Machine Learning in Data Assimilation

Eviatar Bach
13 June 2025



Inverse Problems and Data Assimilation:
A Machine Learning Approach

Eviatar Bach #. Ricardo Baptista #, Daniel Sanz-Alonso . Andrew Stuart

https://www.arxiv.org/abs/2410.10523

0/29


https://www.arxiv.org/abs/2410.10523

M

«

I'S

Inverse Problems

Bayesian Inversion

L1 Bayesian Inversion

12 MAP Estimation and Optimization

1.3 Well-Posedness of Bayesian Inverse Problems

1.4 Model Error
141 Representing Error in Data Space
142 Representing Error in Parameter Space
143 Parameterizing the Forward Model

15 Bibliography

Variational Inference
2.1 Variational Formulation of Bayes Theorem
2.2 Variational Inference .
21 Mean-Field Family

Gaussian Distributions .
Mode-Secking

224 Evidence Lower Bound .
2.3 Bibliography

Forward Surrogate Modelling
3.1 Accelerating Bayesian Inversion
32 Posterior Approximation Theorem
3.3 Accelerating MAP Estimation

34 Bibliography

Learmng Prior and Regularizers
Learning the Prior
4 2 Representing the Prior via a Pushforward
4.3 Perturbations to the Prior
43.1 Smooth Approximation of the Prior
432 Empirical Approximation of the Prior

s Mean-Sccking Variational Inference

-

=

44 Learning Regularizers for MAP Estimation .
45 Learning Regularizers for Posterior Approsimation -
4.6 Bibliography

Transporting to the Posterior
5.1 Learning the Prior to Posterior Map .

5.2 Comnection to Variational Inference
5.3 Learning Other Posterior Maps
5.4 Bibliography

Learning Dependence on Data

6.1 Likelihood-Based Inference

6.2 Likelihood-Free Inference
621 Consequences of Block Triangular Pushforvard .
622 Learning Block-Triangular Pushforward Maps

6.3 Learning Likelihood Models
6.4 Amortized MAP Estimation
65 Bibliography

Data Assimilation

Filtering and Smoothing Problems
7.1 Formulation of the Filtering Problem .
7.2 Formulation of the Smoothing Problem
7.3 Kalman Filter
74 3DVar .. .. .
ended Kalman Filtr (EXKF)
7.6 Ensemble Kalman Filter (EnKF)
7.6.1 The EnKF Algorithm
762 Inflation
7.63  Localization .
7.7 Bootstrap Particle Filter . .
78 Optimal Particle Filt
7.9 ADVar
7.10 Reanalysis
7.11 Model Error . .
7111 Moddl Brror: Smoothing
7.11.2 Model Error: Filtering
7113 Filtering with Small Model Error
2 Bibliography

0/29



8 Learning Forecast and Observation Model

81 TheSetting . . ... ...
82 Expectation Maximization
82.1 Learning Observation and Model Error Covariances
822 Monte Carlo EM . . . ...
83 Auto-Differentiable Kalman
8.4 Correcting Model Error Using Analysis Increments . . .
85 Discussion and Bibliography . . . .
9 Learning ized Filters and
9.1 Variational Formulations of Smoothing and Filtering . .
911 Variational Formulation of Smoothing . . . . . .
9.1.2  Variational Formulation of Filtering
9.2
9.3
931 Smoothing: Gaussian Approximate Probabilistic Estimation
932 Smoothing: Amortized Gaussian Approximate Probabilistic Esti-
mation
9.4 Filtering: State Estimation
941 Var . .
942 EnKF Gain .
943 EnKF Localization and Infiation
944 Optimal Particle Filter . .. ... .........
945 Spread-Error Relationship. . . ... .. ... .. .
946 Learning State Estimators in the Prescnce of Model Eror
9.5 Filtering: Probabilistic Estimation
951 Learning Filters Using Variational Inference . . .
952 Learning Filters Using Strictly Proper Scoring Rules
953 Bootstrap Particle Filter
954 Optimal Particle Filter . . .
9.6 Bibliography
10 Learning the Filter or Smoother Using Transpon

101 Learning the Forecast to Analysis Map .
102 Learning Dependence of the Map on Data .

104 Bibliography

10.2.1 Minimizing the Energy Distance
ssed Maps Learned with Maximum Likelihood
Filter Transport . . . . ... ... ...

g with Likelihood Weights
Learning the Data Dependence .

L1
S5

13 Unsupen

11 Data Assimilation Using Learned Forecasting Models

111 Smoothing and Filtering Using Surrogate Mode!
11,11 Smoothing Problem B
IL12 3DVar . ..o

11.2 Multifidelity Ensemble State Estimation .
1121 Multi-Model (Ensemble) Kalman Filters
1122 Multifidelity Monte Carlo
11.2.3 Model Selection and Sample Allocation

113 Multifidelity Covariance Estimation . . ... ... ...

114 Bibliography

I  Learning Frameworks

12 Metrics, Dlvergem:es and Scoring Rules

121

12.1.1 Metrics on the Space of Probability Measures . -
12.1.2 Total Variation and Hellinger Metrics . . . . . .
12.1.3 Transportation Metrics
12.1.4 Integral Probability Metrics
12.1.5 Maximum Mean Dis
12.1.6 Metrics on the Space of Random Probab
12.2 Divergences .
1221 f-Divergences
12.2.2 Relationships between f-Divergences and Metrics
12.2.3 Tnvariance of f-Di
12.3 Scoring Rules FR
12.3.1 Energy Score . .
12.3.2 Continuous Ranked Probability Score . . . . . .
12.3.3 Quantile Score
12.3.4 Logarithmic Score . . . .. ... .........
12.3.5 Dawid-Sebastiani Score
12.3.6 Noise in the Verification
12.3.7 Distance-Like Deterministic Scoring Rule
12.4 Bibliography

ed Lear!
13.1 Density Estimation
13.2 Transport Methods
13.3 Normalizing Flows
1331 Structure in the Optimization Problem for 0
13.3.2 Neural ODEs ..
13.4 Score-Based -\ppmm hes -l
135 Autoencoders

g and Generative Modeling

pancy and Energy Distance .
ity Measures

rgences under Invertible Tranformat

133

L1338
133
L1835
. 136

136

138

0/29



13.6 Variational Autoencoders
13.7 Generative Adversarial Networks
13.8 Bibliography

2

Supervised Learning
14.1 Neural Networks
14.2 Random Feature
14.3 Gaussian Processes
1431 Kernels
1432 Regression
14.4 Approximation Properties
145 Bibliography . ... .. ...

Time Series Forecasting

15.1 Linear Autoregressive Models

15.2 Analog Forccasting
15.2.1 Analog Forecasting -

522 Kemel Analog Forecasting

Recurrent Structure
1531 Markovian Prediction
15.3.2 Memory and Predi

1533 Memory and Reservoir Computing

1 4 Non-Gaussian Amzrkvgrc lodels

5.5 Bibliography

Optimization

16.1 Gradient Descent,

16.1.1 Deterministic Gradient Descent

16.1.2 Stochastic Gradient Descent

Automatic Differentiation

16.2.1 Forward Mode

16.2.2 Reverse Mode . . . . .

16.3 Expectation-Maximization . .

16.4 Newton and Gauss-Newton
16.4.1 Newton's Method . . . .
16.4.2 Gauss Newton .

16.5 Ensemble Kalman Inve

16.6 Bibliography . ... ... ..

16.2

Bibliography

Alphabetical Index

213

217

0/29



Preliminaries



Data assimilation

Consider the dynamical system

Xty = MK+ ¢, (1a)

xh ~ N (mo,Co), &l ~N(0,Q)iid, (1b)

1/29



Data assimilation

Consider the dynamical system

Xt = M(x) + ¢, (1a)
xh ~ N (mo,Co), &l ~N(0,Q)iid, (1b)

The observations are given by

yL:] = h(X}:J,-‘I) + an+'|7 (2a)
n ~N(0,R) iid. (2b)

1/29



Data assimilation

Consider the dynamical system

Xt = M(x) + ¢, (1a)
xh ~ N (mo,Co), &l ~N(0,Q)iid, (1b)

The observations are given by

yL:] = h(X}:J,-‘I) + an+'|7 (2a)
n ~N(0,R) iid. (2b)

1/29



Data assimilation

We define, for a fixed integer J,

Xt= b Y=,y Y =0y

2/29



Data assimilation

We define, for a fixed integer J,

Xt= b Y=,y Y =0y
Three distinct tasks in data assimilation (DA):

- The problem of smoothing is to obtain the conditional

distribution P(X!|YT) (e.g., ensemble Kalman smoother).

2/29



Data assimilation

We define, for a fixed integer J,

Xt= b Y=,y Y =0y
Three distinct tasks in data assimilation (DA):

- The problem of smoothing is to obtain the conditional
distribution P(X!|YT) (e.g., ensemble Kalman smoother).

- The problem of filtering is to obtain IP’(XJHY}-T) foranyj < J
(e.g., ensemble Kalman filter).

2/29



Data assimilation

We define, for a fixed integer J,

Xt= b Y=,y Y =0y
Three distinct tasks in data assimilation (DA):

- The problem of smoothing is to obtain the conditional
distribution P(X!|YT) (e.g., ensemble Kalman smoother).

- The problem of filtering is to obtain IP’(XJHY}-T) foranyj < J
(e.g., ensemble Kalman filter).

* The problem of state estimation is to obtain a x; ~ X} in
some norm (e.g., 3DVar).
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Other topics (won't discuss):

- Learning filters and state estimators

- End-to-end forecasting and DA using ML, e.g., score-based
DA (Rozet and Louppe 2023), DA networks (Boudier et al.
2023)

- Learning smoothers

- Learning observation operators and observation error
covariances (Waller, Dance, and Nichols 2016)

- Transport-based (Spantini, Baptista, and Marzouk 2022)
and reinforcement learning-based (Hammoud et al. 2024)
approaches to DA

- Practical considerations
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Automatic differentiation

Gradients are often difficult to obtain in closed form for
complex cost functions.

Finite difference approximations are often inaccurate and
expensive for high-dimensional problems.

Automatic differentiation (autodiff) involves repeated
application of chain rule on elementary operations that
enables computing derivatives accurately to working precision.

This can allow differentiation through model states (adjoint),
model parameters, and DA algorithms, and enable use of
gradient-based optimization.
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Automatic differentiation

Suppose y = f(x), where y € R% and x € R%, and the
derivative of f is not readily available in closed-form.

We assume the implementation of f in computer code is made
up of n elementary operations f; : R%-1 — R (for instance,
addition, multiplication, logarithms, etc.), such that

F(x) = fa o far 0+ 0 fi(x), 3)

where the Jacobians for these elementary operations,
Df; : Rdi-1 — RY*di-1 are available in closed form.

Writing the partial evaluations up to i < n as

gi = (fie---of1)(x),

by the chain rule we have that

Dxf(x) = (Dg,fn(gn-1)) - - - (Dg,f2(1)) (Dxf1(X))- (4)
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Automatic differentiation

This suggests the following algorithm (forward mode automatic
differentiation):
1. Input: The functions {fi(-)}_,, their corresponding
Jacobians {Df;(-)}"_,, and the function input x.
2: Set g1 = f1(x) and J; = Dfi(x).
3 Fori=2,...,n:setg; =fi(gi_y) and J; = (Dfi(gi_1))i_1-
4 Output: The function output y = f(x) = g, and the
derivative Df (x) = Jn.
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differentiation):

1. Input: The functions {fi(-)}_,, their corresponding
Jacobians {Df;(-)}"_,, and the function input x.

2: Set g1 = f1(x) and J; = Dfi(x).

3 Fori=2,...,n:setg; =fi(gi_y) and J; = (Dfi(gi_1))i_1-

4 Output: The function output y = f(x) = g, and the
derivative Df (x) = Jn.

Reverse mode autodiff requires a backwards pass to compute
the derivative, and is more efficient when dg > d, (many
inputs), whereas forward mode is more efficient when d, > dq
(many outputs).
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The dynamical model has parameters ¥:
Ky = My(x) + ¢, (5a)
xh ~ N (mo, Go), & ~ N(0,Q(9)) iid. (5b)

Example 1 (parameterized dynamics): M = M is
parameterized, but the true parameter 91 is unknown and
needs to be estimated.

Example 2 (fully unknown dynamics): M is fully unknown and
¥ can represent, for example, the parameters of a neural
network or Gaussian process surrogate model My for M.

Example 3 (model correction): M is unknown, but we have
access to an inaccurate model M3PP% ~ M. The goal is to
learn ¥ so that My = M3PPOX M,‘;O”QC“O” approximates M

accurately.
8/29



Learning forecast model

We consider learning the parameters from partial, noisy
observations.

9/29



Learning forecast model

We consider learning the parameters from partial, noisy
observations.

If we have the true (or good enough) model and want to learn
an ML surrogate, we can just use supervised learning.

9/29



Learning forecast model

We consider learning the parameters from partial, noisy
observations.

If we have the true (or good enough) model and want to learn
an ML surrogate, we can just use supervised learning.

We would like to learn 9 by maximizing the likelihood
P(YT]9) = /}P’(YT,XW) dx. (6)

Here the states X are unobserved latent variables.

9/29



Learning forecast model

Evaluating the preceding integral is intractable. Instead, we
use expectation-maximization (EM) algorithm for maximum
likelihood estimation.

10/29



Learning forecast model

Evaluating the preceding integral is intractable. Instead, we
use expectation-maximization (EM) algorithm for maximum
likelihood estimation.

EM consists of two steps:

1. Expectation: Take the expectation of the log-likelihood of
the state and observations given the parameters 9:

Jo(9) = EX~EXIY 00 [log (X, YT|9)] (7)

10/29



Learning forecast model

Evaluating the preceding integral is intractable. Instead, we
use expectation-maximization (EM) algorithm for maximum
likelihood estimation.

EM consists of two steps:

1. Expectation: Take the expectation of the log-likelihood of
the state and observations given the parameters 9:

Jo(9) = EX~EXIY 00 [log (X, YT|9)] (7)

2. Maximization:
Ypqq = arg maxJy(v) (8)
9

10/29



Learning forecast model

Evaluating the preceding integral is intractable. Instead, we
use expectation-maximization (EM) algorithm for maximum
likelihood estimation.

EM consists of two steps:

1. Expectation: Take the expectation of the log-likelihood of
the state and observations given the parameters 9:

Jo(9) = EX~EXIY 00 [log (X, YT|9)] (7)

2. Maximization:
Ypqq = arg maxJy(v) (8)
9

This algorithm has the property that

P(YT[941) > P(YT|9y). (9)
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Learning model from reanalysis

Suppose we have a reanalysis
DY
We can train an ML model to predict
Xja—H = f(Xja; 0)7
and then use this autoregressively to predict the future. That is,
X2, = f(f(x:6);0),

etc.
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Learning model from reanalysis

Why use reanalysis rather than just observations?

- The reanalysis functions as a physics-based interpolator,
fills in information where observations missing.
- Lower error compared to observations alone.

- Provided gridded in space and at regular time intervals.
This is simpler for ML to deal with.

Why use reanalysis rather than just model forecasts?

Training on model forecasts can only be as good as the
physics-based model. May be faster though.

Downsides:

The reanalysis still includes some error due to the model
used to generate it, so the ML model is learning this.
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Learning corrections from analysis increments

Kalman-based DA algorithms can be written as
x® = x"+ K(y — h(x)).

Observations are usually assumed to be unbiased
(Ely — h(x")] = 0). Thus, the bias in the analysis is usually
smaller than that of the forecast.

Thus, the analysis increment, x® — x', tends to correct for bias.

Given a history of analysis increments,

a U
5 =%}z
can we extract systematic patterns?

If so, we would like to be able to predict this correction before

gathering observations.
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Learning corrections from analysis increments

We can train an ML model to predict the analysis increment, by
regression on the pairs

f ya A\ 1/
{(vaXj —Xj)}j:1.
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Learning corrections from analysis increments

We can train an ML model to predict the analysis increment, by
regression on the pairs

f ya A\ 1/
{(vaXj —Xj)}j:1.

Call the predicted analysis increment Al. Then, when
assimilating, we update the background,

x& = (I + Aly) + Ki(y; — h(x))).
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Learning forecast model

Methods:

- General: expectation maximization Brajard et al. 2020;
Bocquet et al. 2020

- General: auto-differentiable EnKF (Chen, Sanz-Alonso, and
Willett 2021)

- General: augmented EnKF (Gottwald and Reich 2021)

- Model error correction: analysis increments (Danforth,
Kalnay, and Miyoshi 2007; Farchi et al. 2021)

+ Model error covariance estimation: innovation-based
methods (Tandeo et al. 2020)
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Using learned forecast model

Assume we have access to an approximate forecast model
learned using ML, M9, which is much faster to evaluate.

We can then obtain an approximate forecast using MY,

We can state theorems that say that if the models are “close”
(in a precise way), the analysis will also be close.
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Using learned forecast model

Suppose that we have access to both M and M9. M is a
costly “high-fidelity” model which we will take to be the true
one, while MY is a cheaper “low-fidelity” model.

We would like to use a large ensemble of M9 to augment a
smaller ensemble of M and improve ensemble filtering.

The basic idea of multifidelity Monte Carlo methods is to use a
correlated random variable, which may have a different
expectation, to reduce the variance in a Monte Carlo estimate.

Alternate approach: multi-model ensemble Kalman filter (Bach
and Ghil 2023)
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Using learned forecast model

Suppose that we have K low-fidelity models {M}K_.. My; is
the high-fidelity model, with respect to which we would like to
be unbiased.

Assume furthermore that the ensemble sizes for each model
are arranged such that 0 < Npj < N7 < ... < Ng.

Draw random samples {v(”)}gg. Then compute the following
ensemble means:

Npi Np
A 1 . 1
Mhi = 5~ > Mp(vi), Me = - > Mi(vi),
hi = R =1
1 N —1
M, = Mp(v(?)
E= N nz_; R(V)
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Using learned forecast model

Then we consider a multifidelity estimator given by
K Qi
= Mni+ Y o — M), ap = }z:),?hl’ (10)
where py, Is the correlation coefficient between My,; and My,
and Qz, Q7. are the variances of My, and My;, respectively.

The estimator is unbiased with respect to my,;, and has
variance

Var[m] = —% EK ( —N 1) P Q7 (1)
k R~hi-
k=1

If p; > 0 for any k, Var[] < Var[fp].
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Using learned forecast model

We can use the multifidelity Monte Carlo estimator in the
forecast step of, e.g,, an ensemble Kalman filter.

Given a fixed computational budget, the ensemble sizes for the
different models can be optimized to give the lowest variance.
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Learning filters/state estimators

Suppose now that we want to learn the analysis step, or
certain unknown parts of the analysis step.

Why? Can do this to get a trajectory closer to the truth.

Can also learn an existing DA algorithm for computational
efficiency using supervised learning.

Example 1: learning inflation and localization in an EnKF.
Example 2: learning a gain matrix in x; = V; + K(yf — h(¥)).

Example 3: learning an analysis step for an ensemble filter,
parameterized as a neural network.

22/29



Learning state estimators

Instead of trying to match the filtering distribution, we can
instead try to match the true trajectory.
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Learning state estimators

Instead of trying to match the filtering distribution, we can
instead try to match the true trajectory.

Assuming we have access to the model, we can simulate a
trajectory x' and observations YT, and xj(Y}T; 6) to be some
estimate ofx}. Then,

J
1
)(6) = /2 (v 0) = X117, (12a)
/:
0 = argming)(6). (12b)
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Learning state estimators

Suppose now that we do not have access to the true model,
and hence have to minimize a loss against observations YT:

Z 1h( (v 6)) = v, (13a)

o* :argm|n9J(0). (13b)
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Learning state estimators

Suppose now that we do not have access to the true model,
and hence have to minimize a loss against observations YT:

Z 1h( (v 6)) = v, (13a)

o* :argm|n9J(0). (13b)

Since x; is a function ofij, this cost function can cause x; to be
overfit to observations.

Example: if h is surjective one can achieve a perfect score by
simply setting x; = h™ (y ), where h="is the right inverse of h.
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Learning state estimators

Taking the expectation over the observation noise realization,
an ~ N(0,R), we obtain (Mallia-Parfitt and Brocker 2016):

E[lIh(xi(6)) — ¥/ II’] = E[llh(x) — h(x)I] + tr(R) — 2E[h(x;(9)) "n].

25/29



Learning state estimators

Taking the expectation over the observation noise realization,
an ~ N(0,R), we obtain (Mallia-Parfitt and Brocker 2016):

E[|h(x;(0)) — ¥/ 1’1 = E[llh() — h(x})I”] + tr(R) — 2E[h(x;(6)) n]-
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was used to produce the analysis x;. The first term on the RHS
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Learning state estimators

Taking the expectation over the observation noise realization,
an ~ N(0,R), we obtain (Mallia-Parfitt and Brocker 2016):

E[lIh(xi(6)) — ¥/ II’] = E[llh(x) — h(x)I] + tr(R) — 2E[h(x;(9)) "n].

E[h(x,)Tan] will generally be positive, since the observation ij
was used to produce the analysis x;. The first term on the RHS
is what we would like to estimate.

E[||h(x;(6)) — ij||2] I 2E[h(xj(0))Tan] is thus a better proxy for
out-of-sample performance, and should be minimized instead
of only E[||h(x;(9)) — ! I°)
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