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Land Surface Processes
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Energy cycle Water cycle Carbon cycle 

Figure: Different components of land surface processes. Bonan (2008) 

Land surface processes describe the exchange of energy, water, and carbon between the land and the atmosphere.



Evolution of Land Surface Models (LSM)

3

Simple land hydrology and energy balance
                                 Manabe’s bucket model

Models included a veg. component (Veg–Atm interactions)
                                 BATS (Dickinson 1986) and ISBA (Meteo-France scheme, 1989)

LSMs began to incorporate terrestrial carbon cycle processes 
                                 NCAR LSM (Bonan 1996); UK’s MOSES 2 (late 1990s) 

LSM now simulate human–environment interactions
                                 Noah-MP; CLM; JULES; ORCHIDEE

  A significant step toward operational “digital twin” models. 
   CLM5; JULES-ES; Physics-Informed Machine Learning (PIML)
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Land Surface Data Assimilation (LSDA)
Variable Satellite Obs. Spatial Res. Temporal Res.

Soil Moisture

SMAP 9 km 1–3 days

SMOS 35–50 km 1–3 days

ASCAT 25 km (resampled to 
12.5 km) Daily

ESA CCI 0.25° (~25 km) Daily

Snow Water 
Equivalent

MODIS Snow Cover 500 m Daily

AMSR2 25 km Daily

Sentinel-1 1 km 6–12 days

GlobSnow 25 km Daily

Land Surface 
Temperature

MODIS LST 1 km Daily

Sentinel-3 SLSTR 1 km Daily

VIIRS 750 m Daily

GOES-R ABI 2 km 5–15 minutes

Leaf Area Index 
(LAI)

MODIS LAI 500 m 8 days

Copernicus Global 
Land Service LAI 300 m 10 days

PROBA-V 1 km 10 days

Sentinel-2 10–20 m 5 days

Gross Primary 
Production (GPP)

MODIS GPP 500 m 8 days

Copernicus Global 
Land Service GPP 300 m 10 days

Sentinel-2 10–20 m 5 days

VIIRS 500 m Daily

Uses

Model 
Structure

Parameters

Uncertainty 
in LSM

Input 
Forcings

Data Assimilation

M O



Optimizing Soil Moisture Assimilation 
Strategies for Improved Hydrological 

Predictions in JULES Model

09/06/2025



6

Part 1: JULES Land Surface Model 

0.1m

0.65m

0.25m

2.0m

Figure: Soil layer configuration

𝑽𝑘   represent soil water content at layer 𝑘

𝑊𝑘
′ represent diffusive fluxes determined through Darcy’s 

law

𝐸𝑘
′  is SM extraction which follows exponential distribution

𝑅𝑘
.  is subsurface lateral runoff

Soil water content for each layer

= 0𝑑𝑽𝑘

𝑑𝑡
= 𝑊𝑘−1

′ − 𝑊𝑘
′ − 𝐸𝑘

′ − 𝑅𝑘

Joint UK Land Environment Simulator (JULES)
By Met Office Surface Exchange Scheme (MOSES)

(i.e. 1D Jules)
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Part 1: JULES - Soil Hydraulics Module
Flow in the unsaturated zone: Brooks and Corey

𝑆, ᴪ

Soil characteristic curve
𝑆𝑤𝑜

ᴪ𝑠
𝑽 = 𝑉𝑤𝑜 + 𝑉𝑠𝑎𝑡 − 𝑉𝑤𝑜

ᴪ

ᴪ𝑠

− ൗ1
𝑏

𝑆 = 𝑆𝑤𝑜 + 1 − 𝑆𝑤𝑜

ᴪ

ᴪ𝑠

− ൗ1
𝑏

𝑆𝑒 =
𝑆 − 𝑆𝑤𝑜

1 − 𝑆𝑤𝑜
=

ᴪ

ᴪ𝑠

− ൗ1
𝑏

and
𝑲

𝐾𝑠
=

𝑉

𝑉𝑤𝑜

2𝑏+3

𝑉𝑤𝑜: Irreducible water content 𝑉𝑠𝑎𝑡: Saturated water content
ᴪ: Capillary pressure                    ᴪ𝑠: Bubbling pressure (AEP)
𝑆𝑒: Effective saturation                 𝑏: Fitting coefficient

𝑲: Hydraulic conductivity
𝐾𝑠:Hydraulic conductivity at saturation
𝑽: Soil water content
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Part 1: PedoTransfer Function (PTF)

𝑏 = 𝑲𝟏 + 𝑲𝟐 𝑓𝐶𝑙𝑎𝑦 − 𝑲𝟑 𝑓𝑆𝑎𝑛𝑑

𝑉𝑠𝑎𝑡 = 𝑲𝟒 − 𝑲𝟓 𝑓𝐶𝑙𝑎𝑦 − 𝑲𝟔 𝑓𝑆𝑎𝑛𝑑

ᴪ𝑠 =  0.01 ∗ 10 𝑲𝟕− 𝑲𝟖 𝑓𝐶𝑙𝑎𝑦− 𝑲𝟗 𝑓𝑆𝑎𝑛𝑑

𝐾𝑠 = 10 −𝑲𝟏𝟎−𝑲𝟏𝟏 𝑓𝐶𝑙𝑎𝑦+ 𝑲𝟏𝟐 𝑓𝑆𝑎𝑛𝑑

𝑉𝑐𝑟𝑖𝑡 = 𝑉𝑠𝑎𝑡

ᴪ𝑠

3.364

1
𝑏

𝑉𝑤𝑖𝑙𝑡 = 𝑉𝑠𝑎𝑡

ᴪ𝑠

152.9

1
𝑏

ℎ𝑐𝑎𝑝 = 1 − 𝑉𝑠𝑎𝑡 2.376 ∗ 106𝑓𝐶𝑙𝑎𝑦 + 2.133 ∗ 106𝑓𝑆𝑖𝑙𝑡

ℎ𝑐𝑜𝑛 = 0.025𝑉𝑠𝑎𝑡 1.16𝑓𝐶𝑙𝑎𝑦 1 −𝑉𝑠𝑎𝑡 ∗ 1.57𝑓𝑆𝑎𝑛𝑑 1 −𝑉𝑠𝑎𝑡 ∗ 1.57𝑓𝑆𝑖𝑙𝑡 1 −𝑉𝑠𝑎𝑡

Easily Measurable 
Variables

Pedotransfer function Difficult-to-Measure 
Variables

Cosby PTF 

Cosby, B. J. et, al., (1984). Water Resources Research, https://doi.org/10.1029/WR020i006p00682,1984

https://doi.org/10.1029/WR020i006p00682,1984
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Part 2: Ensemble Variational (En-Var) Hybrid Assimilation

To avoid computing the AM and reduce the computational time of estimating 𝐵−1, 
a preconditioned matrix is used using control variable transform

𝐽 𝑥0 =
1

2
𝑥0 − 𝑥𝑏

𝑇𝑩−1 𝑥0 − 𝑥𝑏  +  1
2

σ𝑡=0
𝑁 ℎ𝑡 𝑚0→𝑡 𝑥0 − 𝑦𝑡

𝑇
𝑹𝑡

−1 ℎ𝑡 𝑚0→𝑡 𝑥0 − 𝑦𝑡

Prior Observations

∇𝐽 𝑥0 = 𝑩−1 𝑥0 − 𝑥𝑏  +   1
2

σ𝑡=0
𝑁 𝑴𝑡,0

𝑇 𝑯𝑡
𝑇𝑹𝑡

−1 ℎ𝑡 𝑚0→𝑡 𝑥0 − 𝑦𝑡  
Gradient

𝐵 ≈ 𝑋𝑏
′  𝑋𝑏

′𝑇   and 𝑥0 = 𝑥𝑏 + 𝑋𝑏
′ 𝑤

𝐽 𝒘 =
1

2
 𝒘𝑇𝒘 +σ𝑡=0

𝑁 ℎ𝑡 𝑚𝑡 𝑥𝑏 + 𝑯𝑡𝑴𝑡𝑋𝑏
′ 𝒘 − 𝑦𝑡

𝑇
𝑹𝑡

−1 ℎ𝑡 𝑚𝑡 𝑥𝑏 + 𝑯𝑡𝑴𝑡𝑋𝑏
′ 𝒘 − 𝑦𝑡

∇𝐽 𝒘 = 𝒘 + σ𝑡=0
𝑁 𝑯𝑡𝑴𝑡𝑋𝑏

′ 𝑇𝑹𝑡
−1 ℎ𝑡 𝑚𝑡 𝑥𝑏 + 𝑯𝑡𝑴𝑡𝑋𝑏

′ 𝒘 − 𝑦𝑡

𝑯𝑡𝑴𝑡𝑋𝑏
′ ≈ 𝑌𝑏

′ = 1

𝑚−1

ℎ𝑡 𝑚𝑡 𝑋𝑏
1 − ℎ𝑡 𝑚𝑡 𝑥𝑏 ,  ℎ𝑡 𝑚𝑡 𝑋𝑏

2 − ℎ𝑡 𝑚𝑡 𝑥𝑏  , … ,

… , ℎ𝑡 𝑚𝑡 𝑋𝑏
𝑚 − ℎ𝑡 𝑚𝑡 𝑥𝑏

Perturbation matrix in Observation space

4D Var: 
Cost 

function

Ensemble 
model run

En-Var 
DA
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Part 3: COSMOS-UK Observations
Variables Purpose

Meteorological 
data JULES Model Forcing 

Soil Moisture Assimilation and validation

Temporal resolution: Daily
Spatial resolution: Field scale across UK
Duration: Three years
2016 (Warm-up period)  
2017 (DA run) and 2018 (Forecast period)

Cosmic Ray 
Neutron Sensor

Figure: Typical COSMOS-UK observation site (https://cosmos.ceh.ac.uk/)

https://cosmos.ceh.ac.uk/


Site Locations

1
1
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Assimilation Scenarios

1) State estimation of initial 
soil moisture condition

𝐾1

𝐾2

𝐾.

𝐾.

𝐾11

𝐾12

𝑋𝑏
𝑖  = Cosby’s 

PTF values

SC 2SC 1
(4 Layers/site)

𝑆𝑀1

𝑆𝑀2

𝑆𝑀3

𝑆𝑀4

.

.
𝑆𝑀1

𝑆𝑀2

𝑆𝑀3

𝑆𝑀4

Site 1

Site 16

𝑋𝑏
𝑖  = Augmented 

Initial SM condition

.

.

.

SC 3

𝐾1

𝐾.

𝐾.

𝐾12

𝑆𝑀1

𝑆𝑀2

𝑆𝑀3

𝑆𝑀4

.

.
𝑆𝑀1

𝑆𝑀2

𝑆𝑀3

𝑆𝑀4

𝑋𝑏
𝑖

 = Augmented 
state-parameter 

vector

Ensemble size is 50 
So, i = 1,2,..50

Three Scenarios

2) Parameter estimation 
of PTF constants

3) Dual state-parameter 
estimation
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Methodology
Dual state-parameter estimation
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PTF parameter: Prior-Posterior Distributions

ᴪ𝒔

𝑲𝒔

Fig: Prior and posterior PTF distribution for SC3
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KGE Metrics

1. r  (Correlation): JULES is already showing very good trend leaving less scope to improve 
them further after DA

2. α (Ratio of variability :−
𝜎𝑚𝑜𝑑𝑒𝑙

𝜎𝑜𝑏𝑠
 ): This component influenced the KGE values maximum

3. β (Ratio of Bias :-
𝜇𝑚𝑜𝑑𝑒𝑙

𝜇𝑜𝑏𝑠
): Increased 𝑉_𝑠𝑎𝑡  and decreased K_s values after assimilation 

retained more water in the soil column reducing the bias difference. 

Figure: KGE metrics and its components showing the performance of JULES model across all the 16 sites in UK for 
three assimilation scenarios: state-only (SC 1), parameter-only (SC 2), and joint state-parameter (SC 3).

Figure: Modelled (ensemble mean) and observed soil moisture at 
GISBN and CARDT sites during assimilation (2017) and forecast 
periods (2018) for state-parameter assimilation scenario (SC 3)
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Scenario comparison

Hydraulic parameter changes are more pronounced in SC2, leading to greater variability in JULES outputs.
Incorporating initial conditions moderated this effect, enabling JULES to align more closely with COSMOS observations.

Parameter-only (SC 2) State-Parameter (SC 3) 
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Limitations

Figure: Modelled (ensemble mean) and COSMOS soil moisture time series at the HOLLN and 
SHEEP sites during the assimilation (2017) and forecast (2018) periods during state-only 

assimilation (SC 1)

UK_HOLLN

UK_SHEEP

Figure: Modelled (ensemble mean) and COSMOS soil moisture time series at the HOLLN and 
SHEEP sites during the assimilation (2017) and forecast (2018) periods during dynamic state 

assimilation approach
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Future directions

Step 1: Perform state-parameter assimilation on JULES for 16 COSMOS-UK sites across UK (https://doi.org/10.5194/egusphere-2024-3980)

Step 2: Identify optimal assimilation window length and perform cyclic update of JULES initial soil moisture condition (Ongoing)
Step 3: Multivariate assimilation of soil moisture and streamflow observations within state-parameter framework for gridded 
JULES model (Future) 

Ultimate Goal: Produce a KM scale soil 
moisture product for UK using JULES 
land surface model
• Potentially to be used by UKCEH and 

Met-office for their hydrological 
outlook portal 

Fig: UKCEH’s Hydrological Outlook Map

https://doi.org/10.5194/egusphere-2024-3980
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Thank you
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Part 1: JULES  Parameter Estimation



Effect of DA on Non-typical Soil Sites 

2
1

Place KGE-Prior KGE- Post. % increase Rank

CARDT 0.35 0.71 102.85 10

BICKL 0.36 0.92 155.55 6

CHRICH 0.35 0.86 145.71 8

WADDN 0.34 0.77 126.47 9

HOLLN 0.29 0.75 158.62 5

EASTB 0.38 0.76 100 11

ROTHD 0.55 0.69 25.45 16

CHIMN 0.51 0.78 52.94 14

SHEEP 0.46 0.81 76.08 13

PORTN 0.48 0.64 33.33 15

HARTW 0.17 0.63 270.58 2

GISBN 0.17 0.77 352.94 1

CHOBH 0.15 0.48 220 4

LULLN 0.44 0.84 90.90 12

MOORH 0.14 0.49 250 3

SOURH 0.26 0.66 153.84 7



Correlation and Error Co-variance plots
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