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What do we have, and what do we want to improve?

1. Kalman filter

update state ... xa
t = xf

t +Kt

(
yt − ht(x

f
t)
)

... and cov Pa
t = (I−KtHt)P

f
t

whereKt = Pf
tH

⊺
t

(
HtP

f
tH

⊺
t +Rt

)−1

forecast state ... xf
t+1 = Mt (x

a
t )

... and covariance Pf
t+1 = MtP

a
tM

⊺
t +Qt

• State and covariances are updated

• Gold standard for linear systems

• Restricted to application to small state spaces, n
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What do we have, and what do we want to improve?

2. Variational data assimilation (e.g. strong constraint inc. 4D-Var)

• Approximation Pf ∼ B is made

• 4D-Var does implicitly evolve the covariances Bt =
Mt−1 . . .M0BM⊺

0 . . .M
⊺
t−1 for 0 ≤ t ≤ T

• Covariances reset to B at the start of each cycle

• Pa
t is not normally available explicitly

• Need to have the tangent linear,Mt,Ht and adjoints,
M⊺

t ,H
⊺
t

• Is efficient for application to systems with large state
spaces, n
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What do we have, and what do we want to improve?

Reminder – why is Pf or B so important?

Colours: analysis increments of T , arrows: analysis
increments of (u, v), contours: background geopotential
height. All data are at 500 hPa [8].

Analysis: xa = xb +


B1j
...

Bjj
...

Bnj

 y1 − xb
j

R11 +Bjj
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What do we have, and what do we want to improve?

Reminder – why is Pf or B so important (continued)?

Thick contours: temperature increments after assimilating a single temperature ob. Thin contours: background
temperature [9].

(a) 0000 UTC 14 Jan 2003, (b) 0000 UTC 24 Jan 2003
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Important aside: control variable transforms to model theB-matrix in Var

δx0 = UvB

if ⟨δx0δx
⊺
0⟩f = B0

and ⟨vBv
⊺
B⟩f = I

 then
⟨δx0δx

⊺
0⟩f = ⟨UvBv

⊺
BU

⊺⟩f
= U ⟨vBv

⊺
B⟩f U

⊺

= UU⊺

• Incremental 4D-Var cost function (minimised with respect to δx0):

J(δx0) =
1

2
δx⊺

0B
−1
0 δx0 +

1

2

T∑
t=0

(
yt −Ht[M0→t(x

b
t )]−HtM0→tδx0

)⊺
R−1

t

(
•
)

• Minimise the variational cost function with respect to vB instead of with respect to δx0:

e.g. J(vB) =
1

2
v⊺
BvB +

1

2

T∑
t=0

(
yt −Ht[M0→t(x

b
t )]−HtM0→tUvB

)⊺
R−1

(
•
)
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• Analysis is: xa = xb +U

(
argmin

vB

J(vB)

)

• Equivalent to minimising original incremental cost
function with

B0 = UU⊺

• UU⊺ is the implied covariance, U = B
1/2
0

• J(vB) is numerically better conditioned than J(δx)
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What do we have, and what do we want to improve?

3. Ensemble data assimilation
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mean: xf
t ≈ 1

N

N∑
ℓ=1

x
f(ℓ)
t perturbation: xf(ℓ)

t − xf
t

covariance:
[
Pf

t

]
ij

≈ 1

N − 1

N∑
ℓ=1

([
x
f(ℓ)
t

]
i
−
[
xf
t

]
i

)([
x
f(ℓ)
t

]
j
−
[
xf
t

]
j

)

Pf
t ≈ 1

N − 1

N∑
ℓ=1

(
x
f(ℓ)
t − xf

t

)(
x
f(ℓ)
t − xf

t

)⊺

matrix of ens perts: X′
t
f
=

1√
N − 1

 ↑ ↑ ↑
x
f(1)
t − xf

t · · · x
f(ℓ)
t − xf

t · · · x
f(N)
t − xf

t

↓ ↓ ↓



[
X′

t
f
]
iℓ
=

[
x
f(ℓ)
t

]
i
−
[
xft

]
i√

N−1
Pf

t ≈ X′
t
fX′

t
f⊺
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What do we have, and what do we want to improve?

3. Ensemble data assimilation (continued)
• Comes in many flavours (stochastic, square-root, etc.), all derived from the Kalman update equation

• Ensemble of states are updated: flow-dependent covariances Pf and Pa are implied from the ensemble are ap-
proximated (and are not computed explicitly)

• Is efficient for application to systems with large state spaces, n

• Pf and Pa are rank deficient (hence sampling error present)
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How do we combine the properties of ‘flow-dependentness’ of ensemble
methods with the ‘full-rankness’ of variational methods?

Possible definitions of a hybrid data assimilation method
A. A purely variational scheme, with a separate EnKF system to give extra

estimates of analysis error

B. A purely variational scheme that re-calibrates the B-matrix model (UU⊺)
using ensemble information

C. A purely variational scheme that uses an ensemble to imply the
flow-dependent B-matrix (X′

t
fX′

t
f⊺)

D. A method that combines the B-matrix of Var with the Pf-matrix of the
EnKF

E. A method that delegates part of the covariance estimate to a machine
learning algorithm
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A. A purely variational scheme, with a separate EnKF system to give esti-
mates of analysis error

E.g. Bowler et al. (2008) [3]
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B.Apurely variational scheme that re-calibrates theB-matrixmodel (UU⊺)
using ensemble information

E.g. Bonavita et al. (2016) [2]
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C. A purely variational scheme that uses an ensemble to imply the flow-
dependent B-matrix (X′

t
fX′

t
f⊺)

Flavours En4DVar and 4DEnVar

See references in Bannister (2017) [1]
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C(i) Pure ensemble-variational methods (EnVar)

En4DVar, no localisation

δx0 = X′f
0vens vens ∈ RN

Start with the incremental formulation of 4DVar (reference state is the background)

J4DVar(δx0) =
1

2
δx⊺

0B
−1
0 δx0 +

1

2

T∑
t=0

(
yt −Ht(x

b
t )−HtMt−1Mt−2 . . .M0δx0

)⊺
R−1

t

(
•
)

In control variable vens ∈ RN space

JEn4DVar(vens) =
1

2
v⊺
ensvens +

1

2

T∑
t=0

(
yt −Ht(x

b
t )−HtMt−1Mt−2 . . .M0X

′f
0vens

)⊺
R−1

t

(
•
)

xa
0 = xb

0 +X′f
0 argmin

(
JEn4DVar(vens)

)
• Still need the tangent linear model (and adjoint for the gradient w.r.t. vens). This is similar to ordinary 4DVar,
but with a different control variable transform.
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C(ii) Pure ensemble-variational methods (EnVar)

4DEnVar, no localisation
Start with the En4DVar cost function:

JEn4DVar(vens) =
1

2
v⊺
ensvens +

1

2

T∑
t=0

yt −Ht(x
b
t )−Ht

M0→t︷ ︸︸ ︷
Mt−1Mt−2 . . .M0X

′f
0︸ ︷︷ ︸

X′f
t

vens


⊺

R−1
t

•



Consider the ℓth column ofXf
0 (call x

f(ℓ)
0 ) and do a Taylor expansion of M0→t:

M0→t

(
x
f(ℓ)
0︸︷︷︸)

ℓth column
of Xf

0

≈ M0→t

(
xf
0

)
+M0→t

(
x
f(ℓ)
0 − xf

0︸ ︷︷ ︸)
ℓth column ofX′

0
f︸ ︷︷ ︸

ℓth column ofX′
t
f

≈ M0→t

(
xf
0

)
+M0→t

(
x
f(ℓ)
0 − xf

0

)
∴ M0→t

(
x
f(ℓ)
0 − xf

0

)
︸ ︷︷ ︸

ℓth column ofX′
t
f

≈ M0→t

(
x
f(ℓ)
0

)
−M0→t

(
xf
0

)
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• Use the above to build columns of M0→tX
′f
0 ≡ X′f

t (N runs of the model).

• This eliminates the need for a TLM (and its adjoint for the gradient).

• The method is called 4DEnVar.

J4DEnVar(vens) =
1

2
v⊺
ensvens +

1

2

T∑
t=0

(
yt −Ht(x

b
t )−HtX

′f
tvens

)⊺
R−1

t

(
•
)

xa
t = M0→t

(
xb
t

)
+X′f

t argmin
(
J4DEnVar(vens)

)
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Single ob experiments and performance [4, 5]

500hPa analysis increments of T (shading) and (u, v)
due to T ob y −H(xb) = −1K; contours are bg geopoten-
tial height.

Southern hemisphere anomaly correlations for 500 hPa
geopotential height.
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D. A method that combines the B-matrix of Var with the Pf-matrix of the
EnKF

See references in Bannister (2017) [1]
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D. A method that combines the B-matrix of Var with the Pf-matrix of the
EnKF

• Pf is flow-dependent (good), but rank deficient, etc. (bad) and not completely mitigated for with localisation.

• Remember we also have the original B-matrix from traditional variational assimilation:

• B is not fully flow-dependent (bad), but can be full-rank (good), and can have some useful properties (e.g. pro-
duces nearly balanced increments)

• Propose to combine them [7]:
Ph = (1− β)B + βPf 0 ≤ β ≤ 1

• Trick is to represent this as a CVT

δx = Uhy vhy(√
1− βU

√
βX′f

)
︸ ︷︷ ︸

hybrid CVT

(
vB

vens

)
︸ ︷︷ ︸
hybrid
control
variable

vh ∈ Rn+N
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• Implied covariances (√
1− βU

√
βX′f

) (√
1− βU⊺

√
βX′f⊺

)
= (1− β)UUT + βX′fX′f⊺

JHybrid−En4DVar(vhy) =
1

2
v⊺
hyvhy +

1

2

T∑
t=0

(
yt −Ht(x

b
t )−HtMt−1Mt−2 . . .M0Uhyvhy

)⊺
R−1

t

(
•
)

xa
0 = xb

0 +Uhy argmin
(
JHybrid−En4DVar(vhy)

)
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A note on localisation
• The above schemes do not use localisation

• This may be OK for some systems, e.g. [6] uses 4DEnVar in an ecosystem carbon model

• The EnVar schemes may be modified to include localisation

• A more complex control variable transform

• Details in [1]
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