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Forecast models based on machine learning are here and they’re good!

• Huawei’s Pangu-Weather (Bi et al., 2022, arXiv preprint arXiv:2211.02556)

• Google DeepMind’s GraphCast (Lam et al., 2022, arXiv preprint arXiv:2212.12794)
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ERA5: reanalysis as 
training data (1979-2017) 
and validation data (2018)

HRES: ECMWF T1279Co 
(9 km) 10 day forecast 

https://arxiv.org/pdf/2212.12794.pdf

GraphCast: 10 day forecast 
at 0.25 degrees (25 km)

Run time

30 minutes (128 
nodes of HPC)

1 minute (1 
TPU)



Machine learning weather forecasts out-perform* physics-based models
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https://charts.ecmwf.int/catalogue/packages/opencharts/products/plwww_3m_fc_aimodels_wp_mean
Ben-Bouallegue et al. (2023) The rise of data-driven weather forecasting - https://doi.org/10.48550/arXiv.2307.10128
Bi et al. (2023) Accurate medium-range global weather forecasting with 3D neural networks - https://doi.org/10.1038/s41586-023-06185-3
Lam et al. (2023) Learning skilful medium-range global weather forecasting - https://doi.org/10.1126/science.adi2336

(physics-based)

https://charts.ecmwf.int/catalogue/packages/opencharts/products/plwww_3m_fc_aimodels_wp_mean
https://doi.org/10.48550/arXiv.2307.10128
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1126/science.adi2336
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• This great result is >75% due to physical data 
assimilation!

– Training data is ERA5 and ECMWF operational analysis 

– Initial conditions are the ECMWF operational analysis.

• -> Medium range forecasting is possible using lower 
dimensionality than we thought:

– Backing up older results eg https://doi.org/10.1002/qj.613

– Machine learning creates an optimised statistical 
representation of the atmosphere: “latent space” 

• -> The physical model is not good enough and 
needs to be improved using observations

Horizontal Vertical Timestep
IFS 8-9 km 137 levels 7.5 min
AIFS 36 km 13 levels 6 hour

If AI-based forecasting outperforms physical models...

Train a data 
driven model

00 UTC 1st Sep 1985  06 UTC 1st Sep 1985  

12 UTC 22nd Mar 2024  

Make a weather 
forecast using a 
data driven model

ERA5 
analyses

ECMWF 
operational 
analyses

https://doi.org/10.1002/qj.613


So, can we do without physical model or data assimilation and 
instead directly forecast from (and to) observations?
• Google MetNet-2 is trained to forecast from/to 
precipitation “observations” from gauge and radar 
(although it does use some NWP information for 
initial conditions)

• Aardvark Weather replaces data assimilation 
– DA emulation is trained on conventional and 

satellite observations with ERA5 as a target

– Aardvark Z500 forecasts are about 1 day behind 
ECMWF physical forecasts

– Allen et al., 2025, ”End-to-end data-driven 
weather prediction”, 
https://doi.org/10.1038/s41586-025-08897-0

• AI-DOP at ECMWF goes from observation to 
observation with no input from physical NWP

– https://doi.org/10.48550/arXiv.2412.15687
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MetNet-2: CC BY 4.0 reproduction from Espeholt et al. 
(2022, “Deep learning for twelve hour precipitation 
forecasts) https://doi.org/10.1038/s41467-022-32483-x)

https://doi.org/10.1038/s41586-025-08897-0
https://doi.org/10.1038/s41586-025-08897-0
https://doi.org/10.1038/s41586-025-08897-0
https://doi.org/10.1038/s41586-025-08897-0
https://doi.org/10.1038/s41586-025-08897-0
https://doi.org/10.1038/s41586-025-08897-0
https://doi.org/10.1038/s41586-025-08897-0
https://doi.org/10.48550/arXiv.2412.15687
https://doi.org/10.48550/arXiv.2412.15687
https://doi.org/10.1038/s41467-022-32483-x
https://doi.org/10.1038/s41467-022-32483-x
https://doi.org/10.1038/s41467-022-32483-x
https://doi.org/10.1038/s41467-022-32483-x
https://doi.org/10.1038/s41467-022-32483-x
https://doi.org/10.1038/s41467-022-32483-x
https://doi.org/10.1038/s41467-022-32483-x
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An ML example: microwave land 
surface observation operator
Python, Keras, Tensorflow, Numpy, Matplotlib, Xarray



Datasets
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AMSR2 24GHz v-pol observations

10 possible predictors for the 
brightness temperature from 
the IFS 12h forecast

Skin temperature

Soil moisture

Leaf area index

+ orography, snow depth, 
snow density, integrated 
water vapour, cloud, rain 
and snow water contents

y = 
labels x =

features
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y = 
labels x =

features
Task of ML: 

find y=h(x,w)

w =
neural network 

weights



Data preparation
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Dataset of 470,000 observations 
and colocated model data

Prepare numpy arrays of correct 
shape for Keras

Normalise ‘features’ x to 
roughly -1 to +1

And... (not shown) normalise 
labels y to within 0 to 1



Set up a neural network for the land surface observation operator
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Feedforward neural network - example
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Train it (about 25 minutes on a linux workstation)
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epoch

Loss function
Adam – a sophisticated 
stochastic gradient descent 
(SGD) minimiser

Default “loss 
function” is just the 
4D-Var Jo without 
representation of 
observation error.



Results (ability to fit training dataset) 
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Observations ML predicted

Physically-based simulation produced by 
IFS (RTTOV for atmosphere, dynamical 
emissivity retrieval for surface emissivity)

Hand-written function to recover TB



Problems with this toy NN model for 24 GHz radiances
• It’s not as good as the current physical methods

• The input variables are not sufficient to drive the outputs
– Missing variables – e.g. over Greenland, detailed knowledge of snow and ice 

microstructure

• Some of the fundamental problems for machine learning in the earth 
system domain:

– Neither the models nor the input state are fully known

– Chicken and egg problem: can’t train the model if you don’t know the necessary 
inputs well enough
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Types of ML



Types of ML – supervised learning
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x2x1 nn()

Neural 
network Supervised learning:

• ML as a "universal function approximator" (Hornik, 1991)
• Both inputs x1 and outputs x2 need to be provided as 

training data
• An "emulator" / "surrogate" / "empirical model"

Encoder-decoder:
• Data compression
• Data assimilation in the space of an 

autoencoder (Peyron et al., 2021)
• Still needs both inputs and outputs to 

train the model



Types of ML – unsupervised learning – generative ML
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What if we could just have the decoder?
• How do we train it?

• We could train an encoder-decoder 
on something, and then throw away 
the encoder.

• Or find some more clever way...
Latent space: a 
reduced statistical description 
of a phenomemon

A bit like a set of eigenvalues in 
a principal component 
decomposition

Reconstruction

Snowflake images from Leinonen and 
Berne 
(2021, https://doi.org/10.5194/amt-13-
2949-2020)
Generative Adversarial Network (GAN):
• Generator (~decoder): make an 

image
• Discriminator (~encoder): given an 

image, tell if it is real or fake -> drives 
the loss function

Reconstructed

Real

Random vector 
in latent space

https://doi.org/10.5194/amt-13-2949-2020
https://doi.org/10.5194/amt-13-2949-2020
https://doi.org/10.5194/amt-13-2949-2020
https://doi.org/10.5194/amt-13-2949-2020
https://doi.org/10.5194/amt-13-2949-2020
https://doi.org/10.5194/amt-13-2949-2020
https://doi.org/10.5194/amt-13-2949-2020


Weather forecasting completely by ML
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xb

y

xa Latent state xT+120Latent state

y

Encoder Decoder Encoder

Decoder (used 
for training direct 
to observations)

Decoder

Observations at 
current time

Encoder (including 
implicit weighting and 
spreading like in DA)

Observations at 
future time

Weather forecastAnalysisBackground
Possibly iterated in 
forecast mode

Geophysical fields, 
gridded, at a synoptic time
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Theoretical links between ML and DA



October 29, 2014

The forward and 
inverse problem
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𝑦 = ℎ(𝑥, 𝑤)
Forward model

Geophysical 
state

Model 
parameters

Observations



The inverse problem solved by Bayes theorem
with state AND parameters
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𝑃(𝑥, 𝑤|𝑦) = 𝐾	(𝑦, 𝑃 𝑦|𝑥, 𝑤 , 𝑃(𝑥, 𝑤))
Probabilistic equivalent of 

the forward model h()

Geophysical 
state

Model 
parameters

Bayes 
theorem

Observations

(Posterior) Probability of x and w given y Prior probability of x and w 
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Cost function for variational DA

22

Cost function

Assume Gaussian errors (error standard deviation 𝜎) 
and for clarity here simplify to scalar variables
and ignore any covariance between observation, model or state error

Observation termDA Prior knowledge of 
state

Prior knowledge of 
model

Prior (background)
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Cost / loss function equivalence of ML and variational DA

23

Cost function

Assume Gaussian errors (error standard deviation 𝜎) 
and for clarity here simplify to scalar variables
and ignore any covariance between observation, model or state error

Loss function

Observation termDA

ML
Basic loss 
function

Prior knowledge of 
state

Weights 
regularisation

Prior knowledge of 
model

Feature 
error?



Machine learning (e.g. NN)                        Variational data assimilation

24EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Labels y Observations y&

Features x State x

Neural network or other 
learned models

y′ = 𝑊 x Physical forward 
model

y = 𝐻 x

Objective or loss  
function

y − y′ " Cost function 𝐽 = 𝐽' + y& − 𝐻 x (R)! y& − 𝐻 x

Regularisation w Background term 𝐽' = x − x* (B)! x − x*

Stochastic gradient descent Conjugate gradient method (e.g.)

Back propagation Adjoint model 𝜕𝐽
𝜕x

= H(
𝜕𝐽
𝜕y

Train model and then apply it Optimise state in an update-forecast cycle

Boukabara et al. (2021) https://doi.org/10.1175/BAMS-D-20-0031.1

https://doi.org/10.1175/BAMS-D-20-0031.1
https://doi.org/10.1175/BAMS-D-20-0031.1
https://doi.org/10.1175/BAMS-D-20-0031.1
https://doi.org/10.1175/BAMS-D-20-0031.1
https://doi.org/10.1175/BAMS-D-20-0031.1
https://doi.org/10.1175/BAMS-D-20-0031.1
https://doi.org/10.1175/BAMS-D-20-0031.1
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Bayesian equivalence of ML and DA

25

https://doi.org/10.1162/neco_a_01094

https://arxiv.org/abs/2001.06270

https://doi.org/10.1175/1520-0477(1998)079%3C1855:ANNMTP%3E2.0.CO;2

https://doi.org/10.1098/rsta.2020.0089Geer (2021)
Bocquet et al. (2020)

Abarbanel et al. (2018)
Hsieh and Tang (1998)

Goodfellow et al. (2016) https://www.deeplearningbook.org

As a Bayesian network

𝑦 = ℎ(𝑥, 𝑤)

https://doi.org/10.1098/rsta.2020.0089
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Bayesian networks: representing the factorisation of joint probability distributions
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1. Factorise in two different ways using the chain rule of probability

2. Equate the two right hand sides and rewrite

3. Rewrite by putting back the joint distributions of x,w: Bayes’ rule 



Mini-batch stochastic gradient descent
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New weight 
setting

Old weight 
setting

Learning 
rate

Gradient of loss 
function with 
respect to the 
weight for the 
current estimate 
of state x

For a randomly selected batch of paired inputs and 
outputs update all weights (typical batch size: 32)



SGD versus standard gradient descent in DA

• Stochastic gradient descent:
o Each minimisation is done on one randomly selected mini-batch of data, requiring:

§ One call to the forward model to compute the linearisation state for the gradients

§ One call the the adjoint (backpropagation model) 

§ All weights are updated

o One epoch = one pass through the entire dataset

• Gradient descent in incremental 4D-Var (e.g. Gauss-Newton type methods):
o Each outer loop needs one call of the nonlinear model to update linearisation state

o Each minimisation needs 30 – 50 "inner loop" iterations, each needing

§ One call the the TL model

§ One call to the adjoint model

28EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

4 outer loops * 40 inner loops -> 
approx 160 model runs (forward/adjoint)

100 epochs * 15,000 mini batches -> 
1,500,000  model runs (forward/adjoint)



Why has machine learning been so successful?
• Many packages can do all this with just a few Python commands

o Keras, Pytorch, Tensorflow etc.

• Huge amounts of learning material available – it's easy to get started
o Open source ML models to extend, copy, give inspiration 

• Availability of GPUs to perform extremely fast matrix/tensor multiplications
o Faster, simpler nonlinear activation functions (e.g. relu)

• Vast pools of data to train on
o No data-driven forecasting without ERA5 reanalyses to train on

• Modern implementations of stochastic gradient descent (e.g. Adam) are 
incredibly good

• We are surrounded by ever more successful examples of what a "universal 
approximator" can be applied to...

o How much can ML achieve?
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Hybrid data assimilation and 
machine learning
Sea ice observation operator example



How to improve this, given this?
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NEMO/SI3 background, 00Z 10th Dec 2022 AMSR2 10 GHz observation, 00Z 10th Dec 2022 

Sea ice 
concentration

Brightness 
temperature



Sea ice properties
concentration, temperature, 
grain size, air or brine pockets, 
roughness, layers, snow cover 
properties etc.

Observations

Atmosphere

R
ad

ia
tio

n 
tra

ns
fe

rObservation 
operator



Inversion (data 
assimilation) to 
retrieve sea ice 
properties

Observation 
operator

Observations

Atmosphere

R
ad

ia
tio

n 
tra

ns
fe

r



Sea ice properties

Observations

Atmosphere

R
ad

ia
tio

n 
tra

ns
fe

r

Machine learning 
to find the 
observation 
operator



Observations

Atmosphere

R
ad

ia
tio

n 
tra

ns
fe

rSomething 
from nothing?



Physical (Bayesian) network representation of sea ice and 
snow radiative transfer for variational data assimilation
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Fixed parameter

Dependent parameter

Trainable parameter

AMSR2 observations

Mixed surface 
emissivity

Known atmosphere 
radiative transfer

Map of sea ice 
fraction to be 

estimated

Known 
atmosphere

Geolocation

Sea ice concentration at 
observation location            𝐶ice eice

Sea ice surface emissivity 
(pretend it is well known)

Known water surface emissivity



Physical (Bayesian) network representation of sea ice and 
snow radiative transfer for  variational data assimilation
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Fixed parameter

Dependent parameter

Trainable parameter

AMSR2 observations

Mixed surface 
emissivity

Known atmosphere 
radiative transfer

Map of sea ice 
fraction to be 

estimated

Known water surface emissivity

Geolocation

h() Observation operator: map to 
observation location in time and 
space

eice
Sea ice emissivity is not 
actually well known



The whole trainable empirical-physical network
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Fixed parameter

Dependent parameter

Trainable parameter

AMSR2 observations
Known atmosphere 
radiative transfer

Map of sea ice 
fraction to be 

estimated

Maps of empirical 
parameters 

representing 
unknown sea ice 

state including 
microstructure h() Observation operator: map to 

observation location in time and 
space

w – trainable weights of NN 
model for sea ice

Known water surface emissivity

Geolocation

Latent space

Mixed surface 
emissivity

Empirical model
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Built in Python and Tensorflow
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https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py

A standard dense neural network layer with 
linear activations

Custom loss functions to regularise / constrain the solution

https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py
https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py
https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py
https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py
https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py
https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py
https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py
https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py
https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py
https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py
https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py
https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py
https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py
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Forecast impact on temperature from adding observations obs over sea ice 
regions to 4D-Var
(blue = reduced error; +++ = statistical significance)
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Improved temperature 
forecasts out to 72 hours in 
the Southern Ocean
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Additional forecast impact of then assimilating pseudo-observations of sea 
ice concentration in the NEMO sea ice model

41
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Hybrid physical-empirical networks - sea ice example
• Sea ice concentration and empirical state estimation is included in cycle 
49r1 of the IFS

– Model for sea ice emissivity is the simple neural network trained within the 
hybrid-empirical physical network (and held fixed for now)

– Operational implementation autumn 2024 – one of the first machine-learned 
components of the operational IFS

• Maintainability? Retraining?

• Sea ice concentration retrievals from this system will be assimilated in the 
ocean data assimilation component from cycle 50r1 (autumn 2025)

• Further reading: 
– https://doi.org/10.1002/qj.4797

– https://doi.org/10.1029/2023MS004080
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https://doi.org/10.1002/qj.4797
https://doi.org/10.1002/qj.4797
https://doi.org/10.1029/2023MS004080
https://doi.org/10.1029/2023MS004080


October 29, 2014

How does machine learning affect DA in the future?
• Will end-to-end data-driven forecasting provide a complete replacement for DA 
and physical forecast models?

o It can only forecast what is observed (e.g. radiances, not sea ice concentration)

o It discards the idea of prior knowledge expressed in physical equations

• Does traditional physically-based DA continue unaffected?
o Physical DA systems remain to provide training data / reference (e.g. ERA5)

§ Use this to train faster ML-based DA and forecast model replacements?

• Or hybrid data assimilation – machine learning?
o ML for error correction of the physical model

o ML for acceleration of slower tasks within a physical DA framework (e.g. ensemble 
members, background error covariances, observation operators, TL/AD ...)

o Mixing physical and empirical components at a more granular scale (e.g. sea ice 
example)

• Even if ML takes over, it is likely to take on increasingly DA-like concepts
– E.g. Physical constraints; observation errors


