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Introduction and background



Corona

StrUCture Of the Sun Chromosphere

Photosphere

Convection Zone

 The Sun is an ordinary star of mass 2.0 x
1030 kg and radius 7.0 x 108 m. Radiative Zone

Constructed of plasma.

Constructed into several layers Core
T—1.5><1O7
e Solar interior — core, radiative zone, p=16x10°

convection zone, photosphere.

e Solar atmosphere — chromosphere, corona.




Solar interior

The solar magnetic field is
generated by the motion of

plasma in the convection zone.

The photosphere represents
the visible surface of the Sun.

Almost all the light we receive
comes from the photosphere.

Granular pattern from
underlying convection.
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Solar atmosphere

Temperature increases with
radius.

Physical processes behind
temperature increase in debated.

Corona only visible when the
light from the photosphere is
blocked out, e.g. eclipse or
coronagraph.

Source of the solar wind.




Corona

Processes dominated by the ' O(— Quiet Sun
coronal magnetic field. LT o
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Comprised of open and closed |
magnetic field.
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' ' i Active region
Features include active regions ol | f
and coronal holes. S S >

e Sunspots underly active regions.

Structure varies throughout the
solar cycle.
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The solar cycle

 Approximately 11-year activity cycle.
* Cycle can be monitored through the number of sunspots.

* The magnetic field changes structure throughout the cycle.
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Solar magnetic field

e Solar minimum is approximately dipolar, whereas solar maximum is more
dynamic.

* The heliospheric current sheet forms between regions of opposite magnetic
polarity.

— ) — ' /

- - \




The solar wind

* Constant stream of charged particles
that flows into the heliosphere,
dragging with it the Sun’s magnetic

field.

. \
Compression

* Fast solar wind emanates from regions
of open magnetic field, whereas slow
solar wind comes from closed regions.

wind forms into a spiral shape, known

* Due to the rotation of the Sun, the solar
asS the Parker Sp|ra|_ Rarefacton/



Coronal mass ejections

 Coronal mass ejections (CMEs) are
transient eruptions of plasma and
magnetic field.

* [hey propagate through the solar
wind, with the background
conditions affecting their travel
through space.

e Occurrence rate varies with the solar
cycle.




Space weather impacts

CORONAL MASS EJECTIONS

S .

COSMIC RAYS
SOLAR CELL DEGRADATION

e Space weather refers to the
changing plasma conditions
IN near-Earth space.

ASTRONAUT RADIATION .7 N7 : e SINGLE EVENT UPSET

SOLAR FLARE RADIATION

RADIATION DAMAGE ENERGETIC RADIATION
BELT PARTICLES

ENHANCED IONOSPHERIC

« CMEs are a cause of severe
space weather.
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ATMOSPHERIC EFFECTS IN POWER SYSTEMS
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Methodology



Spacecraft missions

« STEREO — twin spacecraft mission,
orbiting at ~Earth’s radial distance.

« ACE & DSCOVR — in the L1
position.




Current solar wind forecasting

 Coupled coronal model and solar wind model, initiated with observations of
the photospheric magnetic field.

* The solar wind model can be a full physics-based model (e.g. Enlil) or a
reduced-physics model such as HUX/ HUXt.

~

Observed magnetic field Coronal model Solar wind model
from the photosphere (e.g. MAS or WSA) (e.g. HUXt or Enlil)



Data assimilation

DA Is a technique that has led to
large forecast improvements in
terrestrial weather forecasting.

* |t combines observations and
model output to form an
optimum estimation of reality.

e |t has been underused in space
weather forecasting.

Observations

Model output

(prior)

A

Data assimilation (DA)

Y

Optimal state of

Next
iteration
of DA

the system
(posterior)

Forecast




BRaVDA scheme

Burger Radius Variational Data Assimilation

* 4D-Var data assimilation scheme, using the adjoint method to assimilate
observations from close to Earth’s latitude with the HUX model.

* |nformation from the observations is used to update the initial conditions of
the solar wind model.
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Error contribution Error contribution
from the prior state from the observations

Minimise!
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The ultimate aim Is to improve
CME forecasts.
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Previous work

* All previous experiments have been done with the Magnetohydrodynamics
Around a Sphere (MAS) coronal mode.

 The Wang-Sheeley-Arge model is more widely used and is operational.
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Processing BRaVDA output

 For use in any heliospheric model, the BRaVDA output would need to be
processed.

e Setting the standard by processing the output to work well as the inner
boundary for HUXt.

 Combination of smoothing the inner boundary to remove small scale structure
and reducing the speed to remove over-prediction.



Inner boundary processing

a) Unmodified input b) Smoothed input
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Time series at Earth
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Time series at Earth
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Variation of MAE with forecast lead time
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5-day forecast lead time at Earth

Solar wind speed, km/s

750 -
500 +

250

750

N Ul
ol O
o O

N U1
OO O U
o O O

~
Ul

500
250

O_

08/01 15/01 22/01 29/01 05/02 12/02 19/02 26/02
A 7 N—Q o>
LA "‘" "‘%&-.M%‘MA:V_# % :L: % -y %
05/03 12/03 19/03 26/03 02/04 09/04 16/04 23/04 30/04
%& 2\ M ~ = Q{\ S w&ﬁ
04/05 11/05 18/05 25/05 01/06 08/06 15/06 22/06 29/06
03/07 10/07 17/07 24/07 31/07 07/08 14/08 21/08 28/08

2003100 10j09 1709 24/09 _ 01/l0 _ 08/10 1510  22/10 2910
750 -
500 -
02/11 09/11 16/11 23/11 30/11 07/12 14/12 21/12 28/12
Date
—— QObservations —— Prior —— Unmodified posterior n —— Smoothed and reduced posterior



Conclusions

Tldr; it works!

 Knowing the conditions of the ambient solar wind is important for space
weather forecasting.

e Data assimilation can be used to improve our knowledge of the ambient solar
wind conditions.

 Has been shown to improve forecasts.

 Needs more testing before it can be fully operational.



“All models are wrong, DA should be less
wrong.”

A wseejaded supervisor, 2024



