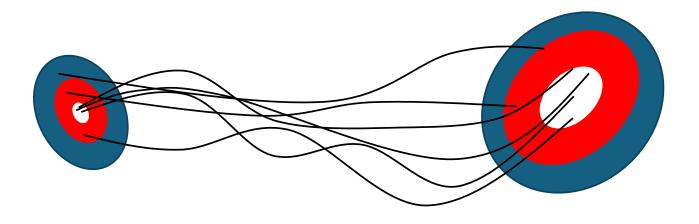
The Ensemble Kalman filter



Part I: Theory

Guannan Hu

Data-assimilation training course. 9th-13th June 2025, University of Reading

Recap of data assimilation problem

- Given prior knowledge (background) and observations, we estimate the system state at a given time
- This posterior estimate is known as analysis
- Bayes' theorem allows us pose this problem in terms of the respective PDFs:

$$p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{x})p(\mathbf{y}|\mathbf{x})$$

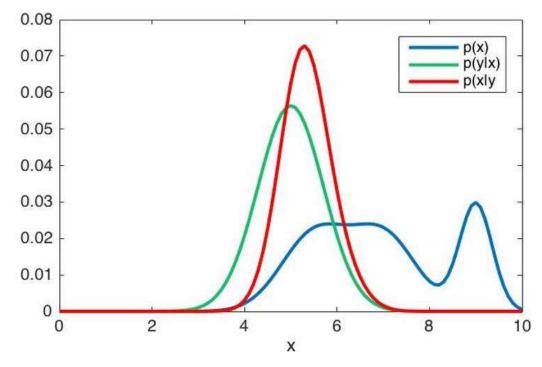
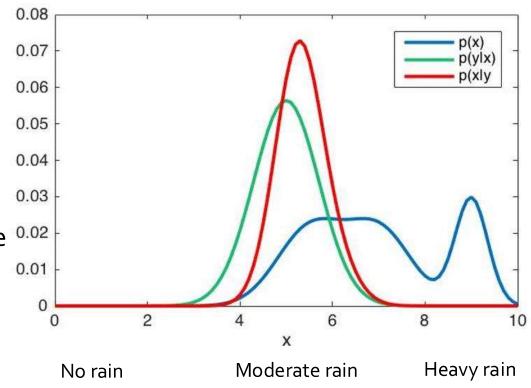


Figure: 1D example of Bayes' theorem.

An example: rainfall in a grid box

- Background: Uncertain whether rainfall was moderate or heavy
- Observation: Suggests moderate rainfall was more probable
- Analysis: Applying Bayes' theorem

 → increased confidence in moderate
 rainfall, with reduced uncertainty
 compared to either the background
 or observation alone



Recap of cost function

Maximise the posterior probability $p(\mathbf{x} \mid \mathbf{y})$

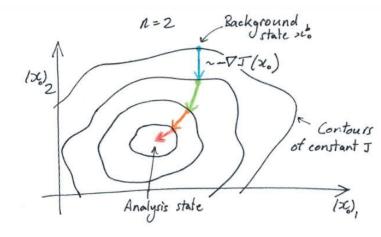
 $\begin{aligned} & \text{Minimise} \\ & -\log[p(\mathbf{x} \mid \mathbf{y})] \end{aligned}$

Minimise the cost function $J(\mathbf{x})$

Under Gaussian assumptions

$$J(\mathbf{x}) = \frac{1}{2}(\mathbf{x} - \mathbf{x}^{b})^{\top} \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}^{b}) + \frac{1}{2}(\mathbf{y} - \mathcal{H}(\mathbf{x}))^{\top} \mathbf{R}^{-1}(\mathbf{y} - \mathcal{H}(\mathbf{x}))$$

Recap of variational DA



Cost function:

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^{b})^{\top} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^{b}) + \frac{1}{2} (\mathbf{y} - \mathcal{H}(\mathbf{x}))^{\top} \mathbf{R}^{-1} (\mathbf{y} - \mathcal{H}(\mathbf{x}))$$

- Minimising $J(\mathbf{x})$ is equivalent to solving $\nabla J(\mathbf{x}) = 0$
- This is solved using gradient-based methods (e.g., conjugate gradient)
- At each iteration, a small **variation** is applied to the state variable ${\bf x}$ to move toward the minimum

Why variational methods?

Well-posed problem

- Gaussian assumption
- Near-linear assumption
- Full rank B matrix

Extensive practical developments

- Control variable transform
- Incremental formulation
- Preconditioning
- Weak-constraint 4DVar

Operational proven

- Met Office
- European Centre for Medium-Range Weather Forecasts (ECMWF)
- Météo-France

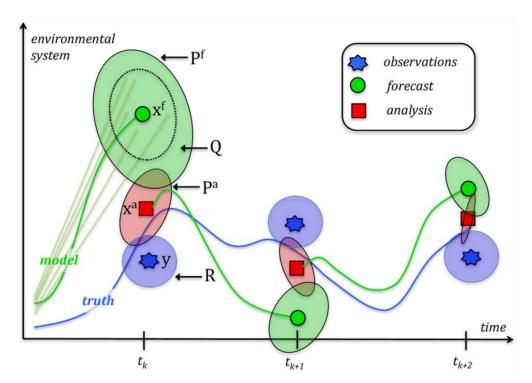
Why different methods?

	Gaussian and linear assumptions not always valid	ConvectionRainfall
	Development of the Tangent Linear Model (TLM) and its adjoint	Time-consumingDifficult to maintain as the nonlinear model evolves
	Validity of the TLM	Restrict the length of the assimilation window (4DVar)
	B matrix is predominately static	Does not reflect flow-dependent error statistics
		7

Ensemble Kalman filters

- Another major class of operational DA methods
- Do not require iterative minimization of a cost function
- Compute the analysis directly from an equation that approximates the cost function solution
- Background error covariances are estimated from a forecast ensemble
 - flow-dependent
 - account for model error
- Can be categorized as **stochastic** or **deterministic**
- Based on the Kalman filter algorithm

Kalman filter algorithm (two steps)



Tandeo et al. (2020)

Update step (t_k):

Update mean and covariance of prior using observations to obtain posterior

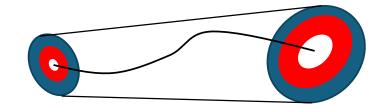
Prediction step ($t_k \rightarrow t_{k+1}$):

Evolve posterior at time t_k forward in time using a model to obtain prior at time t_{k+1}

Update step: Kalman equations

Analysis	$\mathbf{x}^{\mathbf{a}} = \mathbf{x}^{\mathbf{f}} + \mathbf{K} \left(\mathbf{y} - h(\mathbf{x}^{\mathbf{f}}) \right)$	 Analytical solution to the cost function Updates background state using observations, a nonlinear observation
		operator and Kalman gain
Kalman gain	$\mathbf{K} = \mathbf{P}^{\mathrm{f}} \mathbf{H}^{T} (\mathbf{H} \mathbf{P}^{\mathrm{f}} \mathbf{H}^{T} + \mathbf{R})^{-1}$	Depends on background and observation error covariances
Analysis error covariance	$\mathbf{P}^{\mathrm{a}} = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}^{\mathrm{f}}$	Update background error covariance, reflecting reduced uncertainty after assimilation

Prediction step



Mean	$\mathbf{x}_{k+1}^{\mathrm{f}} = M_{t_k \to t_{k+1}}(\mathbf{x}_k^{\mathrm{a}}) + \mathbf{\eta}_{k+1}$	•	Mean state evolves in time by a forecast model (<i>M</i>)
		•	The model error is represented by $\mathbf{\eta}_{k+1} \sim \mathcal{N}(0, \mathbf{Q}_{k+1})$
		•	Updating the covariance is trickier
Covariance	$\mathbf{P}_{k+1}^{\mathrm{f}} = \mathbf{M} \mathbf{P}_{k}^{\mathrm{a}} \mathbf{M}^{T} + \mathbf{Q}_{k+1}$	•	The extended Kalman filter (EKF) does this using the TL and adjoint models (\mathbf{M} and \mathbf{M}^{T})

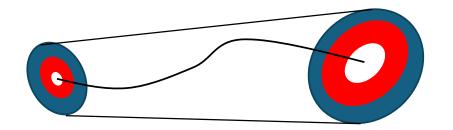
Motivation for ensemble Kalman filters

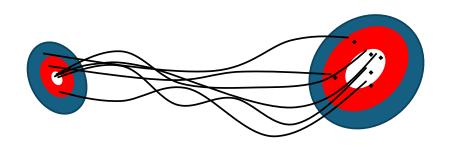
Covariance propagation in the EKF requires the TL and adjoint models:

$$\mathbf{P}_{k+1}^{\mathrm{f}} = \mathbf{M} \mathbf{P}_{k}^{\mathrm{a}} \mathbf{M}^{\mathsf{T}} + \mathbf{Q}_{k+1}$$

For most environmental applications, the size of the matrices makes it computationally expensive

❖ Alternative: estimate the covariance matrix using a set of model simulations called an ensemble





Ensemble estimate of error covariances

$$\mathbf{P}^{f} \approx \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}^{f(i)} - \bar{\mathbf{x}}^{f}) (\mathbf{x}^{f(i)} - \bar{\mathbf{x}}^{f})^{\mathsf{T}}$$

- $\mathbf{x}^{\mathrm{f}(i)} = \mathrm{model}$ state vector of the *i*-th ensemble member
- $\bar{\mathbf{x}}^{\mathrm{f}} = \mathrm{ensemble} \; \mathrm{mean}$
- N =ensemble size
- P^f = ensemble error covariance matrix

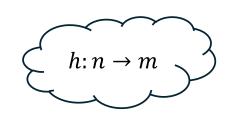
Ensemble perturbation matrix

$$\mathbf{P}^{f} \approx \frac{1}{N-1} \sum_{i=1}^{N} \left(\mathbf{x}^{f(i)} - \bar{\mathbf{x}}^{f} \right) \left(\mathbf{x}^{f(i)} - \bar{\mathbf{x}}^{f} \right)^{\top} = \frac{1}{N-1} \mathbf{X}^{f} \left(\mathbf{X}^{f} \right)^{\top}$$

Each column of $X \in \mathbb{R}^{n \times N}$ is the difference between an ensemble member and the ensemble mean

$$\mathbf{X} = \begin{bmatrix} \left(\mathbf{x}^{(1)} - \bar{\mathbf{x}}\right)_{1} & \left(\mathbf{x}^{(2)} - \bar{\mathbf{x}}\right)_{1} & \dots & \left(\mathbf{x}^{(N)} - \bar{\mathbf{x}}\right)_{1} \\ \left(\mathbf{x}^{(1)} - \bar{\mathbf{x}}\right)_{2} & \left(\mathbf{x}^{(2)} - \bar{\mathbf{x}}\right)_{2} & \dots & \left(\mathbf{x}^{(N)} - \bar{\mathbf{x}}\right)_{2} \\ \vdots & \vdots & \vdots & \vdots \\ \left(\mathbf{x}^{(1)} - \bar{\mathbf{x}}\right)_{n} & \left(\mathbf{x}^{(2)} - \bar{\mathbf{x}}\right)_{n} & \dots & \left(\mathbf{x}^{(N)} - \bar{\mathbf{x}}\right)_{n} \end{bmatrix}$$

Ensemble perturbation matrix in observation space



Define

$$\mathbf{y}^{\mathrm{f}} = h(\mathbf{x}^{\mathrm{f}})$$

Then

$$\mathbf{Y} = \begin{bmatrix} \left(\mathbf{y}^{\text{f}(1)} - \bar{\mathbf{y}}^{\text{f}} \right)_{1} & \left(\mathbf{y}^{\text{f}(2)} - \bar{\mathbf{y}}^{\text{f}} \right)_{1} & \dots & \left(\mathbf{y}^{\text{f}(N)} - \bar{\mathbf{y}}^{\text{f}} \right)_{1} \\ \left(\mathbf{y}^{\text{f}(1)} - \bar{\mathbf{y}}^{\text{f}} \right)_{2} & \left(\mathbf{y}^{\text{f}(2)} - \bar{\mathbf{y}}^{\text{f}} \right)_{2} & \dots & \left(\mathbf{y}^{\text{f}(N)} - \bar{\mathbf{y}}^{\text{f}} \right)_{2} \\ \vdots & \vdots & \vdots & \vdots \\ \left(\mathbf{y}^{\text{f}(1)} - \bar{\mathbf{y}}^{\text{f}} \right)_{m} & \left(\mathbf{y}^{\text{f}(2)} - \bar{\mathbf{y}}^{\text{f}} \right)_{m} & \dots & \left(\mathbf{y}^{\text{f}(N)} - \bar{\mathbf{y}}^{\text{f}} \right)_{m} \end{bmatrix} \in \mathbb{R}^{m \times N}$$

For linear observation operators

$$\frac{\mathbf{Y} = \mathbf{H}\mathbf{X}}{1}$$
$$\frac{1}{N-1}\mathbf{Y}\mathbf{Y}^{\top} = \frac{1}{N-1}\mathbf{H}\mathbf{X}\mathbf{X}^{\top}\mathbf{H}^{\top} = \mathbf{H}\mathbf{P}^{\mathbf{f}}\mathbf{H}^{\top}$$

Classic EnKF update (Envensen 1994)

Kalman gain can be expressed using ensemble perturbation matrices

$$\mathbf{K} = \mathbf{P}^{\mathbf{f}} \mathbf{H}^{\mathsf{T}} (\mathbf{H} \mathbf{P}^{\mathbf{f}} \mathbf{H}^{\mathsf{T}} + \mathbf{R})^{-1} = \mathbf{X}^{\mathbf{f}} (\mathbf{Y}^{\mathbf{f}})^{\mathsf{T}} (\mathbf{Y}^{\mathbf{f}} (\mathbf{Y}^{\mathbf{f}})^{\mathsf{T}} + (N-1)\mathbf{R})^{-1}$$

Perturbated observations for the i-th ensemble member

$$\mathbf{y}^{(i)} = \mathbf{y} + \boldsymbol{\varepsilon}^{(i)}, \, \boldsymbol{\varepsilon}^{(i)} \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$$

Analysis of each member

$$\mathbf{x}^{\mathsf{a}(i)} = \mathbf{x}^{\mathsf{f}(i)} + \mathbf{K} \left(\mathbf{y}^{(i)} - h(\mathbf{x}^{\mathsf{f}(i)}) \right)$$

Why perturb observations?

Without perturbing observations, the ensemble estimate of \mathbf{P}^{a} is

$$\frac{1}{N-1}\mathbf{X}^{\mathbf{a}}(\mathbf{X}^{\mathbf{a}})^{\mathsf{T}} = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}^{\mathbf{f}}(\mathbf{I} - \mathbf{K}\mathbf{H})^{\mathsf{T}}$$

With perturbing observation, it becomes

$$\frac{1}{N-1}\mathbf{X}^{\mathbf{a}}(\mathbf{X}^{\mathbf{a}})^{\mathsf{T}} = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}^{\mathbf{f}}(\mathbf{I} - \mathbf{K}\mathbf{H})^{\mathsf{T}} + \mathbf{K}\mathbf{R}\mathbf{K}^{\mathsf{T}} = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}^{\mathbf{f}}$$

which matches the Kalman filter solution (Burgers et al. 1998)

Why EnKF is more efficient?

Background error covariances in the EKF is

$$\mathbf{P}_{k+1}^{\mathrm{f}} = \mathbf{M} \mathbf{P}_{k}^{\mathrm{a}} \mathbf{M}^{\mathsf{T}} + \mathbf{Q}_{k+1}$$

- Requires matrix-matrix multiplications of size $n \times n$
- For numerical weather prediction, typically $n = 10^8$

Background error covariances in the EnKF is

$$\mathbf{P}_{k+1}^{\mathrm{f}} \approx \frac{1}{N-1} \mathbf{X}_{k+1}^{\mathrm{f}} (\mathbf{X}_{k+1}^{\mathrm{f}})^{\mathrm{T}}$$

- Requires matrix-matrix multiplications of size $n \times N$
- For numerical weather prediction, typically $N = 10^2$

Stochastic vs deterministic filters

The classic EnKF is **stochastic**

→ requires perturbing observations

$$\mathbf{y}^{(i)} = \mathbf{y} + \boldsymbol{\varepsilon}^{(i)}$$

• Ensure ensemble correctly samples the analysis error covariance

$$\frac{1}{N-1}\mathbf{X}^{\mathbf{a}}(\mathbf{X}^{\mathbf{a}})^{\mathsf{T}} \approx (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}^{\mathbf{f}}$$

Introduce additional sampling noise

Deterministic (square root) filters:

- EnSRF (Whitaker and Hamill, 2002)
- ETKF (Bishop et al., 2001)
- EAKF (Anderson, 2001)
- LETKF (Hunt et al., 2007)
- Avoid the need to perturb observations
- While still obtain the correct analysis error covariance

Square root filters

Idea: do not update each ensemble member separately, but update ensemble mean and perturbation simultaneously

$$\bar{\mathbf{x}}^{a} = \bar{\mathbf{x}}^{f} + \mathbf{K}(\mathbf{y} - \overline{h(\mathbf{x}^{f})})$$

 $\mathbf{X}^{a} = \mathbf{X}^{f}\mathbf{T}$

The **transformation** matrix **T** is chosen such that

$$\frac{1}{N-1}\mathbf{X}^{\mathbf{f}}\mathbf{T}(\mathbf{X}^{\mathbf{f}}\mathbf{T})^{\mathsf{T}} = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}^{\mathbf{f}}$$

- Matrix T is not uniquely defined \rightarrow different deterministic filters
- Although different filters lead to different ensembles, they all span the same subspace (Tippet et al., 2003)

Transformation matrix

Using the Kalman gain

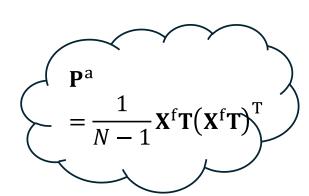
$$\mathbf{K} = \mathbf{X}^{\mathrm{f}} (\mathbf{Y}^{\mathrm{f}})^{\mathrm{T}} (\mathbf{Y}^{\mathrm{f}} (\mathbf{Y}^{\mathrm{f}})^{\mathrm{T}} + (N-1)\mathbf{R})^{-1} = \mathbf{X}^{\mathrm{f}} \mathbf{Z}$$

we have

$$(\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}^{f} = \frac{1}{N-1}(\mathbf{I} - \mathbf{X}^{f}\mathbf{Z}\mathbf{H})\mathbf{X}^{f}(\mathbf{X}^{f})^{T}$$
$$= \frac{1}{N-1}\mathbf{X}^{f}(\mathbf{I} - \mathbf{Z}\mathbf{Y}^{f})(\mathbf{X}^{f})^{T}$$

Thus, we seek the **square root**

$$\mathbf{T}\mathbf{T}^{\top} = \left(\mathbf{I} - \mathbf{Z}\,\mathbf{Y}^{\mathrm{f}}\right)$$



Ensemble transform Kalman filter

Using the **Sherman-Morrison-Woodbury** formula (Equation 2.1.4 of Golub & Van Loan, 1996), we obtain

$$\mathbf{T}\mathbf{T}^{\top} = \left(\mathbf{I} + \frac{1}{N-1} \left(\mathbf{Y}^{\mathrm{f}}\right)^{\top} \mathbf{R}^{-1} \mathbf{Y}^{\mathrm{f}}\right)^{-1} = (\mathbf{U} \mathbf{\Sigma} \mathbf{U}^{\top})^{-1}$$

Then, possible transformation matrices are

$$\mathbf{T} = \mathbf{U}\mathbf{\Sigma}^{-1/2}$$
$$\mathbf{T} = \mathbf{U}\mathbf{\Sigma}^{-1/2}\mathbf{U}^{\top}$$

Note: not all **T** satisfying the estimate of the analysis error covariance led to unbiased analysis ensembles, and a sufficient condition is $\mathbf{X}^a \mathbf{1}_N = \mathbf{X}^f \mathbf{T} \mathbf{1}_N = \mathbf{0}$ (Livings et al., 2008; Wang et al., 2004).

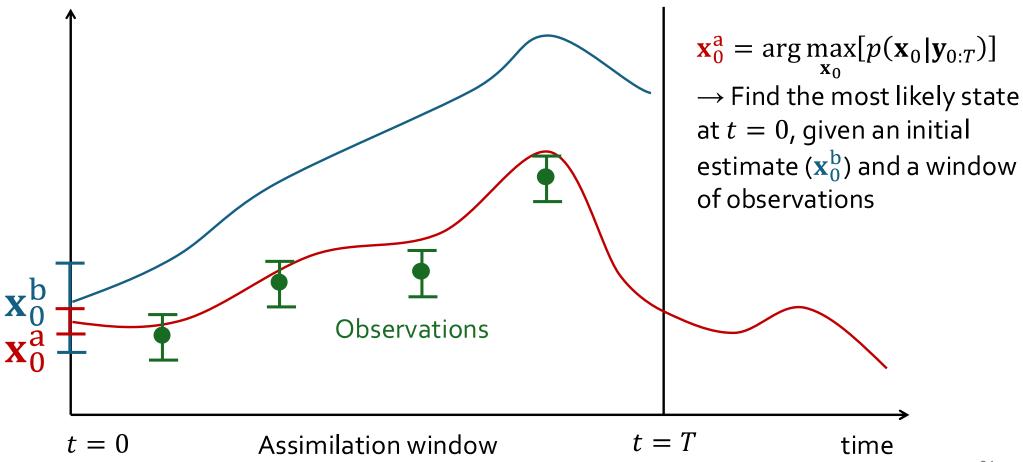
Treatment of model error

• EnKF allows for an **imperfect model** by adding noise at each time step of the model evolution

$$\mathbf{x}_k^{\mathrm{f}(i)} = M_{t_{k-1} \to t_k}(\mathbf{x}_{k-1}^{\mathrm{a}(i)}) + \mathbf{\eta}_k^{(i)}$$
, where $\mathbf{\eta} \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$

- Strategies for representing model error (depending on the assumed error source):
 - Multiphysics
 - Stochastic kinetic energy backscatter
 - Stochastically perturbed physical tendencies
 - Perturbed parameters
 - Or combinations of the above

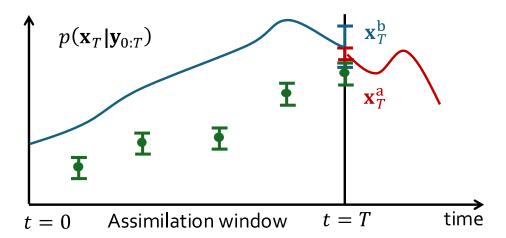
Assimilation window in 4DVar

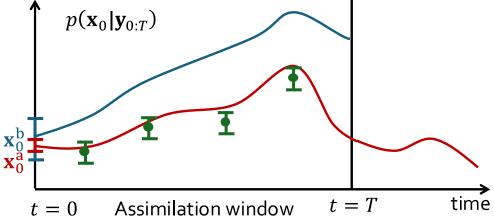


Kalman filter vs smoother

Filter uses observations **before** the analysis time

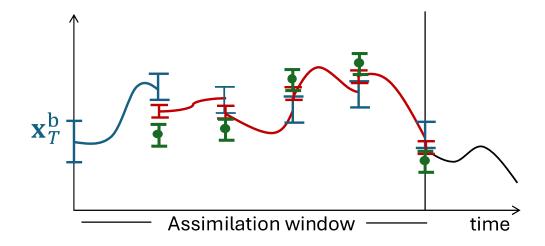
Smoother uses observations **after** (and before) the analysis time





Sequential update

- Observations can be assimilated sequentially in time, rather than assimilated at one time
- The two cases are equivalent, given
 - Linear model and observation operator
 - Gaussian errors
 - Prior error covariances specified and evolved in time exactly



Summary of ensemble Kalman filters

Advantages

- Flow-dependent background error statistics
- No need of the development of TL and adjoint models
- Easy to account for model error
- Easy to parallelize

Disadvantages

- Sensitive to ensemble size
 - → under sampling can lead to filter divergence and spurious correlations
 - → mitigated by **localisation** and **inflation** techniques (Tomorrow)
- Costly to run multiple versions of a forecast
- Assumes Gaussian statistics
 - → may be invalid in highly nonlinear systems (Tomorrow)