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Land Surface Processes

Energy cycle Water cycle Carbon cycle
Precipitation
Diffuse solar M
priaion Interception ‘“\# '/ | Evaporation Photosynthesis Autotrophic
2c Momentum flux respiration
g = wind speed
53 0 i
Direct = ko a
solar i s
radiation Transpiration
o § 5
§ 5 Transpiration
Reflected 85 5
solar o® s 2
radiation Absorbed o . < Foliage &
solar 2P 8
radiaton g S A
= [/ W
) Throughfall ‘ Litterfall
. S/ stemflow
L . b Sublimation Evaporation Heterotrophic
Melt T 7 Infiltration Surface runoff resp"atlon

 Snow

l Drainage Mineralization

Figure: Different components of land surface processes. Bonan (2008)

Land surface processes describe the exchange of energy, water, and carbon between the land and the atmosphere.
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Evolution of Land Surface Models (LSM)

1970s SEESEA Simple szmd hydrology and energy balance Foundational Era
Manabe’s bucket model -

‘"8 \lodels included a veg. component (Veg—Atm interactions) = f “Big-|eaf”
1980s "2 ¥ BATS (Dickinson 1986) and ISBA (Meteo-France scheme, 1989) a0 I5-1€d

LSMs began to incorporate terrestrial carbon cycle processes e e e el =
NCAR LSM (Bonan 1996); UK’s MOSES 2 (late 1990s) Fnysiological Era

LSM now simulate human—environment interactions £ FADA”
Noah-MP; CLM; JULES; ORCHIDEE A O

A significant step toward operational “digital twin” models. :
i - - r-resolution Er
CLMS5; JULES-ES; Physics-Informed Machine Learning (PIML) er-resolutio d
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Land Surface Data Assimilation (LSDA)

Variable Satellite Obs. Spatial Res. Temporal Res.
SMAP 9 km 1-3 days
SMOS 35-50 km 1-3 days
Soil Moisture 25 km (resampled to .
ASCAT 12.5 km) Daily
ESA CCI 0.25° (~25 km) Daily
MODIS Snow Cover 500 m Daily
Model Snow Water AMSR2 25 km Daily
Structure Equivalent Sentinel-1 1 km 6-12 days
GlobSnow 25 km Daily
MODIS LST 1km Daily
';a"d Surface Sentinel-3 SLSTR 1 km Daily
t
emperature VIIRS 750 m Daily
GOES-R ABI 2 km 5-15 minutes
MODIS LAI 500 m 8 days
Input .
Parameters Forcings Copernicus Global 300 m 10 davs
g Leaf ArL;a; Index Land Service LAI 4
(LAD PROBA-V 1km 10 days
Sentinel-2 10-20m 5 days
MODIS GPP 500 m 8 days
Gross Primary Copernlcu§ Global 300 m 10 days
Production (GPP) Land Service GPP
Sentinel-2 10-20m 5days
VIIRS 500 m Daily
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Optimizing Soil Moisture Assimilation
Strategies for Improved Hydrological
Predictions in JULES Model
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Part 1: JULES Land Surface Model

Joint UK Land Environment Simulator (JULES)

By Met Office Surface Exchange Scheme (MOSES)

Soil water content for each layer

! ! ! =0
F=Wk—1_Wk_Ek_5z

V, represent soil water content at layer k

W,é represent diffusive fluxes determined through Darcy’s
law

E, is SM extraction which follows exponential distribution

—Ri—+s-subsurfacetateratranetft-  (i.e. 1D Jules)
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Figure: Soil layer configuration
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Part 1: JULES - Soil Hydraulics Module

Flow in the unsaturated zone: Brooks and Corey

_ -/
¢ = S=Swo) (V¥
¢ \1-S,,/ \w,

_1/b
Y
S=3S8wo + (1- Swo) <1p_>

S

-1 2b+3
w b K vV
V=V, + Vsqt — — and — =|—
wo ( sat wo) (lIJ > Ks ( )

S VWO

Soil characteristic curve
Swo < 1—Swo

»

Vvo: Irreducible water content V,,,: Saturated water content
w: Capillary pressure w.: Bubbling pressure (AEP)
S.: Effective saturation b: Fitting coefficient
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K: Hydraulic conductivity
K, :Hydraulic conductivity at saturation

V: Soil water content

National Centre for
H Yd ro -J U L E S @ Earth Observation

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN



Part 1: PedoTransfer Function (PTF)

Easily Measurable >
Variables

: Difficult-to-M
Pedotransfer function > Heutt-to-ivieasure

Variables

b=K;+K, fClay — K3 fsana
Vsat = K4 — K5 fClay — K¢ fsana

y, = 0.01 = 1()(K7_ Kg fclay— Ko fSand)

K = 10(-K10—K11 fciay* K12 fsana) Cosby PTF

1
praslaiscqrrd [ Jersomdigrd -
@ s s Y b
Verit = Vsat m
Harmonized World '
Soil Database
version 2.0 1

4 b
Vwitt = Vsat (T;;)

hoap = (1 = Vi) (2.376  10°f1qy + 2133 % 10 foye)

Percent Sand

hcon — 0_025Vsat(1_16fClay(1 —Vsat) * 1_57f5and(1 —Vsat) * 1_57f$ilt(1 _Vsat))

Cosby, B. J. et, al., (1984). Water Resources Research, https://doi.org/10. 1029/WR020|006pOO682 1984
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https://doi.org/10.1029/WR020i006p00682,1984

Part 2: Ensemble Variational (En-Var) Hybrid Assimilation

J(x0) = %(xo - xb)TB_l(xo — Xp) + % Itvzo(ht(mo—w(xo)) - }’t)TRt_l(ht(mo—w(xo)) - }’t)

\ ] |\ J
! |

Prior Observations
Gradient )
AD Var: Te— VJ(XO) = B_l(x() — xb) + E é\lzo M{,OH’};Rt_l(ht(mo_)t(xO)) — yt)
Cost
function To avoid computing the AM and reduce the computational time of estimating B™1,

a preconditioned matrix is used using control variable transform

B=X}, X" and Xo = Xp + Xpw

J(w) = %WTW 2o (he(me (X)) + H M Xpw — J’t)TRt_l(ht(mt(ﬁ)) + HM X;w — ;)

Ensemble
model run

Viiw) =w+ Zg:vzo(HtMtXIIa)TRt_l(ht(mt(ﬁ)) + HtMtXl’)W - J’t)

Perturbation matrix in Observation space

1 <ht (mt(XI})) - ht(mt(ﬁ)): hy (mt(Xg)) - ht(mt(x_b)) ) ;>

HM X, =Y, =

m—1 . ht(mt(X;,n)) — ht(mt(x_b))

¥y University of

o e National Centre for
H ©) | ' pata Assimilation 9 H d ro- U L E S Earth Observation
ea I ng V ResearCh Centre y MNATURAL ENVIRONMENT RESEARCH COUNCIL



Part 3: COSMOS-UK Observations

Meteorological

data JULES Model Forcing
Soil Moisture Assimilation and validation

Cosmic Ray = |
Neutron Sensor |

Temporal resolution: Daily

Spatial resolution: Field scale across UK
Duration: Three years

2016 (Warm-up period)

2017 (DA run) and 2018 (Forecast period)

Figure: Typical COSMOS-UK observation site (https://cosmos.ceh.ac.uk/)

remte
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https://cosmos.ceh.ac.uk/

Site Locations

@ Typical mineral soil N
% Mineral soil with high organic content
A Calcareous mineral soil (Y A

W 16 Sites

7/ HARTWg @EASTB
' #S50URH
ey @CRICH
b " 4MOORH

| GISBN,  @HOLLN

* | W @BICKL

s WADDN ®CARDT
¥ CHIMNA © @ROTHD

' ' ‘SHEEP gCHOBH
P APORTN
ve - ALULLN

Site name and abbreviation Land cover Soil description

Cardington (CARDT) Grassland Typical mineral soil

Bickley Hall (BICKL) Grassland Typical mineral soil

Crichton (CRICH) Grassland Typical mineral soil

Waddesdon (WADDN) Grassland Typical mineral soil

Hollin Hill (HOLLN) Grassland Typical mineral soil

Easter Bush (EASTB) Grassland Typical mineral soil

Rothamstead (ROTHD) Grassland Typical mineral soil

Chimney Meadows (CHIMN)  Grassland Calcereous mineral soil

Sheepdrove (SHEEP) Grassland Mineral soil, fairly hiLorganic carbon content
Porton Down (PORTN) Grassland Highly calcareous mineral soil

Hartwood Home (HARTW) Grassland/woodland ~ Typical mineral soil

Gisburn Forest (GISBN) Coniferous forest Mineral soil, high organic carbon content
Chobham Common (CHOBH)  Heath Highly variable soil

Lullington Heath (LULLN) Grassland/heath Highly calcareous mineral soil

Moorhouse (MOORH) Grassland/heath Mineral soil with very high organic content
Sourhope (SOURH) Grassland Mineral soil with very high organic content




Assimilation Scenarios

Three Scenarios

1) State estimation of initial 2) Parameter estimation 3) Dual state-parameter
soil moisture condition of PTF constants estimation
SC1 SC2 SC3
(4 Layers/site) ( K \ —

SM, IR Kl

SM, . ) — K

SM, Site 1 I[gl K1.2 i |

SM, y , 2 - SM X3 = Augmente

l 1 _ ’ 1 b
: = K X3 = Cosby’s
- )_(l? Augmen’Fe'd < | b y Sl state-parameter
: Initial SM condition . PTF values SMg| L

SM, . K,y SM, vector

SM, .

SM, Site 16 Kip | _ .

\ SM4; — SMl
SM,
SM,
Ensemble size is 50 SM,|
So,i=1,2,..50
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Methodology

Dual state-parameter estimation

Y
K,
K, (50 Ensembles) S
K _/ Cosby’s Ensemble
K ||/ PriorValues [ Generation ]
= sty
K, 4 (50%12) =
R T ("PTF Run to Obtain o
7/ Dataset /L> Soil Hydrgullc i
¥ Properties e
| year 2016 e
JOLES JULES Run dgring Augmented Prior
/ [ i Spin-up Perlﬁod Vector (X)) from
5 Across 16 Site PTF and JULES
s COSMOS-UK (4 Layers) (50*12) + 16*(50*4) = (50*76)
f COSMOS

/

2.0m

Observations
for Validation

JULES Soil layer configuration

R 5 16 sites across UK
16 Sifes

COSMOS SM
Observations

/ /

En-Var
Hybrid DA
Year 2017
JULES Run during

Assimilation
Period

v Years 2017&18

JULES Run during
Assimilation and
Forecast Periods using
Posteriorvalues (X,)
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KGE Metrics

KGE r
10
0.81 0.8
0.61 0.6
0.4/ 0.4
0.2 0.2
0.0° £ @e—s%oeqe/\q\e\x\\\xq~o'o' L PRSI TLLNdS RS R
O F T TFTITLIFLS & & & & S F T TSI IFLL & KL L&
(_/??‘ & & \‘\Y*o Q\D\/ nyp Qé (J‘8 (.Se‘ QOQ_ ‘2\@* C‘>\G) CZ‘O \9\’ Q\OO (,)0\3 d?g- & C‘}b Q\Y“o \?\D\, Q,‘fp Q‘D/\ Cz‘\ 052‘ QOQ- ‘ey? 0\6_, 02\0 \9\/ é\OO G)Oo
Alpha Beta
1.254 = Prior
1.5 N Post: SC1
100y~ ¥ § NN rLEr ooy o Post: SC 2
Il Post: SC3
0.751 1.0+ e R
0.501
0.5
0.251
0.00-

Figure: KGE metrics and its components showing the performance of JULES model across all the 16 sites in UK for
three assimilation scenarios: state-only (SC 1), parameter-only (SC 2), and joint state-parameter (SC 3).

1. r (Correlation): JULES is already showing very good trend leaving less scope to improve
them further after DA

2. a (Ratio of variability :— @ ): This component influenced the KGE values maximum
obs

3. B (Ratio of Bias :- W): Increased V_sat and decreased K_s values after assimilation
obs

retained more water in the soil column reducing the bias difference.
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Soil Moisture (m3 m=3)
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UK_CARDT
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1 XN S

Figure: Modelled (ensemble mean) and observed soil moisture at
GISBN and CARDT sites during assimilation (2017) and forecast
periods (2018) for state-parameter assimilation scenario (SC 3)
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State-Parameter (SC 3)

1O cOMparison

Parameter-only (SC 2)
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Limitations

Soil Moisture (m3 m~—3)

0.5

UK HOLLN

3)

Soil Moisture

Figure: Modelled (ensemble mean) and COSMOS soil moisture time series at the HOLLN and
SHEEP sites during the assimilation (2017) and forecast (2018) periods during state-only
assimilation (SC 1)

ol
10

A° o> ob ol
N A® qp\% 10\,%

r'LQ
Date
Figure: Modelled (ensemble mean) and COSMOS soil moisture time series at the HOLLN and
SHEEP sites during the assimilation (2017) and forecast (2018) periods during dynamic state
assimilation approach
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Future directions

Ultimate Goal: Produce a KM scale soil @ e sy UK Water Resources Portal  Home Aot Toggle nioucon

moisture product for UK using JULES

land surface model

e Potentially to be used by UKCEH and
Met-office for their hydrological
outlook portal

== Leaflet | © M:

Fig: UKCEH’s Hydrological Outlook Map

Step 1: Perform state-parameter assimilation on JULES for 16 COSMOS-UK sites across UK (https://doi.org/10.5194/egusphere-2024-3980)
Step 2: Identify optimal assimilation window length and perform cyclic update of JULES initial soil moisture condition (Ongoing)

Step 3: Multivariate assimilation of soil moisture and streamflow observations within state-parameter framework for gridded
JULES model (Future)

¥y University of
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https://doi.org/10.5194/egusphere-2024-3980
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Part 1: JULES Parameter Estimation

Geosci. Model Dev., 13, 55-69, 2020
https:/doi.org/10.5194/gmd-13-55-2020

© Authoris) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
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Abstract. The Land Variational Ensemble Data Assimilation
Framework (LAVENDAR) implements the method of four-
dimensional ensemble variational (4D-En-Var) data assimi-
lation (DA) for land surface models. Four-dimensional en-
semble variational data assimilation negates the often costly
calculation of a model adjoint required by traditional varia-
tional techniques (such as 4D-Var) for optimizing parameters
or state variables over a time window of observations. In this
paper we present the first application of LAVENDAR, im-
plementing the framework with the Joint UK Land Environ-
ment Simulator (JULES) land surface model. We show that
the system can recover seven parameters controlling crop be-
haviour in a set of twin experiments. We run the same exper-
iments at the Mead continuous maize FLUXNET site in Ne-
braska, USA, to show the technique working with real data.
We find that the system accurately captures observations of
leaf area index, canopy height and gross primary productiv-
ity after assimilation and improves posterior estimates of the
amount of harvestable material from the maize crop by 74 %.
LAVENDAR requires no modification to the model that it is
being used with and is hence able to keep up to date with
model releases more easily than other DA methods.

7] University of

pacts on human life. Most land surface models will converge
to a steady state; their state vector tends toward an equilib-
rium defined by forcing variables (i.e., the meteorology ex-
perienced by the model) and the model parameters. This is
quite unlike fluid dynamics models used for the atmosphere
and oceans, which exhibit chaotic behaviour: a small change
in their initial state can lead to large deviations in the state
vector evolution with time. Consequently, for some land sur-
face applications parameter estimation can have greater util-
ity than state estimation (Luo et al., 2015). This article deals
primarily with the problem of parameter estimation in land
surface models, although the technique we introduce could
easily be used for state estimation problems too.

Data assimilation (DA) combines models and data such
that resulting estimates are an optimal combination of both,
taking into account all available information about respec-
tive uncertainties. DA techniques are typically derived from
a Bayesian standpoint and have been largely developed to
service the needs of atmospheric and ocean modelling, espe-
cially where there is a need to provide near-real-time fore-
casts. Typically the focus of such activities is on estimating
the optimal model state as the fundamental laws underlying
fluid dynamics are well understood and many of the model
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Abstract. Pedotransfer functions are used to relate gridded
databases of soil texture information to the soil hydraulic
and thermal parameters of land surface models. The pa-
rameters within these pedotransfer functions are uncertain
and calibrated through analyses of point soil samples. How
these calibrations relate to the soil parameters at the spatial
scale of modem land surface models is unclear because grid-
ded databases of soil texture represent an area average. We
present a novel approach for calibrating such pedotransfer 1 Introduction
functions to improve land surface model soil moisture pre-
diction by using observations from the Soil Moisture Active
Passive (SMAP) satellite mission within a data assimilation
framework. Unlike traditional calibration procedures, data
assimilation always takes into account the relative uncertain-
ties given to both model and observed estimates to find a
maximum likelihood estimate. After performing the calibra-
tion procedure, we find improved estimates of soil moisture
and heat flux for the Joint UK Land Environment Simulator
(JULES) land surface model (run at a 1 km resolution) when
compared to estimates from a cosmic-ray soil moisture mon-
itoring network (COSMOS-UK) and three flux tower sites.
The spatial resolution of the COSMOS probes is much more
representative of the 1km model grid than traditional point-
based soil moisture sensors. For 11 cosmic-ray neutron soil
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Abstract. Soil moisture predictions from land surface mod-
els are important in hydrological, ecological, and meteoro-
logical applications. In recent years, the availability of wide-
area soil moisture measurements has increased, but few stud-
ies have combined model-based soil moisture predictions
with in situ observations beyond the point scale. Here we
show that we can markedly improve soil moisture estimates
from the Joint UK Land Environment Simulator (JULES)
land surface model using field-scale observations and data
assimilation techniques. Rather than directly updating soil
moisture estimates towards observed values, we optimize
constants in the underlying pedotransfer functions, which re-
late soil texture to JULES soil physics parameters. In this
way, we generate a single set of newly calibrated pedotrans-
fer functions based on observations from a number of UK
sites with different soil textures. We demonstrate that cali-
brating a pedotransfer function in this way improves the soil
moisture predictions of a land surface model at 16 UK sites,
leading to the potential for better flood, drought, and climate
projections.

L L
i
-

(PTEs) to relate readily available or easy-to-measure soil
characteristics such as soil texture to the soil hydraulics pa-
rameters required by the model (e.g. Van Looy et al., 2017)

There are a number of different types of pedotransfer func-
tion, as noted in Van Looy et al. (2017) and Hodnett and
Tomasella (2002), with different inputs and outputs depend-
ing partly on the representation of soil physics processes
of the chosen land surface model. In “class™ approaches,
soil types are clustered into groups, and hydraulic model
parameters are then obtained from a lookup table (Wosten
et al., 1999); this results in discrete soil hydraulics parame-
ter sets. Alternatively, continuous pedotransfer functions take
soil characteristic information from each sample of inter-
est and apply the function to produce continuous soil hy-
draulics parameter sets (e.g. Cosby et al., 1984; Hodnett and
Tomasella, 2002: Schaap et al., 2001).

To date, pedotransfer functions have been derived by fit-
ting to results from field or laboratory experiments on point-
or small-scale soil samples (centimetre to metre), despite
the fact that land surface models are generally applied at
larger (field to kilometre) scales. The recent development
of novel in situ_technigues for measurine soil moisture over
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Effect of DA on Non-typical Soil Sites
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Site name and abbreviation Land cover Soil description C H | M N O . 5 1 O . 7 8 52 . 94 1 4

Cardington (CARDT) Grassland Typical mineral soil
Bickley Hall (BICKL) Grassland Typical mineral soil
Crichton (CRICH) Grassland Typical mineral soil S H E E P O . 46 0 . 8 1 76 . 0 8 1 3
Waddesdon (WADDN) Grassland Typical mineral soil
Hollin Hill (HOLLN) Grassland Typical mineral soil
Easter Bush (EASTB) Grassland Typical mineral soil P O RT N O . 48 O . 64 3 3 . 3 3 1 5
Rothamstead (ROTHD) Grassland Typical mineral soil
Chimney Meadows (CHIMN Grassland Calcereous mineral soil
Sheepdrove (SHEEP) Grassland Mineral soil, fairly high organic carbon content I H ARTW O 1 7 O 63 270 5 8
Porton Down (PORTN) Grassland Highly calcareous mineral soil
ﬁnwood Home (HARTW) Grassland/woodland  Typical mineral soil
Chobham Common (CHOBH) Heath Highly variable soil
Lullington Heath (LULLN) Grassland/heath Highly calcareous mineral soil

Moorhouse (MOORH) Grassland/heath Mineral soil with very high organic content
Sourhope (SOURH) Grassland Mineral soil with very high organic content

LULLN 90.90

R University of _____

<> Reading SOURH 0.2 0.6 153.84




Correlation and Error Co-variance plots
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