
Machine Learning in Data Assimilation

Eviatar Bach
13 June 2025

https://www.arxiv.org/abs/2410.10523

0 / 29

https://www.arxiv.org/abs/2410.10523

0 / 29

0 / 29

0 / 29

Preliminaries

Data assimilation

Consider the dynamical system

xtj+1 = M(xtj) + ξ†j , (1a)

xt0 ∼ N (m0, C0), ξ†j ∼ N (0,Q) i.i.d., (1b)

The observations are given by

y†j+1 = h(xtj+1) + η†j+1, (2a)

η†j ∼ N (0,R) i.i.d. (2b)

1 / 29

Data assimilation

Consider the dynamical system

xtj+1 = M(xtj) + ξ†j , (1a)

xt0 ∼ N (m0, C0), ξ†j ∼ N (0,Q) i.i.d., (1b)

The observations are given by

y†j+1 = h(xtj+1) + η†j+1, (2a)

η†j ∼ N (0,R) i.i.d. (2b)

1 / 29

Data assimilation

Consider the dynamical system

xtj+1 = M(xtj) + ξ†j , (1a)

xt0 ∼ N (m0, C0), ξ†j ∼ N (0,Q) i.i.d., (1b)

The observations are given by

y†j+1 = h(xtj+1) + η†j+1, (2a)

η†j ∼ N (0,R) i.i.d. (2b)

1 / 29

Data assimilation

We define, for a fixed integer J,

Xt = {xt0, . . . , xtJ}, Y† = {y†1 , . . . , y
†
J }, Y

†
j = {y†1 , . . . , y

†
j }.

Three distinct tasks in data assimilation (DA):

• The problem of smoothing is to obtain the conditional
distribution P(Xt|Y†) (e.g., ensemble Kalman smoother).

• The problem of filtering is to obtain P(x†j |Y
†
j) for any j ≤ J

(e.g., ensemble Kalman filter).
• The problem of state estimation is to obtain a xj ≈ xtj in
some norm (e.g., 3DVar).

2 / 29

Data assimilation

We define, for a fixed integer J,

Xt = {xt0, . . . , xtJ}, Y† = {y†1 , . . . , y
†
J }, Y

†
j = {y†1 , . . . , y

†
j }.

Three distinct tasks in data assimilation (DA):

• The problem of smoothing is to obtain the conditional
distribution P(Xt|Y†) (e.g., ensemble Kalman smoother).

• The problem of filtering is to obtain P(x†j |Y
†
j) for any j ≤ J

(e.g., ensemble Kalman filter).
• The problem of state estimation is to obtain a xj ≈ xtj in
some norm (e.g., 3DVar).

2 / 29

Data assimilation

We define, for a fixed integer J,

Xt = {xt0, . . . , xtJ}, Y† = {y†1 , . . . , y
†
J }, Y

†
j = {y†1 , . . . , y

†
j }.

Three distinct tasks in data assimilation (DA):

• The problem of smoothing is to obtain the conditional
distribution P(Xt|Y†) (e.g., ensemble Kalman smoother).

• The problem of filtering is to obtain P(x†j |Y
†
j) for any j ≤ J

(e.g., ensemble Kalman filter).

• The problem of state estimation is to obtain a xj ≈ xtj in
some norm (e.g., 3DVar).

2 / 29

Data assimilation

We define, for a fixed integer J,

Xt = {xt0, . . . , xtJ}, Y† = {y†1 , . . . , y
†
J }, Y

†
j = {y†1 , . . . , y

†
j }.

Three distinct tasks in data assimilation (DA):

• The problem of smoothing is to obtain the conditional
distribution P(Xt|Y†) (e.g., ensemble Kalman smoother).

• The problem of filtering is to obtain P(x†j |Y
†
j) for any j ≤ J

(e.g., ensemble Kalman filter).
• The problem of state estimation is to obtain a xj ≈ xtj in
some norm (e.g., 3DVar).

2 / 29

ML in DA

ML in DA

How to incorporate machine learning (ML) into DA?

• Learning forecast model, learning corrections

• Using learned forecast model

3 / 29

ML in DA

How to incorporate machine learning (ML) into DA?

• Learning forecast model, learning corrections
• Using learned forecast model

3 / 29

ML in DA

Other topics (won’t discuss):

• Learning filters and state estimators

• End-to-end forecasting and DA using ML, e.g., score-based
DA (Rozet and Louppe 2023), DA networks (Boudier et al.
2023)

• Learning smoothers
• Learning observation operators and observation error
covariances (Waller, Dance, and Nichols 2016)

• Transport-based (Spantini, Baptista, and Marzouk 2022)
and reinforcement learning-based (Hammoud et al. 2024)
approaches to DA

• Practical considerations

4 / 29

ML in DA

Other topics (won’t discuss):

• Learning filters and state estimators
• End-to-end forecasting and DA using ML, e.g., score-based
DA (Rozet and Louppe 2023), DA networks (Boudier et al.
2023)

• Learning smoothers
• Learning observation operators and observation error
covariances (Waller, Dance, and Nichols 2016)

• Transport-based (Spantini, Baptista, and Marzouk 2022)
and reinforcement learning-based (Hammoud et al. 2024)
approaches to DA

• Practical considerations

4 / 29

ML in DA

Other topics (won’t discuss):

• Learning filters and state estimators
• End-to-end forecasting and DA using ML, e.g., score-based
DA (Rozet and Louppe 2023), DA networks (Boudier et al.
2023)

• Learning smoothers

• Learning observation operators and observation error
covariances (Waller, Dance, and Nichols 2016)

• Transport-based (Spantini, Baptista, and Marzouk 2022)
and reinforcement learning-based (Hammoud et al. 2024)
approaches to DA

• Practical considerations

4 / 29

ML in DA

Other topics (won’t discuss):

• Learning filters and state estimators
• End-to-end forecasting and DA using ML, e.g., score-based
DA (Rozet and Louppe 2023), DA networks (Boudier et al.
2023)

• Learning smoothers
• Learning observation operators and observation error
covariances (Waller, Dance, and Nichols 2016)

• Transport-based (Spantini, Baptista, and Marzouk 2022)
and reinforcement learning-based (Hammoud et al. 2024)
approaches to DA

• Practical considerations

4 / 29

ML in DA

Other topics (won’t discuss):

• Learning filters and state estimators
• End-to-end forecasting and DA using ML, e.g., score-based
DA (Rozet and Louppe 2023), DA networks (Boudier et al.
2023)

• Learning smoothers
• Learning observation operators and observation error
covariances (Waller, Dance, and Nichols 2016)

• Transport-based (Spantini, Baptista, and Marzouk 2022)
and reinforcement learning-based (Hammoud et al. 2024)
approaches to DA

• Practical considerations

4 / 29

ML in DA

Other topics (won’t discuss):

• Learning filters and state estimators
• End-to-end forecasting and DA using ML, e.g., score-based
DA (Rozet and Louppe 2023), DA networks (Boudier et al.
2023)

• Learning smoothers
• Learning observation operators and observation error
covariances (Waller, Dance, and Nichols 2016)

• Transport-based (Spantini, Baptista, and Marzouk 2022)
and reinforcement learning-based (Hammoud et al. 2024)
approaches to DA

• Practical considerations

4 / 29

Automatic differentiation

Gradients are often difficult to obtain in closed form for
complex cost functions.

Finite difference approximations are often inaccurate and
expensive for high-dimensional problems.

Automatic differentiation (autodiff) involves repeated
application of chain rule on elementary operations that
enables computing derivatives accurately to working precision.

This can allow differentiation through model states (adjoint),
model parameters, and DA algorithms, and enable use of
gradient-based optimization.

5 / 29

Automatic differentiation

Gradients are often difficult to obtain in closed form for
complex cost functions.

Finite difference approximations are often inaccurate and
expensive for high-dimensional problems.

Automatic differentiation (autodiff) involves repeated
application of chain rule on elementary operations that
enables computing derivatives accurately to working precision.

This can allow differentiation through model states (adjoint),
model parameters, and DA algorithms, and enable use of
gradient-based optimization.

5 / 29

Automatic differentiation

Gradients are often difficult to obtain in closed form for
complex cost functions.

Finite difference approximations are often inaccurate and
expensive for high-dimensional problems.

Automatic differentiation (autodiff) involves repeated
application of chain rule on elementary operations that
enables computing derivatives accurately to working precision.

This can allow differentiation through model states (adjoint),
model parameters, and DA algorithms, and enable use of
gradient-based optimization.

5 / 29

Automatic differentiation

Gradients are often difficult to obtain in closed form for
complex cost functions.

Finite difference approximations are often inaccurate and
expensive for high-dimensional problems.

Automatic differentiation (autodiff) involves repeated
application of chain rule on elementary operations that
enables computing derivatives accurately to working precision.

This can allow differentiation through model states (adjoint),
model parameters, and DA algorithms, and enable use of
gradient-based optimization.

5 / 29

Automatic differentiation

Suppose y = f (x), where y ∈ Rdn and x ∈ Rd0 , and the
derivative of f is not readily available in closed-form.

We assume the implementation of f in computer code is made
up of n elementary operations fi : Rdi−1 → Rdi (for instance,
addition, multiplication, logarithms, etc.), such that

f (x) = fn ◦ fn−1 ◦ · · · ◦ f1(x), (3)

where the Jacobians for these elementary operations,
Dfi : Rdi−1 → Rdi×di−1 , are available in closed form.

Writing the partial evaluations up to i ≤ n as

gi = (fi ◦ · · · ◦ f1)(x),

by the chain rule we have that

Dxf (x) = (Dgn−1fn(gn−1)) · · · (Dg1f2(g1))(Dxf1(x)). (4)

6 / 29

Automatic differentiation

Suppose y = f (x), where y ∈ Rdn and x ∈ Rd0 , and the
derivative of f is not readily available in closed-form.

We assume the implementation of f in computer code is made
up of n elementary operations fi : Rdi−1 → Rdi (for instance,
addition, multiplication, logarithms, etc.), such that

f (x) = fn ◦ fn−1 ◦ · · · ◦ f1(x), (3)

where the Jacobians for these elementary operations,
Dfi : Rdi−1 → Rdi×di−1 , are available in closed form.

Writing the partial evaluations up to i ≤ n as

gi = (fi ◦ · · · ◦ f1)(x),

by the chain rule we have that

Dxf (x) = (Dgn−1fn(gn−1)) · · · (Dg1f2(g1))(Dxf1(x)). (4)

6 / 29

Automatic differentiation

Suppose y = f (x), where y ∈ Rdn and x ∈ Rd0 , and the
derivative of f is not readily available in closed-form.

We assume the implementation of f in computer code is made
up of n elementary operations fi : Rdi−1 → Rdi (for instance,
addition, multiplication, logarithms, etc.), such that

f (x) = fn ◦ fn−1 ◦ · · · ◦ f1(x), (3)

where the Jacobians for these elementary operations,
Dfi : Rdi−1 → Rdi×di−1 , are available in closed form.

Writing the partial evaluations up to i ≤ n as

gi = (fi ◦ · · · ◦ f1)(x),

by the chain rule we have that

Dxf (x) = (Dgn−1fn(gn−1)) · · · (Dg1f2(g1))(Dxf1(x)). (4)
6 / 29

Automatic differentiation

This suggests the following algorithm (forward mode automatic
differentiation):
1: Input: The functions {fi(·)}ni=1, their corresponding
Jacobians {Dfi(·)}ni=1, and the function input x.

2: Set g1 = f1(x) and J1 = Df1(x).
3: For i = 2, . . . ,n: set gi = fi(gi−1) and Ji = (Dfi(gi−1))Ji−1.
4: Output: The function output y = f (x) = gn and the
derivative Df (x) = Jn.

Reverse mode autodiff requires a backwards pass to compute
the derivative, and is more efficient when d0 � dn (many
inputs), whereas forward mode is more efficient when dn � d0
(many outputs).

7 / 29

Automatic differentiation

This suggests the following algorithm (forward mode automatic
differentiation):
1: Input: The functions {fi(·)}ni=1, their corresponding
Jacobians {Dfi(·)}ni=1, and the function input x.

2: Set g1 = f1(x) and J1 = Df1(x).
3: For i = 2, . . . ,n: set gi = fi(gi−1) and Ji = (Dfi(gi−1))Ji−1.
4: Output: The function output y = f (x) = gn and the
derivative Df (x) = Jn.

Reverse mode autodiff requires a backwards pass to compute
the derivative, and is more efficient when d0 � dn (many
inputs), whereas forward mode is more efficient when dn � d0
(many outputs).

7 / 29

Learning forecast model

Learning forecast model

The dynamical model has parameters ϑ:

xtj+1 = Mϑ(xtj) + ξ†j , (5a)

xt0 ∼ N
(
m0, C0

)
, ξ†j ∼ N

(
0,Q(ϑ)

)
i.i.d. (5b)

Example 1 (parameterized dynamics): M = Mϑ† is
parameterized, but the true parameter ϑ† is unknown and
needs to be estimated.

Example 2 (fully unknown dynamics): M is fully unknown and
ϑ can represent, for example, the parameters of a neural
network or Gaussian process surrogate modelMϑ forM.

Example 3 (model correction): M is unknown, but we have
access to an inaccurate modelMapprox ≈ M. The goal is to
learn ϑ so thatMϑ = Mapprox +Mcorrection

ϑ approximatesM
accurately.

8 / 29

Learning forecast model

The dynamical model has parameters ϑ:

xtj+1 = Mϑ(xtj) + ξ†j , (5a)

xt0 ∼ N
(
m0, C0

)
, ξ†j ∼ N

(
0,Q(ϑ)

)
i.i.d. (5b)

Example 1 (parameterized dynamics): M = Mϑ† is
parameterized, but the true parameter ϑ† is unknown and
needs to be estimated.

Example 2 (fully unknown dynamics): M is fully unknown and
ϑ can represent, for example, the parameters of a neural
network or Gaussian process surrogate modelMϑ forM.

Example 3 (model correction): M is unknown, but we have
access to an inaccurate modelMapprox ≈ M. The goal is to
learn ϑ so thatMϑ = Mapprox +Mcorrection

ϑ approximatesM
accurately.

8 / 29

Learning forecast model

The dynamical model has parameters ϑ:

xtj+1 = Mϑ(xtj) + ξ†j , (5a)

xt0 ∼ N
(
m0, C0

)
, ξ†j ∼ N

(
0,Q(ϑ)

)
i.i.d. (5b)

Example 1 (parameterized dynamics): M = Mϑ† is
parameterized, but the true parameter ϑ† is unknown and
needs to be estimated.

Example 2 (fully unknown dynamics): M is fully unknown and
ϑ can represent, for example, the parameters of a neural
network or Gaussian process surrogate modelMϑ forM.

Example 3 (model correction): M is unknown, but we have
access to an inaccurate modelMapprox ≈ M. The goal is to
learn ϑ so thatMϑ = Mapprox +Mcorrection

ϑ approximatesM
accurately.

8 / 29

Learning forecast model

The dynamical model has parameters ϑ:

xtj+1 = Mϑ(xtj) + ξ†j , (5a)

xt0 ∼ N
(
m0, C0

)
, ξ†j ∼ N

(
0,Q(ϑ)

)
i.i.d. (5b)

Example 1 (parameterized dynamics): M = Mϑ† is
parameterized, but the true parameter ϑ† is unknown and
needs to be estimated.

Example 2 (fully unknown dynamics): M is fully unknown and
ϑ can represent, for example, the parameters of a neural
network or Gaussian process surrogate modelMϑ forM.

Example 3 (model correction): M is unknown, but we have
access to an inaccurate modelMapprox ≈ M. The goal is to
learn ϑ so thatMϑ = Mapprox +Mcorrection

ϑ approximatesM
accurately.

8 / 29

Learning forecast model

We consider learning the parameters from partial, noisy
observations.

If we have the true (or good enough) model and want to learn
an ML surrogate, we can just use supervised learning.

We would like to learn ϑ by maximizing the likelihood

P(Y†|ϑ) =
∫

P(Y†, X|ϑ)dX. (6)

Here the states X are unobserved latent variables.

9 / 29

Learning forecast model

We consider learning the parameters from partial, noisy
observations.

If we have the true (or good enough) model and want to learn
an ML surrogate, we can just use supervised learning.

We would like to learn ϑ by maximizing the likelihood

P(Y†|ϑ) =
∫

P(Y†, X|ϑ)dX. (6)

Here the states X are unobserved latent variables.

9 / 29

Learning forecast model

We consider learning the parameters from partial, noisy
observations.

If we have the true (or good enough) model and want to learn
an ML surrogate, we can just use supervised learning.

We would like to learn ϑ by maximizing the likelihood

P(Y†|ϑ) =
∫

P(Y†, X|ϑ)dX. (6)

Here the states X are unobserved latent variables.

9 / 29

Learning forecast model

Evaluating the preceding integral is intractable. Instead, we
use expectation–maximization (EM) algorithm for maximum
likelihood estimation.

EM consists of two steps:

1. Expectation: Take the expectation of the log-likelihood of
the state and observations given the parameters ϑ`:

J`(ϑ) = EX∼P(X|Y†,ϑ`)[logP(X, Y†|ϑ)] (7)

2. Maximization:
ϑ`+1 = argmax

ϑ
J`(ϑ) (8)

This algorithm has the property that

P(Y†|ϑ`+1) ≥ P(Y†|ϑ`). (9)

10 / 29

Learning forecast model

Evaluating the preceding integral is intractable. Instead, we
use expectation–maximization (EM) algorithm for maximum
likelihood estimation.

EM consists of two steps:

1. Expectation: Take the expectation of the log-likelihood of
the state and observations given the parameters ϑ`:

J`(ϑ) = EX∼P(X|Y†,ϑ`)[logP(X, Y†|ϑ)] (7)

2. Maximization:
ϑ`+1 = argmax

ϑ
J`(ϑ) (8)

This algorithm has the property that

P(Y†|ϑ`+1) ≥ P(Y†|ϑ`). (9)

10 / 29

Learning forecast model

Evaluating the preceding integral is intractable. Instead, we
use expectation–maximization (EM) algorithm for maximum
likelihood estimation.

EM consists of two steps:

1. Expectation: Take the expectation of the log-likelihood of
the state and observations given the parameters ϑ`:

J`(ϑ) = EX∼P(X|Y†,ϑ`)[logP(X, Y†|ϑ)] (7)

2. Maximization:
ϑ`+1 = argmax

ϑ
J`(ϑ) (8)

This algorithm has the property that

P(Y†|ϑ`+1) ≥ P(Y†|ϑ`). (9)

10 / 29

Learning forecast model

Evaluating the preceding integral is intractable. Instead, we
use expectation–maximization (EM) algorithm for maximum
likelihood estimation.

EM consists of two steps:

1. Expectation: Take the expectation of the log-likelihood of
the state and observations given the parameters ϑ`:

J`(ϑ) = EX∼P(X|Y†,ϑ`)[logP(X, Y†|ϑ)] (7)

2. Maximization:
ϑ`+1 = argmax

ϑ
J`(ϑ) (8)

This algorithm has the property that

P(Y†|ϑ`+1) ≥ P(Y†|ϑ`). (9)
10 / 29

Learning model from reanalysis

Suppose we have a reanalysis

{xaj }
J
j=1.

We can train an ML model to predict

xaj+1 = f (xaj ; θ),

and then use this autoregressively to predict the future. That is,

xaj+2 = f (f (xaj ; θ); θ),

etc.

11 / 29

Learning model from reanalysis

Suppose we have a reanalysis

{xaj }
J
j=1.

We can train an ML model to predict

xaj+1 = f (xaj ; θ),

and then use this autoregressively to predict the future. That is,

xaj+2 = f (f (xaj ; θ); θ),

etc.

11 / 29

Learning model from reanalysis

Why use reanalysis rather than just observations?

• The reanalysis functions as a physics-based interpolator,
fills in information where observations missing.

• Lower error compared to observations alone.
• Provided gridded in space and at regular time intervals.
This is simpler for ML to deal with.

Why use reanalysis rather than just model forecasts?

Training on model forecasts can only be as good as the
physics-based model. May be faster though.

Downsides:

The reanalysis still includes some error due to the model
used to generate it, so the ML model is learning this.

12 / 29

Learning model from reanalysis

Why use reanalysis rather than just observations?

• The reanalysis functions as a physics-based interpolator,
fills in information where observations missing.

• Lower error compared to observations alone.

• Provided gridded in space and at regular time intervals.
This is simpler for ML to deal with.

Why use reanalysis rather than just model forecasts?

Training on model forecasts can only be as good as the
physics-based model. May be faster though.

Downsides:

The reanalysis still includes some error due to the model
used to generate it, so the ML model is learning this.

12 / 29

Learning model from reanalysis

Why use reanalysis rather than just observations?

• The reanalysis functions as a physics-based interpolator,
fills in information where observations missing.

• Lower error compared to observations alone.
• Provided gridded in space and at regular time intervals.
This is simpler for ML to deal with.

Why use reanalysis rather than just model forecasts?

Training on model forecasts can only be as good as the
physics-based model. May be faster though.

Downsides:

The reanalysis still includes some error due to the model
used to generate it, so the ML model is learning this.

12 / 29

Learning model from reanalysis

Why use reanalysis rather than just observations?

• The reanalysis functions as a physics-based interpolator,
fills in information where observations missing.

• Lower error compared to observations alone.
• Provided gridded in space and at regular time intervals.
This is simpler for ML to deal with.

Why use reanalysis rather than just model forecasts?

Training on model forecasts can only be as good as the
physics-based model. May be faster though.

Downsides:

The reanalysis still includes some error due to the model
used to generate it, so the ML model is learning this.

12 / 29

Learning model from reanalysis

Why use reanalysis rather than just observations?

• The reanalysis functions as a physics-based interpolator,
fills in information where observations missing.

• Lower error compared to observations alone.
• Provided gridded in space and at regular time intervals.
This is simpler for ML to deal with.

Why use reanalysis rather than just model forecasts?

Training on model forecasts can only be as good as the
physics-based model. May be faster though.

Downsides:

The reanalysis still includes some error due to the model
used to generate it, so the ML model is learning this.

12 / 29

Learning model from reanalysis

Why use reanalysis rather than just observations?

• The reanalysis functions as a physics-based interpolator,
fills in information where observations missing.

• Lower error compared to observations alone.
• Provided gridded in space and at regular time intervals.
This is simpler for ML to deal with.

Why use reanalysis rather than just model forecasts?

Training on model forecasts can only be as good as the
physics-based model. May be faster though.

Downsides:

The reanalysis still includes some error due to the model
used to generate it, so the ML model is learning this.

12 / 29

Learning model from reanalysis

Figure 1: By Stephan Rasp

13 / 29

Learning corrections from analysis increments

Kalman-based DA algorithms can be written as

xa = xf + K(y − h(xf)).

Observations are usually assumed to be unbiased
(E[y − h(xt)] = 0). Thus, the bias in the analysis is usually
smaller than that of the forecast.

Thus, the analysis increment, xa − xf, tends to correct for bias.

Given a history of analysis increments,

{xaj − xfj}
J
j=1,

can we extract systematic patterns?

If so, we would like to be able to predict this correction before
gathering observations.

14 / 29

Learning corrections from analysis increments

Kalman-based DA algorithms can be written as

xa = xf + K(y − h(xf)).

Observations are usually assumed to be unbiased
(E[y − h(xt)] = 0). Thus, the bias in the analysis is usually
smaller than that of the forecast.

Thus, the analysis increment, xa − xf, tends to correct for bias.

Given a history of analysis increments,

{xaj − xfj}
J
j=1,

can we extract systematic patterns?

If so, we would like to be able to predict this correction before
gathering observations.

14 / 29

Learning corrections from analysis increments

Kalman-based DA algorithms can be written as

xa = xf + K(y − h(xf)).

Observations are usually assumed to be unbiased
(E[y − h(xt)] = 0). Thus, the bias in the analysis is usually
smaller than that of the forecast.

Thus, the analysis increment, xa − xf, tends to correct for bias.

Given a history of analysis increments,

{xaj − xfj}
J
j=1,

can we extract systematic patterns?

If so, we would like to be able to predict this correction before
gathering observations.

14 / 29

Learning corrections from analysis increments

Kalman-based DA algorithms can be written as

xa = xf + K(y − h(xf)).

Observations are usually assumed to be unbiased
(E[y − h(xt)] = 0). Thus, the bias in the analysis is usually
smaller than that of the forecast.

Thus, the analysis increment, xa − xf, tends to correct for bias.

Given a history of analysis increments,

{xaj − xfj}
J
j=1,

can we extract systematic patterns?

If so, we would like to be able to predict this correction before
gathering observations.

14 / 29

Learning corrections from analysis increments

Kalman-based DA algorithms can be written as

xa = xf + K(y − h(xf)).

Observations are usually assumed to be unbiased
(E[y − h(xt)] = 0). Thus, the bias in the analysis is usually
smaller than that of the forecast.

Thus, the analysis increment, xa − xf, tends to correct for bias.

Given a history of analysis increments,

{xaj − xfj}
J
j=1,

can we extract systematic patterns?

If so, we would like to be able to predict this correction before
gathering observations.

14 / 29

Learning corrections from analysis increments

We can train an ML model to predict the analysis increment, by
regression on the pairs

{(xfj , x
a
j − xfj)}

J
j=1.

Call the predicted analysis increment ÃI. Then, when
assimilating, we update the background,

xaj = (xfj + ÃIj) + Kj(yj − h(xfj)).

15 / 29

Learning corrections from analysis increments

We can train an ML model to predict the analysis increment, by
regression on the pairs

{(xfj , x
a
j − xfj)}

J
j=1.

Call the predicted analysis increment ÃI. Then, when
assimilating, we update the background,

xaj = (xfj + ÃIj) + Kj(yj − h(xfj)).

15 / 29

Learning forecast model

Methods:

• General: expectation maximization Brajard et al. 2020;
Bocquet et al. 2020

• General: auto-differentiable EnKF (Chen, Sanz-Alonso, and
Willett 2021)

• General: augmented EnKF (Gottwald and Reich 2021)
• Model error correction: analysis increments (Danforth,
Kalnay, and Miyoshi 2007; Farchi et al. 2021)

• Model error covariance estimation: innovation-based
methods (Tandeo et al. 2020)

16 / 29

Learning forecast model

Methods:

• General: expectation maximization Brajard et al. 2020;
Bocquet et al. 2020

• General: auto-differentiable EnKF (Chen, Sanz-Alonso, and
Willett 2021)

• General: augmented EnKF (Gottwald and Reich 2021)
• Model error correction: analysis increments (Danforth,
Kalnay, and Miyoshi 2007; Farchi et al. 2021)

• Model error covariance estimation: innovation-based
methods (Tandeo et al. 2020)

16 / 29

Learning forecast model

Methods:

• General: expectation maximization Brajard et al. 2020;
Bocquet et al. 2020

• General: auto-differentiable EnKF (Chen, Sanz-Alonso, and
Willett 2021)

• General: augmented EnKF (Gottwald and Reich 2021)

• Model error correction: analysis increments (Danforth,
Kalnay, and Miyoshi 2007; Farchi et al. 2021)

• Model error covariance estimation: innovation-based
methods (Tandeo et al. 2020)

16 / 29

Learning forecast model

Methods:

• General: expectation maximization Brajard et al. 2020;
Bocquet et al. 2020

• General: auto-differentiable EnKF (Chen, Sanz-Alonso, and
Willett 2021)

• General: augmented EnKF (Gottwald and Reich 2021)
• Model error correction: analysis increments (Danforth,
Kalnay, and Miyoshi 2007; Farchi et al. 2021)

• Model error covariance estimation: innovation-based
methods (Tandeo et al. 2020)

16 / 29

Learning forecast model

Methods:

• General: expectation maximization Brajard et al. 2020;
Bocquet et al. 2020

• General: auto-differentiable EnKF (Chen, Sanz-Alonso, and
Willett 2021)

• General: augmented EnKF (Gottwald and Reich 2021)
• Model error correction: analysis increments (Danforth,
Kalnay, and Miyoshi 2007; Farchi et al. 2021)

• Model error covariance estimation: innovation-based
methods (Tandeo et al. 2020)

16 / 29

Using learned forecast model

Using learned forecast model

Assume we have access to an approximate forecast model
learned using ML,Ma, which is much faster to evaluate.

We can then obtain an approximate forecast usingMa.

We can state theorems that say that if the models are “close”
(in a precise way), the analysis will also be close.

17 / 29

Using learned forecast model

Assume we have access to an approximate forecast model
learned using ML,Ma, which is much faster to evaluate.

We can then obtain an approximate forecast usingMa.

We can state theorems that say that if the models are “close”
(in a precise way), the analysis will also be close.

17 / 29

Using learned forecast model

Assume we have access to an approximate forecast model
learned using ML,Ma, which is much faster to evaluate.

We can then obtain an approximate forecast usingMa.

We can state theorems that say that if the models are “close”
(in a precise way), the analysis will also be close.

17 / 29

Using learned forecast model

Suppose that we have access to bothM andMa. M is a
costly “high-fidelity” model which we will take to be the true
one, whileMa is a cheaper “low-fidelity” model.

We would like to use a large ensemble ofMa to augment a
smaller ensemble ofM and improve ensemble filtering.

The basic idea of multifidelity Monte Carlo methods is to use a
correlated random variable, which may have a different
expectation, to reduce the variance in a Monte Carlo estimate.

Alternate approach: multi-model ensemble Kalman filter (Bach
and Ghil 2023)

18 / 29

Using learned forecast model

Suppose that we have access to bothM andMa. M is a
costly “high-fidelity” model which we will take to be the true
one, whileMa is a cheaper “low-fidelity” model.

We would like to use a large ensemble ofMa to augment a
smaller ensemble ofM and improve ensemble filtering.

The basic idea of multifidelity Monte Carlo methods is to use a
correlated random variable, which may have a different
expectation, to reduce the variance in a Monte Carlo estimate.

Alternate approach: multi-model ensemble Kalman filter (Bach
and Ghil 2023)

18 / 29

Using learned forecast model

Suppose that we have access to bothM andMa. M is a
costly “high-fidelity” model which we will take to be the true
one, whileMa is a cheaper “low-fidelity” model.

We would like to use a large ensemble ofMa to augment a
smaller ensemble ofM and improve ensemble filtering.

The basic idea of multifidelity Monte Carlo methods is to use a
correlated random variable, which may have a different
expectation, to reduce the variance in a Monte Carlo estimate.

Alternate approach: multi-model ensemble Kalman filter (Bach
and Ghil 2023)

18 / 29

Using learned forecast model

Suppose that we have access to bothM andMa. M is a
costly “high-fidelity” model which we will take to be the true
one, whileMa is a cheaper “low-fidelity” model.

We would like to use a large ensemble ofMa to augment a
smaller ensemble ofM and improve ensemble filtering.

The basic idea of multifidelity Monte Carlo methods is to use a
correlated random variable, which may have a different
expectation, to reduce the variance in a Monte Carlo estimate.

Alternate approach: multi-model ensemble Kalman filter (Bach
and Ghil 2023)

18 / 29

Using learned forecast model

Suppose that we have K low-fidelity models {Mk}Kk=1. Mhi is
the high-fidelity model, with respect to which we would like to
be unbiased.

Assume furthermore that the ensemble sizes for each model
are arranged such that 0 < Nhi ≤ N1 ≤ . . . ≤ NK .

Draw random samples {v(n)}NKn=1. Then compute the following
ensemble means:

m̂hi =
1
Nhi

Nhi∑
n=1

Mhi(v(n)), m̂k =
1
Nk

Nk∑
n=1

Mk(v(n)),

m̂′
k =

1
Nk−1

Nk−1∑
n=1

Mk(v(n)).

19 / 29

Using learned forecast model

Suppose that we have K low-fidelity models {Mk}Kk=1. Mhi is
the high-fidelity model, with respect to which we would like to
be unbiased.

Assume furthermore that the ensemble sizes for each model
are arranged such that 0 < Nhi ≤ N1 ≤ . . . ≤ NK .

Draw random samples {v(n)}NKn=1. Then compute the following
ensemble means:

m̂hi =
1
Nhi

Nhi∑
n=1

Mhi(v(n)), m̂k =
1
Nk

Nk∑
n=1

Mk(v(n)),

m̂′
k =

1
Nk−1

Nk−1∑
n=1

Mk(v(n)).

19 / 29

Using learned forecast model

Suppose that we have K low-fidelity models {Mk}Kk=1. Mhi is
the high-fidelity model, with respect to which we would like to
be unbiased.

Assume furthermore that the ensemble sizes for each model
are arranged such that 0 < Nhi ≤ N1 ≤ . . . ≤ NK .

Draw random samples {v(n)}NKn=1. Then compute the following
ensemble means:

m̂hi =
1
Nhi

Nhi∑
n=1

Mhi(v(n)), m̂k =
1
Nk

Nk∑
n=1

Mk(v(n)),

m̂′
k =

1
Nk−1

Nk−1∑
n=1

Mk(v(n)).

19 / 29

Using learned forecast model

Then we consider a multifidelity estimator given by

m̂ = m̂hi +
K∑
k=1

αk(m̂k − m̂′
k), αk =

ρkQhi
Qk

, (10)

where ρk is the correlation coefficient betweenMhi andMk,
and Q2k, Q

2
hi are the variances ofMk andMhi, respectively.

Theorem
The estimator is unbiased with respect to m̂hi, and has
variance

Var[m̂] =
Q2hi
Nhi

−
K∑
k=1

(
N−1
k−1 − N−1

k

)
ρ2kQ

2
hi. (11)

If ρ2k > 0 for any k, Var[m̂] < Var[m̂hi].
20 / 29

Using learned forecast model

We can use the multifidelity Monte Carlo estimator in the
forecast step of, e.g., an ensemble Kalman filter.

Given a fixed computational budget, the ensemble sizes for the
different models can be optimized to give the lowest variance.

21 / 29

Using learned forecast model

We can use the multifidelity Monte Carlo estimator in the
forecast step of, e.g., an ensemble Kalman filter.

Given a fixed computational budget, the ensemble sizes for the
different models can be optimized to give the lowest variance.

21 / 29

Learning filters/state estimators

Learning filters/state estimators

Suppose now that we want to learn the analysis step, or
certain unknown parts of the analysis step.

Why? Can do this to get a trajectory closer to the truth.

Can also learn an existing DA algorithm for computational
efficiency using supervised learning.

Example 1: learning inflation and localization in an EnKF.

Example 2: learning a gain matrix in xj = v̂j + K(y†j − h(v̂j)).

Example 3: learning an analysis step for an ensemble filter,
parameterized as a neural network.

22 / 29

Learning filters/state estimators

Suppose now that we want to learn the analysis step, or
certain unknown parts of the analysis step.

Why? Can do this to get a trajectory closer to the truth.

Can also learn an existing DA algorithm for computational
efficiency using supervised learning.

Example 1: learning inflation and localization in an EnKF.

Example 2: learning a gain matrix in xj = v̂j + K(y†j − h(v̂j)).

Example 3: learning an analysis step for an ensemble filter,
parameterized as a neural network.

22 / 29

Learning filters/state estimators

Suppose now that we want to learn the analysis step, or
certain unknown parts of the analysis step.

Why? Can do this to get a trajectory closer to the truth.

Can also learn an existing DA algorithm for computational
efficiency using supervised learning.

Example 1: learning inflation and localization in an EnKF.

Example 2: learning a gain matrix in xj = v̂j + K(y†j − h(v̂j)).

Example 3: learning an analysis step for an ensemble filter,
parameterized as a neural network.

22 / 29

Learning filters/state estimators

Suppose now that we want to learn the analysis step, or
certain unknown parts of the analysis step.

Why? Can do this to get a trajectory closer to the truth.

Can also learn an existing DA algorithm for computational
efficiency using supervised learning.

Example 1: learning inflation and localization in an EnKF.

Example 2: learning a gain matrix in xj = v̂j + K(y†j − h(v̂j)).

Example 3: learning an analysis step for an ensemble filter,
parameterized as a neural network.

22 / 29

Learning filters/state estimators

Suppose now that we want to learn the analysis step, or
certain unknown parts of the analysis step.

Why? Can do this to get a trajectory closer to the truth.

Can also learn an existing DA algorithm for computational
efficiency using supervised learning.

Example 1: learning inflation and localization in an EnKF.

Example 2: learning a gain matrix in xj = v̂j + K(y†j − h(v̂j)).

Example 3: learning an analysis step for an ensemble filter,
parameterized as a neural network.

22 / 29

Learning filters/state estimators

Suppose now that we want to learn the analysis step, or
certain unknown parts of the analysis step.

Why? Can do this to get a trajectory closer to the truth.

Can also learn an existing DA algorithm for computational
efficiency using supervised learning.

Example 1: learning inflation and localization in an EnKF.

Example 2: learning a gain matrix in xj = v̂j + K(y†j − h(v̂j)).

Example 3: learning an analysis step for an ensemble filter,
parameterized as a neural network.

22 / 29

Learning state estimators

Instead of trying to match the filtering distribution, we can
instead try to match the true trajectory.

Assuming we have access to the model, we can simulate a
trajectory xt and observations Y†, and xj(Y

†
j ; θ) to be some

estimate of xtj . Then,

J(θ) = 1
J

J∑
j=1

‖xj(Y
†
j ; θ)− xtj‖

2, (12a)

θ∗ = argminθJ(θ). (12b)

23 / 29

Learning state estimators

Instead of trying to match the filtering distribution, we can
instead try to match the true trajectory.

Assuming we have access to the model, we can simulate a
trajectory xt and observations Y†, and xj(Y

†
j ; θ) to be some

estimate of xtj . Then,

J(θ) = 1
J

J∑
j=1

‖xj(Y
†
j ; θ)− xtj‖

2, (12a)

θ∗ = argminθJ(θ). (12b)

23 / 29

Learning state estimators

Suppose now that we do not have access to the true model,
and hence have to minimize a loss against observations Y†:

J(θ) = 1
J

J∑
j=1

‖h(xj(Y
†
j ; θ))− y†j ‖

2, (13a)

θ∗ = argminθJ(θ). (13b)

Since xj is a function of y
†
j , this cost function can cause xj to be

overfit to observations.

Example: if h is surjective, one can achieve a perfect score by
simply setting xj = h−1(y†j), where h

−1 is the right inverse of h.

24 / 29

Learning state estimators

Suppose now that we do not have access to the true model,
and hence have to minimize a loss against observations Y†:

J(θ) = 1
J

J∑
j=1

‖h(xj(Y
†
j ; θ))− y†j ‖

2, (13a)

θ∗ = argminθJ(θ). (13b)

Since xj is a function of y
†
j , this cost function can cause xj to be

overfit to observations.

Example: if h is surjective, one can achieve a perfect score by
simply setting xj = h−1(y†j), where h

−1 is the right inverse of h.

24 / 29

Learning state estimators

Suppose now that we do not have access to the true model,
and hence have to minimize a loss against observations Y†:

J(θ) = 1
J

J∑
j=1

‖h(xj(Y
†
j ; θ))− y†j ‖

2, (13a)

θ∗ = argminθJ(θ). (13b)

Since xj is a function of y
†
j , this cost function can cause xj to be

overfit to observations.

Example: if h is surjective, one can achieve a perfect score by
simply setting xj = h−1(y†j), where h

−1 is the right inverse of h.

24 / 29

Learning state estimators

Taking the expectation over the observation noise realization,
η†j ∼ N (0,R), we obtain (Mallia-Parfitt and Bröcker 2016):

E[‖h(xj(θ))− y†j ‖
2] = E[‖h(xj)− h(xtj)‖

2] + tr(R)− 2E[h(xj(θ))>η
†
j].

E[h(xj)>η
†
j] will generally be positive, since the observation y

†
j

was used to produce the analysis xj. The first term on the RHS
is what we would like to estimate.

E[‖h(xj(θ))− y†j ‖
2] + 2E[h(xj(θ))>η

†
j] is thus a better proxy for

out-of-sample performance, and should be minimized instead
of only E[‖h(xj(θ))− y†j ‖

2].

25 / 29

Learning state estimators

Taking the expectation over the observation noise realization,
η†j ∼ N (0,R), we obtain (Mallia-Parfitt and Bröcker 2016):

E[‖h(xj(θ))− y†j ‖
2] = E[‖h(xj)− h(xtj)‖

2] + tr(R)− 2E[h(xj(θ))>η
†
j].

E[h(xj)>η
†
j] will generally be positive, since the observation y

†
j

was used to produce the analysis xj. The first term on the RHS
is what we would like to estimate.

E[‖h(xj(θ))− y†j ‖
2] + 2E[h(xj(θ))>η

†
j] is thus a better proxy for

out-of-sample performance, and should be minimized instead
of only E[‖h(xj(θ))− y†j ‖

2].

25 / 29

Learning state estimators

Taking the expectation over the observation noise realization,
η†j ∼ N (0,R), we obtain (Mallia-Parfitt and Bröcker 2016):

E[‖h(xj(θ))− y†j ‖
2] = E[‖h(xj)− h(xtj)‖

2] + tr(R)− 2E[h(xj(θ))>η
†
j].

E[h(xj)>η
†
j] will generally be positive, since the observation y

†
j

was used to produce the analysis xj. The first term on the RHS
is what we would like to estimate.

E[‖h(xj(θ))− y†j ‖
2] + 2E[h(xj(θ))>η

†
j] is thus a better proxy for

out-of-sample performance, and should be minimized instead
of only E[‖h(xj(θ))− y†j ‖

2].

25 / 29

References i

Bach, E. and M. Ghil (2023). “A Multi-Model Ensemble
Kalman Filter for Data Assimilation and Forecasting”.
Journal of Advances in Modeling Earth Systems.
Bocquet, M., J. Brajard, A. Carrassi, and L. Bertino (2020).
“Bayesian Inference of Chaotic Dynamics by Merging Data
Assimilation, Machine Learning and
Expectation-Maximization”. Foundations of Data Science.
Boudier, P., A. Fillion, S. Gratton, S. Gürol, and S. Zhang
(2023). “Data Assimilation Networks”. Journal of Advances in
Modeling Earth Systems.
Brajard, J., A. Carrassi, M. Bocquet, and L. Bertino (2020).
“Combining Data Assimilation and Machine Learning to
Emulate a Dynamical Model from Sparse and Noisy
Observations: A Case Study with the Lorenz 96 Model”.
Journal of Computational Science.

26 / 29

References ii

Chen, Y., D. Sanz-Alonso, and R. Willett (2021).
“Auto-Differentiable Ensemble Kalman Filters”. arXiv:
2107.07687 [cs, stat].
Danforth, C. M., E. Kalnay, and T. Miyoshi (2007). “Estimating
and Correcting Global Weather Model Error”. Monthly
Weather Review.
Farchi, A., P. Laloyaux, M. Bonavita, and M. Bocquet (2021).
“Using Machine Learning to Correct Model Error in Data
Assimilation and Forecast Applications”. Quarterly Journal of
the Royal Meteorological Society.
Gottwald, G. A. and S. Reich (2021). “Supervised Learning
from Noisy Observations: Combining Machine-Learning
Techniques with Data Assimilation”. Physica D: Nonlinear
Phenomena.

27 / 29

https://arxiv.org/abs/2107.07687

References iii

Hammoud, M. A. E. R., N. Raboudi, E. S. Titi, O. Knio, and
I. Hoteit (2024). Data Assimilation in Chaotic Systems Using
Deep Reinforcement Learning. arXiv: 2401.00916
[physics]. Pre-published.
Mallia-Parfitt, N. and J. Bröcker (2016). “Assessing the
Performance of Data Assimilation Algorithms Which
Employ Linear Error Feedback”. Chaos: An Interdisciplinary
Journal of Nonlinear Science.
Rozet, F. and G. Louppe (2023). “Score-Based Data
Assimilation”. Advances in Neural Information Processing
Systems.
Spantini, A., R. Baptista, and Y. Marzouk (2022). “Coupling
Techniques for Nonlinear Ensemble Filtering”. SIAM Review.

28 / 29

https://arxiv.org/abs/2401.00916
https://arxiv.org/abs/2401.00916

References iv

Tandeo, P., P. Ailliot, M. Bocquet, A. Carrassi, T. Miyoshi,
M. Pulido, and Y. Zhen (2020). “A Review of
Innovation-Based Methods to Jointly Estimate Model and
Observation Error Covariance Matrices in Ensemble Data
Assimilation”. Monthly Weather Review.
Waller, J. A., S. L. Dance, and N. K. Nichols (2016).
“Theoretical Insight into Diagnosing Observation Error
Correlations Using Observation-Minus-Background and
Observation-Minus-Analysis Statistics”. Quarterly Journal of
the Royal Meteorological Society.

29 / 29

	Preliminaries
	ML in DA
	Learning forecast model
	Using learned forecast model
	Learning filters/state estimators

