Variational data assimilation I

Background and methods

Ross Bannister

7-10 May 2024, Univ. of Reading

- To combine imperfect data from models, from observations distributed in time and space, exploiting any relevant physical constraints, to produce a more accurate and comprehensive picture of the system as it evolves in time.
- Traditionally we are interested in a state of the system.
- This is just a first moment of the posterior PDF.
- "All models are wrong ..." (George Box)
- "All models are wrong and all observations are inaccurate."

$$
\begin{aligned}
p(\mathrm{x} \mid \mathrm{y}) & =\frac{p(\mathrm{x}) \times p(\mathrm{y} \mid \mathrm{x})}{p(\mathrm{y})} \\
\text { posterior distribution } & =\frac{\text { prior distribution } \times \text { likelihood }}{\text { normalizing constant }}
\end{aligned}
$$

- Prior distribution: PDF of the state before observations are considered (e.g. PDF of model forecast).
- Likelihood: PDF of observations given that the state is x.
- Posterior: PDF of the state after the obs. have been considered.
- (The " p "s in the above are actually different functions.)

The Gaussian assumption

- PDFs are often described by Gaussians (normal distributions).
- Gaussian PDFs are described by a mean and covariance only.

For n variables ($n \mathrm{D}$): $\mathrm{x} \sim N(\langle\mathrm{x}\rangle, \mathrm{C})$

$$
\begin{array}{r}
p(x)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(C)}} \times \\
\exp -\frac{1}{2}(x-\langle x\rangle)^{\mathrm{T}} C^{-1}(x-\langle x\rangle)
\end{array}
$$

For 1 variable (1D): $x \sim N\left(\langle x\rangle, \sigma^{2}\right)$

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp -\frac{(x-\langle x\rangle)^{2}}{2 \sigma^{2}}
$$

Meaning of x and y

- Vectors of vectors ...
- x^{a} analysis; x^{b} background state; $\delta \mathrm{x}$ increment (perturbation).
- y observations; $\mathrm{y}^{\mathrm{m}}=\mathscr{H}(\mathrm{x})$ model observations.
- $\mathscr{H}(\mathrm{x})$ is the observation operator / forward model (see next slide).
- Sometimes x and y are for only one time (3DVar).
- x-vectors have n elements; y-vectors have p elements.

Mapping between model and observation space

- Data assimilation ultimately brings information from observation space to model space.
- In order to do this, we need to solve the forward problem: $\mathscr{H}(\mathrm{x})$ is the observation operator / forward model.
- Data assimilation can be seen as the 'solution' of the inverse problem.

Back to the Gaussian assumption

Prior: mean x^{b}, covariance B

$$
p(\mathrm{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\mathrm{~B})}} \exp -\frac{1}{2}\left(\mathrm{x}-\mathrm{x}^{\mathrm{b}}\right)^{\mathrm{T}} \mathrm{~B}^{-1}\left(\mathrm{x}-\mathrm{x}^{\mathrm{b}}\right)
$$

Likelihood: mean $\mathscr{H}(x)$, covariance R

$$
p(\mathrm{y} \mid \mathrm{x})=\frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det}(\mathrm{R})}} \exp -\frac{1}{2}(\mathrm{y}-\mathscr{H}(\mathrm{x}))^{\mathrm{T}} \mathrm{R}^{-1}(\mathrm{y}-\mathscr{H}(\mathrm{x}))
$$

Posterior

$$
\begin{aligned}
p(\mathrm{x} \mid \mathrm{y})=\frac{p(\mathrm{x}) \times p(\mathrm{y} \mid \mathrm{x})}{p(\mathrm{y})} & \propto \exp -\frac{1}{2}\left[\left(\mathrm{x}-\mathrm{x}^{\mathrm{b}}\right)^{\mathrm{T}} \mathrm{~B}^{-1}\left(\mathrm{x}-\mathrm{x}^{\mathrm{b}}\right)\right. \\
& \left.+(\mathrm{y}-\mathscr{H}(\mathrm{x}))^{\mathrm{T}} \mathrm{R}^{-1}(\mathrm{y}-\mathscr{H}(\mathrm{x}))\right]
\end{aligned}
$$

Variational DA - the idea

- In Var., we seek a solution that maximizes the posterior probability $p(\mathrm{x} \mid \mathrm{y})$ (maximum-a-posteriori, MAP).
- This is the most likely state given the observations (and the background), called the analysis, $\mathrm{x}^{\text {a }}$.
- Maximizing $p(\mathrm{x} \mid \mathrm{y})$ is equivalent to minimizing $-\ln p(\mathrm{x} \mid \mathrm{y}) \equiv J(\mathrm{x})$ (a least-squares problem).

$$
\begin{aligned}
p(\mathrm{x} \mid \mathrm{y})= & C \exp \left\{-\frac{1}{2}\left[\left(\mathrm{x}-\mathrm{x}^{\mathrm{b}}\right)^{\mathrm{T}} \mathrm{~B}^{-1}\left(\mathrm{x}-\mathrm{x}^{\mathrm{b}}\right)\right.\right. \\
& \left.\left.+(\mathrm{y}-\mathscr{H}(\mathrm{x}))^{\mathrm{T}} \mathrm{R}^{-1}(\mathrm{y}-\mathscr{H}(\mathrm{x}))\right]\right\} \\
J(\mathrm{x})=-\ln C+ & \frac{1}{2}\left(\mathrm{x}-\mathrm{x}^{\mathrm{b}}\right)^{\mathrm{T}} \mathrm{~B}^{-1}\left(\mathrm{x}-\mathrm{x}^{\mathrm{b}}\right) \\
& +\frac{1}{2}(\mathrm{y}-\mathscr{H}(\mathrm{x}))^{\mathrm{T}} \mathrm{R}^{-1}(\mathrm{y}-\mathscr{H}(\mathrm{x})) \\
= & \text { constant (ignored) }+J_{\mathrm{b}}(\mathrm{x})+J_{\mathrm{o}}(\mathrm{x})
\end{aligned}
$$

Exercises - practise the 'short hand' algebra

- $\mathbf{u}^{\mathrm{T}} \mathbf{v}$ (product of $1 \times n$ and $n \times 1$ vectors [an inner product], result is 1×1 [a scalar])

$$
\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right)^{\mathrm{T}}\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{lll}
u_{1} & \cdots & u_{n}
\end{array}\right)\left(\begin{array}{c}
v_{\mathbf{1}} \\
\vdots \\
v_{n}
\end{array}\right)=u_{1} v_{\mathbf{1}}+\cdots+u_{n} v_{n}
$$

- $\mathbf{u}^{\mathrm{T}} \mathrm{Av}$ (product of a $1 \times n$, an $n \times n$ matrix, and a $n \times 1$ vector [an inner product in a particular norm], result is 1×1 [a scalar])

$$
\begin{gathered}
\left(\begin{array}{lll}
u_{1} & \cdots & u_{n}
\end{array}\right)\left(\begin{array}{ccc}
A_{11} & \cdots & A_{1 n} \\
\vdots & \ddots & \vdots \\
A_{n 1} & \cdots & A_{n n}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{lll}
u_{1} & \cdots & u_{n}
\end{array}\right)\left(\begin{array}{c}
A_{11} v_{1}+\cdots+A_{1 n} v_{n} \\
\vdots \\
A_{n 1} v_{1}+\cdots+A_{n n} v_{n}
\end{array}\right) \\
\end{gathered}
$$

- uv ${ }^{\mathrm{T}}$ (product of $n \times 1$ and $1 \times m$ vectors [an outer product], result is $n \times m$ matrix)

$$
\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right) \quad\left(\begin{array}{lll}
v_{1} & \cdots & v_{m}
\end{array}\right)=\left(\begin{array}{ccc}
u_{1} v_{1} & \cdots & u_{1} v_{m} \\
\vdots & \ddots & \vdots \\
u_{n} v_{1} & & u_{n} v_{m}
\end{array}\right)
$$

Four-dimensional Var ("strong constraint" 4DVar)

Aim

To find the 'best' estimate of the true state of the system (analysis), consistent with the observations, the background, and the system dynamics.

Towards a 4DVar cost function

Consider the observation operator in this case:

$$
\mathscr{H}(\mathrm{x})=\mathscr{H}\left(\begin{array}{c}
\mathrm{x}_{0} \\
\vdots \\
\mathrm{x}_{T}
\end{array}\right)=\left(\begin{array}{c}
\mathscr{H}_{0}\left(\mathrm{x}_{0}\right) \\
\vdots \\
\mathscr{H}_{T}\left(\mathrm{x}_{T}\right)
\end{array}\right)
$$

So the J° is (assume that R is block diagonal):

$$
\begin{aligned}
J^{\mathrm{o}}= & \frac{1}{2}(\mathrm{y}-\mathscr{H}(\mathrm{x}))^{\mathrm{T}} \mathrm{R}^{-1}(\mathrm{y}-\mathscr{H}(\mathrm{x}))= \\
\frac{1}{2}\left(\begin{array}{c}
\mathrm{y}_{0}-\mathscr{H}_{0}\left(\mathrm{x}_{0}\right) \\
\vdots \\
\mathrm{y}_{T}-\mathscr{H}_{T}\left(\mathrm{x}_{T}\right)
\end{array}\right)^{\mathrm{T}} & \left(\begin{array}{ccc}
\mathrm{R}_{0} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \mathrm{R}_{T}
\end{array}\right)^{-1}\left(\begin{array}{c}
\mathrm{y}_{0}-\mathscr{H}_{0}\left(\mathrm{x}_{0}\right) \\
\vdots \\
\mathrm{y}_{T}-\mathscr{H}_{T}\left(\mathrm{x}_{T}\right)
\end{array}\right) \\
& =\frac{1}{2} \sum_{i=0}^{T}\left(\mathrm{y}_{i}-\mathscr{H}_{i}\left(\mathrm{x}_{i}\right)\right)^{\mathrm{T}} \mathrm{R}_{i}^{-1}\left(\mathrm{y}_{i}-\mathscr{H}_{i}\left(\mathrm{x}_{i}\right)\right)
\end{aligned}
$$

subject to the strong constraint $\mathrm{x}_{i+1}=\mathscr{M}_{i}\left(\mathrm{x}_{i}\right)$

$$
\begin{gathered}
\text { Let }(a)^{\mathrm{T}} \mathrm{~A}^{-1}(\mathrm{a}) \equiv(\mathrm{a})^{\mathrm{T}} \mathrm{~A}^{-1}(\bullet) \\
J(\mathrm{x})=\frac{1}{2}\left(\mathrm{x}_{0}-\mathrm{x}_{0}^{\mathrm{b}}\right)^{\mathrm{T}} \mathrm{~B}_{0}^{-1}(\bullet)+\frac{1}{2}(\mathrm{y}-\mathscr{H}(\mathrm{x}))^{\mathrm{T}} \mathrm{R}^{-1}(\bullet) \\
=\frac{1}{2}\left(\mathrm{x}_{0}-\mathrm{x}_{0}^{\mathrm{b}}\right)^{\mathrm{T}} \mathrm{~B}_{0}^{-1}(\bullet)+\frac{1}{2} \sum_{i=0}^{T}\left(\mathrm{y}_{i}-\mathscr{H} \mathscr{H}_{i}\left(\mathrm{x}_{i}\right)\right)^{\mathrm{T}} \mathrm{R}_{i}^{-1}(\bullet)
\end{gathered}
$$

$$
\text { subject to the strong constraint } \mathrm{x}_{i+1}=\mathscr{M}_{i}\left(\mathrm{x}_{i}\right)
$$

- $\mathrm{x}_{0}^{\mathrm{b}}$ a-priori (background) state at $t_{0} ; \mathrm{x}_{i}$ state at $t_{i} ; \mathrm{y}_{i}$ obs at t_{i}.
- $\mathscr{H}_{i}\left(\mathrm{x}_{i}\right)$ observation operator at t_{i}.
- B_{0} background error covariance matrix at t_{0}.
- R_{i} observation error covariance matrix at t_{i}.
- Ultimately J is a fn of x_{0} as $\mathrm{x}_{i}=\mathscr{M}_{i-1}\left(\mathscr{M}_{i-2}\left(\cdots \mathscr{M}_{0}\left(\mathrm{x}_{0}\right)\right)\right)$.

How to minimize this ('full 4DVar') cost function?

Minimize $J\left(x_{0}\right)$ iteratively

Use the gradient of J at each iteration:

$$
x_{0}^{k+1}=x_{0}^{k}+\alpha \nabla J\left(x_{0}^{k}\right)
$$

The gradient of the cost function

$$
\nabla J\left(x_{0}\right)=\left(\begin{array}{c}
\partial J / \partial\left[x_{0}\right]_{1} \\
\vdots \\
\partial J / \partial\left[x_{0}\right]_{n}
\end{array}\right)
$$

$-\nabla J$ points in the direction of steepest descent.

Methods: steepest descent (inefficient), conjugate gradient, quasi-Newton (more efficient), ...

Either:
(1) Minimise $J\left(x_{0}\right)$ w.r.t. x_{0} with $x_{i}=\mathscr{M}_{i-1}\left(\mathscr{M}_{i-2}\left(\cdots \mathscr{M}_{0}\left(\mathrm{x}_{0}\right)\right)\right)$.
(2) Minimise $J(x)=J\left(x_{0}, x_{1}, \ldots, x_{T}\right)$ w.r.t. $x_{0}, x_{1}, \ldots, x_{T}$ subject to the constraint

$$
\begin{gathered}
\mathrm{x}_{i+1}-\mathscr{M}_{i}\left(\mathrm{x}_{i}\right)=0 \\
L(\mathrm{x}, \lambda)=J(\mathrm{x})+\sum_{i=0}^{T-1} \lambda_{i+1}^{\mathrm{T}}\left(\mathrm{x}_{i+1}-\mathscr{M}_{i}\left(\mathrm{x}_{i}\right)\right) .
\end{gathered}
$$

Each approach leads to the adjoint method

- An efficient means of computing the gradient.
- Uses the linearised/adjoint of \mathscr{M}_{i} and $\mathscr{H}_{i}: \mathrm{M}_{i}^{\mathrm{T}}$ and $\mathrm{H}_{i}^{\mathrm{T}}$ (see next slides).

The adjoint method
Equivalent gradient formula:
(1)

$$
\begin{aligned}
\nabla J \equiv \nabla J\left(\mathrm{x}_{0}\right)= & \nabla J_{\mathrm{b}}\left(\mathrm{x}_{0}\right)+\nabla J_{0}\left(\mathrm{x}_{0}\right) \\
= & \mathrm{B}_{0}^{-1}\left(\mathrm{x}_{0}-\mathrm{x}_{0}^{\mathrm{b}}\right) \\
& -\sum_{i=0}^{T} \mathrm{M}_{0}^{\mathrm{T}} \ldots \mathrm{M}_{i-1}^{\mathrm{T}} \mathrm{H}_{i}^{\mathrm{T}} \mathrm{R}_{i}^{-1}\left(\mathrm{y}_{i}-\mathscr{H}_{i}\left(\mathrm{x}_{i}\right)\right) \\
\text { where } \mathrm{M}_{i}= & \partial \mathscr{M}_{i}\left(\mathrm{x}_{i}\right) / \partial \mathrm{x}_{i} \text { and } \mathrm{H}_{i}=\partial \mathscr{H}_{i}\left(\mathrm{x}_{i}\right) / \partial \mathrm{x}_{i}
\end{aligned}
$$

(2)

$$
\begin{aligned}
\lambda_{T+1} & =0 \\
\lambda_{i} & =\mathrm{H}_{i}^{\mathrm{T}} \mathrm{R}_{i}^{-1}\left(\mathrm{y}_{i}-\mathscr{H}_{i}\left(\mathrm{x}_{i}\right)\right)+\mathrm{M}_{i}^{\mathrm{T}} \lambda_{i+1} \\
\lambda_{0} & =-\nabla J_{0} \\
\therefore \nabla \mathrm{~J} & =\nabla J_{\mathrm{b}}+\nabla J_{0} \\
& =\mathrm{B}_{0}^{-1}\left(\mathrm{x}_{0}-\mathrm{x}_{0}^{\mathrm{b}}\right)-\lambda_{0}
\end{aligned}
$$

The adjoint method

$$
\begin{aligned}
& \lambda_{i}=M_{i}^{\top} \lambda_{i+1}-H_{i}^{\top} R_{i}^{-1}\left(H_{i}\left(x_{i}\right)-y_{i}\right) \\
& \longrightarrow \text { FORWARD MODEL INTEGRATION } \longrightarrow \\
& \underset{M}{\text { Modify }} \rightarrow x\left(t_{0}\right) \longrightarrow \begin{array}{l}
x\left(t_{1}\right)= \\
M_{0}\left(x\left(t_{0}\right)\right)
\end{array} \longrightarrow \ldots x\left(t_{T-1}\right)=\ldots x\left(t_{T}\right)= \\
& \begin{array}{c}
\frac{s}{\Sigma} \\
\frac{s}{z} \\
\frac{y}{z}
\end{array} \downarrow \downarrow \\
& d_{0}=H_{0}\left(x\left(t_{0}\right)\right) \quad d_{1}=H_{1}\left(x\left(t_{1}\right)\right) \\
& -y\left(t_{0}\right) \\
& \downarrow^{-y\left(t_{1}\right)} \\
& d_{T-1}=z_{T-1}\left(x\left(t_{T-1}\right)\right) \\
& d_{T}=L_{T}\left(x\left(t_{T}\right)\right) \\
& \downarrow^{-y\left(t_{T-1}\right)} \\
& \downarrow^{-y\left(t_{T}\right)} \\
& \lambda_{0}=M_{0}^{\top} \lambda_{1} \leftarrow \\
& -H_{0}^{T} R_{0}^{-1} d_{0} \\
& \lambda_{1}=M_{1}^{\top} \lambda_{2} \quad \cdots \cdots \cdots \longleftarrow \quad \lambda_{T-1}=M_{T-1}^{\top} \lambda_{T} \\
& -H_{T-1}^{T} R_{T-1}^{-1} d_{T-1}^{T} \longleftarrow \\
& \text { ADJOINT MODEL INTEGRATION } \\
& \nabla J\left(x_{0}\right)=-\lambda_{0}+B^{-1}\left(x\left(t_{0}\right)-x^{b}\left(t_{0}\right)\right)
\end{aligned}
$$

Simplifications and complications

- The full 4DVar method is expensive and difficult to solve.
- Model \mathscr{M}_{i} is non-linear.
- Observation operators, \mathscr{H}_{i} can be non-linear.
- Linear $\mathscr{H} \rightarrow$ quadratic cost function - easy(er) to minimize, $J^{\circ} \sim \frac{1}{2}(y-a x)^{2} / \sigma_{0}^{2}$.
- Non-linear $\mathscr{H} \rightarrow$ non-quadratic cost function - hard to minimize, $J^{\circ} \sim \frac{1}{2}(y-f(x))^{2} / \sigma_{0}^{2}$.
- Later will recognise that models are 'wrong'!

Look for simplifications:
Incremental 4DVar (linearised 4DVar) 3D-FGAT
3DVar

Complications:
Weak constraint (imperfect model)

Incremental 4DVar (1)

define reference trajectory: $\mathrm{x}_{i+1}^{\mathrm{R}}=\mathscr{M}_{i}\left(\mathrm{x}_{i}^{\mathrm{R}}\right) \quad \mathrm{y}_{i}^{\mathrm{mR}}=\mathscr{H}_{i}\left(\mathrm{x}_{i}^{\mathrm{R}}\right)$

$$
\begin{aligned}
& \mathrm{x}_{i}=\mathrm{x}_{i}^{\mathrm{R}}+\delta \mathrm{x}_{i} \quad \mathrm{x}_{0}^{\mathrm{b}}=\mathrm{x}_{0}^{\mathrm{R}}+\delta \mathrm{x}_{0}^{\mathrm{b}} \\
& \mathrm{x}_{\mathrm{i}+1}=\mathscr{M}_{i}\left(\mathrm{x}_{i}\right)=\mathscr{M}_{i}\left(\mathrm{x}_{i}^{\mathrm{R}}+\delta \mathrm{x}_{i}\right) \\
& \mathrm{x}_{i+1}^{\mathrm{R}}+\delta \mathrm{x}_{i+1} \approx \mathscr{M}_{i}\left(\mathrm{x}_{i}^{\mathrm{R}}\right)+\mathrm{M}_{i} \delta \mathrm{x}_{i} \quad \delta \mathrm{x}_{i+1} \approx \mathrm{M}_{i} \delta \mathrm{x}_{i} \\
& \mathrm{y}_{i}^{\mathrm{m}}=\mathscr{H}_{i}\left(\mathrm{x}_{i}\right)=\mathscr{H}_{i}\left(\mathrm{x}_{i}^{\mathrm{R}}+\delta \mathrm{x}_{i}\right) \\
& \mathrm{y}_{i}^{\mathrm{mR}}+\delta \mathrm{y}_{i}^{\mathrm{m}} \approx \mathscr{H}_{i}\left(\mathrm{x}_{i}^{\mathrm{R}}\right)+\mathrm{H}_{i} \delta \mathrm{x}_{i} \quad \delta \mathrm{y}_{i}^{\mathrm{m}} \approx \mathrm{H}_{i} \delta \mathrm{x}_{i}
\end{aligned}
$$

$$
\begin{aligned}
J\left(\delta \mathrm{x}_{0}\right)= & \frac{1}{2}\left(\delta \mathrm{x}_{0}-\delta \mathrm{x}_{0}^{\mathrm{b}}\right)^{\mathrm{T}} \mathrm{~B}_{0}^{-1}(\bullet)+ \\
& \frac{1}{2} \sum_{i=0}^{T}\left(\mathrm{y}_{i}-\mathscr{H} \mathcal{H}_{i}\left(\mathrm{x}_{i}^{\mathrm{R}}\right)-\mathrm{H}_{i} \delta \mathrm{x}_{i}\right)^{\mathrm{T}} \mathrm{R}_{i}^{-1}(\bullet) \\
\delta \mathrm{x}_{i} \approx & \mathrm{M}_{i-1} \mathrm{M}_{i-2} \ldots \mathrm{M}_{0} \delta \mathrm{x}_{0}
\end{aligned}
$$

- Initially set reference to background, $x_{0}^{\mathrm{R}}=\mathrm{x}_{0}^{\mathrm{b}}$.
- 'Inner loop': iterations to find $\delta x_{0}^{a}=\operatorname{argmin} J\left(\delta x_{0}\right)$ (use adjoint method).
- 'Outer loop': iterate $x_{0}^{R} \rightarrow x_{0}^{R}+\delta x_{0}^{\mathrm{a}}$
- Inner loop is exactly quadratic (e.g. has a unique minimum).
- Inner loop can be simplified (lower res., simplified physics).

How to minimize this ('incremental 4DVar') cost function?

Minimize $J\left(\delta x_{0}\right)$ iteratively

Use the gradient of J at each iteration:

$$
\delta x_{0}^{k+1}=\delta x_{0}^{k}+\alpha \nabla J\left(\delta x_{0}^{k}\right)
$$

The gradient of the cost function

$$
\nabla J\left(\delta \mathrm{x}_{0}\right)=\left(\begin{array}{c}
\partial J / \partial\left[\delta \mathrm{x}_{0}\right]_{1} \\
\vdots \\
\partial J / \partial\left[\delta \mathrm{x}_{0}\right]_{n}
\end{array}\right)
$$

$-\nabla J$ points in the direction of steepest descent.

Methods: steepest descent (inefficient), conjugate gradient, quasi-Newton (more efficient), ...

- Three dimensional variational data assimilation with first guess (i.e. x_{i}^{R}) is computed at the appropriate time.
- Simplification is that $\mathrm{M}_{i} \rightarrow \mathrm{I}$, i.e. $\delta \mathrm{x}_{i}=\mathrm{M}_{i-1} \ldots \mathrm{M}_{0} \delta \mathrm{x}_{0} \rightarrow \delta \mathrm{x}_{0}$:

$$
\begin{aligned}
J^{3 \mathrm{DFGAT}}\left(\delta \mathrm{x}_{0}\right)= & \frac{1}{2}\left(\delta \mathrm{x}_{0}-\delta \mathrm{x}_{0}^{\mathrm{b}}\right)^{\mathrm{T}} \mathrm{~B}_{0}^{-1}(\bullet)+ \\
& \frac{1}{2} \sum_{i=-T / 2}^{T / 2}\left(\mathrm{y}_{i}-\mathscr{H}_{i}\left(\mathrm{x}_{i}^{\mathrm{R}}\right)-\mathrm{H}_{i} \delta \mathrm{x}_{0}\right)^{\mathrm{T}} \mathrm{R}_{i}^{-1}(\bullet) .
\end{aligned}
$$

- Note the centring of the assimilation window about t_{0} (to reduce the impact of the 3D-FGAT approximation).

Simplification 2: incremental 3DVar

- This has no time dependence within the assimilation window.
- Not used (these days "3DVar" really means 3D-FGAT).

$$
\begin{aligned}
J^{3 \mathrm{DVar}}\left(\delta \mathrm{x}_{0}\right)= & \frac{1}{2}\left(\delta \mathrm{x}_{0}-\delta \mathrm{x}_{0}^{\mathrm{b}}\right)^{\mathrm{T}} \mathrm{~B}_{0}^{-1}(\bullet)+ \\
& \frac{1}{2} \sum_{i=-T / 2}^{T / 2}\left(\mathrm{y}_{i}-\mathscr{H}_{i}\left(\mathrm{x}_{0}^{\mathrm{R}}\right)-\mathrm{H}_{i} \delta \mathrm{x}_{0}\right)^{\mathrm{T}} \mathrm{R}_{i}^{-1}(\bullet)
\end{aligned}
$$

- But note: 3DVar is not an approx. if all obs. in this cycle are at $t=0$ (no time index $t=0$). For $x^{\mathrm{R}}=\mathrm{x}^{\mathrm{b}}$:

$$
J^{3 \mathrm{DVar}}(\delta \mathrm{x})=\frac{1}{2} \delta \mathrm{x}^{\mathrm{T}} \mathrm{~B}^{-1} \delta \mathrm{x}+\frac{1}{2}\left(\mathrm{y}-\mathscr{H}\left(\mathrm{x}^{\mathrm{b}}\right)-\mathrm{H} \delta \mathrm{x}\right)^{\mathrm{T}} \mathrm{R}^{-1}(\bullet)
$$

$$
\text { Setting } \nabla J^{3 \mathrm{DVar}}=\mathrm{B}^{-1} \delta \mathrm{x}-\mathrm{H}^{\mathrm{T}} \mathrm{R}^{-1}\left(\mathrm{y}-\mathscr{H}\left(\mathrm{x}^{\mathrm{b}}\right)-\mathrm{H} \delta \mathrm{x}\right)=0
$$

Gives $\mathrm{x}^{\mathrm{a}}=\mathrm{x}^{\mathrm{b}}+\delta \mathrm{x}=\mathrm{x}^{\mathrm{b}}+\left(\mathrm{B}^{-1}+\mathrm{H}^{\mathrm{T}} \mathrm{R}^{-1} \mathrm{H}\right)^{-1} \mathrm{H}^{\mathrm{T}} \mathrm{R}^{-1}\left(\mathrm{y}-\mathscr{H}\left(\mathrm{x}^{\mathrm{b}}\right)\right)$
As the Kalman Filter! $=\mathrm{x}^{\mathrm{b}}+\mathrm{BH}^{\mathrm{T}}\left(\mathrm{R}+\mathrm{HBH}^{\mathrm{T}}\right)^{-1}\left(\mathrm{y}-\mathscr{H}\left(\mathrm{x}^{\mathrm{b}}\right)\right)$

$$
\begin{aligned}
\mathrm{x}_{t}^{\mathrm{a}} & =\mathrm{x}_{t}^{\mathrm{f}}+\mathrm{K}_{t}\left(\mathrm{y}_{\mathrm{t}}-\mathscr{H}_{t}\left(\mathrm{x}_{t}^{\mathrm{f}}\right)\right) \\
\mathrm{P}_{t}^{\mathrm{a}} & =\left(\mathrm{I}-\mathrm{K}_{\mathrm{t}} \mathrm{H}_{t}\right) \mathrm{P}_{t}^{\mathrm{f}} \\
\mathrm{~K}_{t} & =\mathrm{P}_{t}^{\mathrm{f}} \mathrm{H}_{t}^{\mathrm{T}}\left(\mathrm{R}_{t}+\mathrm{H}_{t} \mathrm{P}_{t}^{\mathrm{f}} \mathrm{H}_{t}^{\mathrm{T}}\right)^{-1} \\
\mathscr{M}_{t}\left(\mathrm{x}_{t}^{\mathrm{a}}\right) & \left(\mathrm{B}^{-1}+\mathrm{H}^{\mathrm{T}} \mathrm{R}^{-1} \mathrm{H}\right) \mathrm{BH}^{\mathrm{T}} \\
\mathrm{M}_{t} \mathrm{P}_{t}^{\mathrm{a}} \mathrm{M}_{t}^{\mathrm{T}}+\mathrm{Q}_{t} & =\mathrm{H}^{\mathrm{T}} \mathrm{R}^{-1}\left(\mathrm{R}+\mathrm{HBH}^{\mathrm{T}}\right) \\
\mathrm{H}_{t} & =\left.\frac{\partial\left(\mathscr{H}_{t}(\mathrm{x})\right)}{\mathrm{x}}\right|_{\mathrm{x}=\mathrm{x}_{t}^{\mathrm{f}}} \\
\mathrm{M}_{t} & (\mathrm{~S}-\mathrm{M}-\mathrm{W} \text { formula }) \\
\mathrm{f} & \left.\frac{\partial\left(\mathscr{M}_{t}(\mathrm{x})\right)}{\mathrm{x}}\right|_{\mathrm{x}=\mathrm{x}_{t}^{\mathrm{a}}}
\end{aligned}
$$

Properties of 4DVar

- Observations are treated at the correct time.
- Use of dynamics means that more information can be obtained from observations.
- Covariance B_{0} is implicitly evolved, $B_{i}=\left(M_{i-1} \ldots M_{0}\right) B_{0}\left(M_{i-1} \ldots M_{0}\right)^{T}$.
- In practice development of linear and adjoint models is complex. - $\mathscr{M}_{i}, \mathscr{H}_{i}, \mathrm{M}_{i}, \mathrm{H}_{i}, \mathrm{M}_{i}^{\mathrm{T}}$, and $\mathrm{H}_{i}^{\mathrm{T}}$ are subroutines, and so 'matrices' are usually not in explicit matrix form.

But note

- Standard 4DVar assumes the model is perfect.
- This can lead to sub-optimalities.
- Weak-constraint 4DVar relaxes this assumption.

Weak constraint 4DVar

Modify evolution equation:

$$
\begin{aligned}
\mathrm{x}_{i+1} & =\mathscr{M}_{i}\left(\mathrm{x}_{i}\right)+\eta_{i} \\
\text { where } \eta_{i} & \sim N\left(0, \mathrm{Q}_{i}\right)
\end{aligned}
$$

'State formulation' of WC4DVar

$$
J_{\text {state }}^{\mathrm{wc}}\left(\mathrm{x}_{0}, \ldots, \mathrm{x}_{T}\right)=J^{\mathrm{b}}+J^{\mathrm{o}}+\frac{1}{2} \sum_{i=0}^{T-1}\left(\mathrm{x}_{i+1}-\mathscr{M}_{i}\left(\mathrm{x}_{i}\right)\right)^{\mathrm{T}} \mathrm{Q}_{i}^{-1}(\bullet)
$$

‘Error formulation’ of WC4DVar

$$
J_{\text {error }}^{\mathrm{wc}}\left(\mathrm{x}_{0}, \eta_{0} \ldots, \eta_{T-1}\right)=J^{\mathrm{b}}+J^{\mathrm{o}}+\frac{1}{2} \sum_{i=0}^{T-1} \eta_{i}^{\mathrm{T}} \mathrm{Q}_{i}^{-1} \eta_{i}
$$

Implementation of weak constraint 4DVar

- Vector to be determined ('control vector') increases from n in 4DVar to $n+n T$ in WC4DVar.
- The model error covariance matrices, Q_{i}, need to be estimated. How?
- The 'state' formulation (determine $\mathrm{x}_{0}, \ldots, \mathrm{x}_{T}$) and the 'error' formulation (determine $\mathrm{x}_{0}, \eta_{0} \ldots, \eta_{T-1}$) are mathematically equivalent, but can behave differently in practice.
- There is an incremental form of WC4DVar.
- The variational method forms the basis of many operational weather and ocean forecasting systems, including at ECMWF, the Met Office, Météo-France, etc.
- It allows complicated observation operators to be used (e.g. for assimilation of satellite data).
- It has been very successful.
- Incremental (quasi-linear) versions are usually implemented.
- It requires specification of B_{0}, the background error cov. matrix, and R_{i}, the observation error cov. matrix.
- 4DVar requires the development of linear and adjoint models - not a simple task!
- Weak constraint formulations require the additional specification of Q_{i}.

Selected References

- Original application of 4DVar: Talagrand O, Courtier P, Variational assimilation of meteorological observations with the adjoint vorticity equation I: Theory, Q. J. R. Meteorol. Soc. 113, 1311-1328 (1987).
- Excellent tutorial on Var: Schlatter TW, Variational assimilation of meteorological observations in the lower atmosphere: A tutorial on how it works, J. Atmos. Sol. Terr. Phys. 62, 1057-1070 (2000).
- Incremental 4DVar: Courtier P, Thepaut J-N, Hollingsworth A, A strategy for operational implementation of 4D-Var, using an incremental approach, Q. J. R. Meteorol. Soc. 120, 1367-1387 (1994).
- High-resolution application of 4DVar: Park SK, Zupanski D, Four-dimensional variational data assimilation for mesoscale and storm scale applications, Meteorol. Atmos. Phys. 82, 173-208 (2003).
- Met Office 4DVar: Rawlins F, Ballard SP, Bovis KJ, Clayton AM, Li D, Inverarity GW, Lorenc AC, Payne TJ, The Met Office global four-dimensional variational data assimilation scheme, Q. J. R. Meteorol. Soc. 133, 347-362 (2007).
- Weak constraint 4DVar: Tremolet Y, Model-error estimation in 4D-Var, Q. J. R. Meteorol. Soc. 133, 1267-1280 (2007).
- Inner and outer loops: Lawless, Gratton \& Nichols, QJRMS, 2005; Gratton, Lawless \& Nichols, SIAM J. on Optimization (2007).
- More detailed survey of variational methods than can be done in this lecture (plus ensemble-variational, hybrid methods): Bannister R.N., A review of operational methods of variational and ensemble-variational data assimilation, Q.J.R. Meteor. Soc. 143, 607-633 (2017).

