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Recap of data assimilation problem

* Given prior knowledge (background) %9
and observations, we estimate the 0.07 {
system state at a given time 0.06 |
* This posterior estimate is known as .l
analysis 0.04
0.03
* Bayes’ theorem allows us pose this | |
problem in terms of the respective
PDFs: |
p(xly) & p(IP(y[%) o2 4 e s

X

Figure: 1D example of Bayes’ theorem.



An example: rainfall in a grid box

 Background: Uncertain whether %%
rainfall was moderate or heavy 0.07
0.06 +
¢ Observation: Suggests moderate .|
rainfall was more probable |
 Analysis: Applying Bayes’ theorem %%/
— increased confidence in moderate 202 |
rainfall, with reduced uncertainty 0.01F

compared to either the background 0 et - .
0 2 4 6 8 10

or observation alone X
No rain Moderate rain Heavy rain
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Recap of cost function
assumptlons

Maximise the
posterior Minimise

Minimise the cost

prrelozailisy —log[p(x | y)] function J(x)

p(x|y)

L J(x) = %(x -x") BT (x—x") + %(y —H(x) 'R (y — H(x))
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Recap of variational DA

Cost function:

1

n=2 _Rae kJrouno(

rh.c

A _
%) /l\wm ()
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Co ou ly
of constant o
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Anogjn‘s S’flft,

70 = 5 (x—x*) B (x = x*) + o (y — H()) TR (y — H(x))

Minimising J(X) is equivalent to solving VJ(x) = 0

This is solved using gradient-based methods (e.g., conjugate gradient)

* Ateachiteration, a small variation is applied to the state variable x to move

toward the minimum

=g
/%)



Why variational methods?

Well-posed Extensive practical
problem developments
e Gaussian assumption e Control variable
o N : transform
ear-linear
assumption e Incremental
formulation

e Full rank B matrix
e Preconditioning

e Weak-constraint
4DVar

Operational
proven

* Met Office

* European Centre for
Medium-Range
Weather Forecasts
(ECMWEF)

e Météo-France



Why different methods?

Gaussian and linear assumptions
not always valid

Convection
Rainfall

Development of the Tangent
Linear Model (TLM) and its
adjoint

Time-consuming

Difficult to maintain as the
nonlinear model evolves

Validity of the TLM

* Restrict the length of the

assimilation window (4DVar)

B matrix is predominately static

Does not reflect flow-dependent
error statistics
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Ensemble Kalman filters

* Another major class of operational DA methods
* Do not require iterative minimization of a cost function

* Compute the analysis directly from an equation that approximates the cost
function solution

 Background error covariances are estimated from a forecast ensemble
* flow-dependent

* account for model error
* Can be categorized as stochastic or deterministic

* Based on the Kalman filter algorithm



Kalman filter algorithm (two steps)

A

environmental Update Step (tk ):

system ¢ observations

@ Jorecast Update mean and covariance

lysi . . .
Wb of prior using observations to
obtain posterior

Prediction step (t;, — tr41):

Evolve posterior at time t;,
forward in time using a model
— | time_ to obtain prior at time tj 44

model

o~
i
i~
~
-~

Tandeo et al. (2020)



Update step: Kalman equations

* Analytical solution to the
cost function

Analysis x2 =xf + K (y _ h(xf)) * Updates background state
using observations, a

nonlinear observation
operator and Kalman gain

. _ ofuT fay T -1 Depends on background and
Kalman gain K=PH (HP H + R) observation error covariances
. Update background error
Analysis error
y, P2 = (I — KH)Pf covariance, reflecting reduced
covariance

uncertainty after assimilation
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Prediction step

Mean

f _ a
Xk+1 = Mtk—>tk+1(xk) T Ni+1

Mean state evolves in time by a
forecast model (M)

The model error is represented by
Ni+1 ~ N(0,Qxiq)

Covariance

l)I'E,+1 =MP;M " + Q4

Updating the covariance is trickier

The extended Kalman filter (EKF)
does this using the TL and adjoint
models (M and MT)
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Motivation for ensemble Kalman filters

¢ Covariance propagation in the EKF
requires the TL and adjoint models:

P,£+1 — MP,?MT + Qx+1

For most environmental applications, the
size of the matrices makes it
computationally expensive

+» Alternative: estimate the covariance
matrix using a set of model simulations
called an ensemble
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Ensemble estimate of error covariances

N
1 Z : . T
Pf ~ (Xf(l) — )—(f) (Xf(l) — )—(f)
N-1 -

x{(®) = model state vector of the i-th ensemble member

f

X' = ensemble mean

N = ensemble size

P{ = ensemble error covariance matrix
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Ensemble perturbation matrix

Pf ~

N
1 . . T 1 T
f(D) _ 2f) («f(D) _ 5f) — f(yf
N—lZf" X) (x© - )" = T X(x")
1=

Each column of X € R™*¥ is the difference between an ensemble member and the

ensemble mean

(0 -),
(x -%),

(x-x),

(x? -%),
(x* -%),

(x® — %)

(x5,
v (X — )‘()2
v (xW) - X)
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Ensemble perturbation matrix in
observation space

Define
yf = h(xf)
Then
3 (yf(l) —f) (yf(Z) —f) (yf(N) _ )—’f)l—
v (yf(l) ) (yf(Z) ) (yf(N) _ yf)z
(yf(l) 7) (yf(z> 7). o (D - 7
For linear observation operators
Y = HX

1 1
———YYT = ———HXXTHT = HPHT
N -1 N-—-1

E ]:RmXN
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Classic EnKF update (Envensen 1994)

» Kalman gain can be expressed using ensemble perturbation matrices

K = PfHT(HPfHT + R)_l = Xf(Yf)T (Yf(Yf)T + (N — 1)R)_1

* Perturbated observations for the i-th ensemble member
yO =y + @ O <~ n(0,R)

* Analysis of each member

x2® = xf® 4+ K (ya’) _ h(xf(o))
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Why perturb observations?

Without perturbing observations, the ensemble estimate of P? is

ﬁxa(xaf = (1— KH)P'(1 — KH)T

With perturbing observation, it becomes

1
mxa(xa)T = (I—- KH)P{(I - KH)" + KRK" = (I - KH)P!

which matches the Kalman filter solution (Burgers et al. 1998)
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Why EnKF is more efficient?

Background error covariances in the
EKFis

PI£+1 — MP,?MT + Qx+1

* Requires matrix-matrix
multiplications of sizen X n

* For numerical weather prediction,
typicallyn = 10°

Background error covariances in the
EnKF is

1 T
f f
PI£+1 ~ N — 1Xk+1(xk+1)

* Requires matrix-matrix
multiplications of size n X N

* For numerical weather prediction,
typically N = 104
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Stochastic vs deterministic filters

The classic EnKF is stochastic

— requires perturbing observations
yO =y + el

* Ensure ensemble correctly samples
the analysis error covariance

X2(X)T ~ (I - KH)P!

N-1

* Introduce additional sampling noise

Deterministic (square root) filters:
* EnSRF (Whitaker and Hamill, 2002)
« ETKF (Bishop et al., 2001)
* EAKF (Anderson, 2001)
* LETKF (Hunt et al., 2007)

* Avoid the need to perturb
observations

* While still obtain the correct analysis
error covariance
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Square root filters

Idea: do not update each ensemble member separately, but update ensemble
mean and perturbation simultaneously

x3 = x' + K(y — h(xf))
X2 = XIT
The transformation matrix T is chosen such that

1 T
——XIT(X'T) = (I—-KH)P!
v X T(X'T) = (- KH)
* Matrix T is not uniquely defined — different deterministic filters

* Although different filters lead to different ensembles, they all span the same
subspace (Tippet et al., 2003)
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Transformation matrix

Using the Kalman gain
~1
K=X/(Y)" (Y(¥)' +(V-DR) =XZ
we have

1
(1 - KHP' = —— (1 - X'Z H)X{(X)'

1 T
— = wf(y _ f f
—N_1X(I ZYH)(X)

Thus, we seek the square root
TT' = (1-2Y")
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Ensemble transform Kalman filter

Using the Sherman-Morrison-Woodbury formula (Equation 2.1.4 of Golub & Van Loan,
1996), we obtain

-1
1
TT' = (I + NT(Yf)TR‘lYf> = (UxuNH)1

Then, possible transformation matrices are

T =Uz"Y/?
T = Uz-/2uT’

Note: not all T satisfying the estimate of the analysis error covariance led to unbiased
analysis ensembles, and a sufficient condition is X21,, = X'T1, = 0 (Livings et al., 2008;
Wang et al., 2004).
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Treatment of model error

* EnKF allows for an imperfect model by adding noise at each time step of the
model evolution

i . .
xk(‘) = Mtk_l_,tk(xz(_l)l) + 11,(;), wheren ~ N (0,Q)
* Strategies for representing model error (depending on the assumed error
source):
* Multiphysics
Stochastic kinetic energy backscatter
Stochastically perturbed physical tendencies
Perturbed parameters
Or combinations of the above

23



Assimilation window in 4DVar

A

t

Observations

X = argmax[p(Xo|yo.r)]
0

— Find the most likely state
att = 0, given an initial
estimate (x3) and a window
of observations

Assimilation window
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Kalman filter vs smoother

Smoother uses observations after (and

Filter uses observations before the
before) the analysis time

analysis time

A

p(Xo|¥o.7)

p(Xr|yo.r)

t=20 Assimilation window t=T time t=0 Assimilation window t=T
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Sequential update

* Observations can be assimilated
sequentially in time, rather than
assimilated at one time

* The two cases are equivalent, given

* Linear model and observation

operator ‘/ﬂ}%\f\%\
* Gaussian errors xtT’ T [ N
* Prior error covariances specified i T\/\

and evolved in time exaCtly Assimilation window ——— time
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Summary of ensemble Kalman filters

Advantages
* Flow-dependent background error statistics
* No need of the development of TL and adjoint models
 Easy to account for model error
* Easy to parallelize

Disadvantages
* Sensitive to ensemble size
— under sampling can lead to filter divergence and spurious correlations
— mitigated by localisation and inflation techniques (Tomorrow)
* Costly to run multiple versions of a forecast
* Assumes Gaussian statistics
— may be invalid in highly nonlinear systems (Tomorrow)
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