 +0xiy1 &= M (xf{) + M;8x; Oxj11 ~ M;0x;

yir = H(xi) = (x + 8x;)
MRy SYM ~ I (xF) +H;dx Oy & H;8x;

Ross Bannister Variational data assimilation |



Incremental 4DVar (2)

J(Bx0) = (5x0—5x3)T551 (o) +

3X,’ M,',lM,',z...MoSXo

Q

o Initially set reference to background, x& = x§.

@ ‘Inner loop': iterations to find 6x§ = argmin J(dxo) (use adjoint
method).

o ‘Outer loop’: iterate x§ — x& + 6x3
@ Inner loop is exactly quadratic (e.g. has a unique minimum).

@ Inner loop can be simplified (lower res., simplified physics).
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How to minimize this (‘incremental 4DVar') cost function?

Minimize J(6xo) iteratively

The gradient of the cost
5oy, | function
~ ~ N
/ @%&m 9/218%l

7 (5 (ellipres) VJ(8xq) =

(dx.) > |
%), &J/a [5)(0] n
/Q'arh/»? state for ‘/‘1«»{: outer /mf

8% =o —V J points in the direction of
Use the gradient of J at each steepest descent. )
iteration:
Methods: steepest descent
SxETL = Sxf + aVJ(5x§) (inefficient), conjugate
gradient, quasi-Newton (more

efficient), . ..
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Simplification 1: incremental 3D-FGAT

o Three dimensional variational data assimilation with first guess (i.e. x¥)
is computed at the appropriate time.

@ Simplification is that M; — |, i.e. 0x; = M;_1...Mgxg — dxg:

J3DFGAT(5X0) — % (5x0 — 5x8)T Bal (o) +
1 T/2 T
= Y (yi— A=) —Hidxo) R (o).
2 i=—T/2

@ Note the centring of the assimilation window about ty (to reduce the
impact of the 3D-FGAT approximation).
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Simplification 2: incremental 3DVar

@ This has no time dependence within the assimilation window.
o Not used (these days “3DVar” really means 3D-FGAT).

1
J3DVar(5XO) — 5(6x0—5X8)TBa1 (0)+
1 T2 T
5 L (vi—Hilg)—Hidxo) R (o)
i=—T/2

@ But note: 3DVar is not an approx. if all obs. in this cycle are at t =0
(no time index t = 0). For x® = x":
POVar(§x) = %&Tsflsx + % (y — 2 (x*) —H8x) 'R (o)
Setting VPV = B715x—H'R™! (y — #(x") —H8x) =0
Gives x* =x"+8x = x"+ (Bf1 + HTRle)i1 HTR! (y— ji”(xb))
As the Kalman Filter! = x"+BHT (R+HBHT) - (y—#(x))
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Reminder: the Kalman Filter

P
Ke

Xt+1
£
Pii1

He

M

XE + K (Yt - fft(xli))
(1= KiHe) P

-1
PiHT (R +H:PHY)

(_

Rudolf Kalman
A(X3)
M P3MT + Q;
(B~'+H"R'H) BH"

2 (H(x) o )

X it =H'R™ (R+HBH")
9 (A+(x)) (S-M-W formula)

X x=x}
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Properties of 4DVar

@ Observations are treated at the correct time.

@ Use of dynamics means that more information can be obtained from
observations.

e Covariance By is implicitly evolved, B; = (M;_1...Mg)Bo(M,_1...Mg)™.

@ In practice development of linear and adjoint models is complex.

o M;, H, M;, H;, MT, and HT are subroutines, and so ‘matrices’ are
usually not in explicit matrix form.

But note

@ Standard 4DVar assumes the model is perfect.
@ This can lead to sub-optimalities.

@ Weak-constraint 4DVar relaxes this assumption.
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Weak constraint 4DVar

Modify evolution equation: -
My

Xiy1 = M; (X,') +n; L ?nm

where 1; ~ N(0,Qj) >

;O time t;Z

‘State formulation’ of WC4DVar
wCe b 0 1 = TA-1
Siate (0, x7) = S+ S+ 5 Y (xig1— 4 (xi)" Q; (o)
i=0

‘Error formulation’ of WC4DVar

W 1T*1 B
Jerfor(X07770---777T—1):Jb+JO+§ Z n’ITQ, ln,'
i=0
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Implementation of weak constraint 4DVar

@ Vector to be determined (‘control vector’) increases from n in 4DVar to
n+nT in WC4DVar.

@ The model error covariance matrices, Q;, need to be estimated. How?

@ The ‘state’ formulation (determine xq,...,x7) and the ‘error’
formulation (determine xg,Mg...,N7_1) are mathematically equivalent,
but can behave differently in practice.

@ There is an incremental form of WC4DVar.
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Summary of 4DVar

@ The variational method forms the basis of many operational weather and
ocean forecasting systems, including at ECMWF, the Met Office,
Météo-France, etc.

o It allows complicated observation operators to be used (e.g. for
assimilation of satellite data).

o It has been very successful.
@ Incremental (quasi-linear) versions are usually implemented.

@ It requires specification of By, the background error cov. matrix, and R;,
the observation error cov. matrix.

@ 4DVar requires the development of linear and adjoint models — not a
simple task!

@ Weak constraint formulations require the additional specification of Q;.
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Assuming B, R, 77, ./ are all perfect, 77 and .# are linear, what is the

expected value of Jyin = J(x*) in strong constraint 4D-Var?

O No predicted value
@ p/2 (p number of observations)
© n/2 (n elements in state vector)

Q (p+n)/2
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