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What do we have, and what do we want to improve?

1. Kalman filter

forecast state ... x;,, = M, (x?)

. f an 11
update state ... x!' = X]ff + K, (Yt _ ht(XD) ... and covariance P; ., = M,P;M; + Q;
(1— K,H,)P! where M; = 0M,; (x) /8X|X?

.. and cov P} =
where K, = P£HtT (HtngtT +Rt)_1
and H;, = 5’ht(X)/aX‘x£



What do we have, and what do we want to improve?

1. Kalman filter (cont.)

. The state (1st moments of p* and p') and « Non-linear/non-Gaussian effects are not
covariance (2nd moments) are updated fully accounted for.

and evolved. _ o
« Restricted to application to small state

« The covariance matrices are potentially spaces, n.

full rank. . . .
« (Be aware of notation: pis a PDF, P is a

« Gold standard for linear systems. covariance.)



What do we have, and what do we want to improve?

2. Variational data assimilation (e.g. strong constraint inc. 4D-Var)
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What do we have, and what do we want to improve?

2. Variational data assimilation (cont)

. The state (1st moment of p' and p* — the forecast\background and analysis) is updated
and evolved, but not the covariances.
~ le. approximation P! ~ B is made.
— 4D-Var does implicitly evolve the covariances to each observation time:
« Pl=B; =M, ;... M¢gBM{ ... M} | for 0 <t < T (not shown).
« Covariances reset to B at the start of each cycle.
— P?¢ is not normally available explicitly.

— Need to have code for the tangent linear, M;, H; and adjoints, M, H;r
« B is potentially full rank.
« Can cope with some non-linearity of the model and observation operators.

« Is efficient for application to systems with large state spaces, n.



Aside: what is the analysis increment produced by 3D-Var
due to a single observation of one of the state variables?

Full-fields 3D-Var cost function

JSDVar (X) _

Gradient

Ved|l. = 0

Xa

B~ (x*— Xb> ~-H'R!'(y—Hx")=0



Equivalent explicit answer

B! (x*-x")-H'R'(y—Hx")=0
Let x* = x” + Ax:

B-'Ax-—H'R' (y - H[x"+ Ax])

0
(B'+H'R'H)Ax—H'R' (y —Hx") = 0

Use the S-M-W formula (or R-U-F): (B_1 + HTR_1H) BH' =H'R! (R - HBHT):

(B~'+H'R'H) Ax - H'R'(R + HBH") (R + HBH") ' (y — Hx")
(B +H'R'H)Ax - (B~ +H'"R'H)BH" (R + HBH") ' (y — Hx")

x* —x” = Ax = BH" (R+HBH") ' (y — Hx")

0
0

Compare to the Kalman update formula!



Single observation

Hx" = H

AX =

x* —x”=BH" (R +HBH") ' (y — Hx")
H = (O R O) (0 in all elements apart from the jth, which is 1)
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What do we have, and what do we want to improve?

2. Variational data assimilation (cont)
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From Kleist and |de, MWR 143, pp 452-470 {2015}

Colours: analysis increments of T', arrows: analysis increments of (u, v), contours:
background geopotential height. All data are at 500 hPa [2].

By

Recall, analysis increment: Ax = | Bj;
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What do we have, and what do we want to improve?

2. Variational data assimilation (cont)

Control variable transforms (CVTs) are used to model the B-matrix.

ox = Uvp

T\ _ TjT

if (dxox) =B } then (Ox0x7); = §JU<VBVBTI>J I>J%£
= VBV
and <ngg§f =1 _ [BJUBTf

Ax, g, Xx-space Av, J,., Ve-space
V2

Jy = (x—:)cb)TBU1 (o) > JbZEVBVE



Minimise the variational cost function with respect to v instead of with respect to dx:

e.g. JPV (vp) = %V%VB - % (y — H(x") — HUVB)T R (o).

Equivalent to minimising original incremental cost function with B = UU!:

JIPVar(5x) = %5XTB15X - % (y — H(x") — H5X)T R~ (o).

B = UU" is the implied covariance.
U =B/~
x € R" vg € R™ U € R" ",
— Canhaven, <n, n,=n, orn,>n.
J3DVar(

vp) is numerically better conditioned than J3PVar(§x).

Applies equally well to 4D-Var.



What do we have, and what do we want to improve?

3. Ensemble data assimilation

Ensemble Kalman Filter
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What do we have, and what do we want to improve?

3. Ensemble data assimilation (cont)

The Ensemble Kalman Filter (stochastic EnKF)

« Evaluate one update equation per ensemble member, X?(E), ¢=1,...,N.

Ce 9 . . f /f /fT
« Ensemble members “interact’ via covariances, P, ~ X X .

- Update equation derived directly from the Kalman update equation.

« Update each ensemble member separately:

—1
x = e XS (818 R (v - b ) — €)

S, = H, X/
el) ~ N(0,R)



What do we have, and what do we want to improve?

3. Ensemble data assimilation (cont)
The Ensemble Transform Kalman Filter (ETKF, a square-root filter)
. Evaluate mean via one update equation, x%.

. : ‘ aT
« Ensemble perturbations computed to have the correct covariance, P#~X|"X/"".

- Update equations derived from the Kalman update equation.

« Solve an eigenvalue equation in N-dimensional space.

update mean: x? = E + X;fZA_lzTS;TRt_l (Yt - ht<X£))
perts: X/ = X/'T
T = ZA'°Z"
ZAZ" = 1+S,'R;'S,
S = H, X/



What do we have, and what do we want to improve?

3. Ensemble data assimilation (cont)

The state (1st moments of p? and p') and the approximate covariances (2nd moments) are
updated and evolved via the ensemble.

— Done approximately, according to number of ensemble members and appropriate-
ness of the spread of the ensemble.

— P? and P! are approximated (and are not computed explicitly).

— Automatically flow-dependent.

Can cope with some non-linearity of the model and observation operators.

s efficient for application to systems with large state spaces, n.

Suffers from statistical problems due to finite n:

— P! and P? are rank deficient.
— Analysis increments lie in the subspace of the forecast perturbation ensemble.

— The covariances are subject to sampling error (variance deficiency, spurious corre-
lations).

— Need to employ mitigation techniques (e.g. localisation, inflation).



What do we have, and what do we want to improve?

3. Ensemble data assimilation (cont)

850mb T increment
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Wang et al.,, MWR 136, 5116-5131 (2008)

Thick contours: temperature increments after assimilating a single temperature ob. Thin

contours: background temperature [3].

(2) 0000 UTC 14 Jan 2003, (b) 0000 UTC 24 Jan 2003



How to combine Ens and Var in a simple way? [1]

One-way coupling (EnKF/Var)

. I -
. EnKF %_»
~ e

prior posterior prior

s Var > -




How do we combine the properties of ‘flow-dependentness’
of ensemble methods with the ‘full-rankness’ of variational

methods?

Quiz: Which of the following is a definition of a hybrid data assimila-
tion method?

A. An ensemble DA method that uses a
variational solution?

B. A method that combines the B-matrix of
Var with the Pf-matrix of the EnKF?

C. A method that takes the arithmetic average
of the analysis increments of Var and EnKF?

D. A method that takes the geometric average
of the analysis increments of Var and EnKF?
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