Hybrid Data Assimilation I

A brief recap
Lecturer: Ross Bannister

NCEO, Dept. of Meteorology, Univ. of Reading, UK
7-10 May 2024

$$
p^{\mathrm{a}}(\mathbf{x} \mid \mathbf{y}) \sim p^{\mathrm{b}}(\mathbf{x}) \times p^{\mathrm{l}}(\mathbf{y} \mid \mathbf{x})
$$

What do we have, and what do we want to improve?

1. Kalman filter

update state $\ldots \mathbf{x}_{t}^{\mathrm{a}}=\mathbf{x}_{t}^{\mathrm{f}}+\mathbf{K}_{t}\left(\mathbf{y}_{t}-\mathbf{h}_{t}\left(\mathbf{x}_{t}^{\mathrm{f}}\right)\right)$

$$
\begin{aligned}
\ldots \text { and cov } \mathbf{P}_{t}^{\mathrm{a}} & =\left(\mathbf{I}-\mathbf{K}_{t} \mathbf{H}_{t}\right) \mathbf{P}_{t}^{\mathrm{f}} \\
\text { where } \mathbf{K}_{t} & =\mathbf{P}_{t}^{\mathrm{f}} \mathbf{H}_{t}^{\mathrm{T}}\left(\mathbf{H}_{t} \mathbf{P}_{t}^{\mathrm{f}} \mathbf{H}_{t}^{\mathrm{T}}+\mathbf{R}_{t}\right)^{-1} \\
\text { and } \mathbf{H}_{t} & =\partial \mathbf{h}_{t}(\mathbf{x}) /\left.\partial \mathbf{x}\right|_{\mathbf{x}_{t}^{\mathrm{f}}}
\end{aligned}
$$

forecast state $\ldots \mathrm{x}_{t+1}^{\mathrm{f}}=\mathcal{M}_{t}\left(\mathbf{x}_{t}^{\mathrm{a}}\right)$
\ldots and covariance $\mathbf{P}_{t+1}^{\mathrm{f}}=\mathbf{M}_{t} \mathbf{P}_{t}^{\mathrm{a}} \mathbf{M}_{t}^{\mathrm{T}}+\mathbf{Q}_{t}$ where $\mathbf{M}_{t}=\partial \boldsymbol{\mathcal { M }}_{t}(\mathbf{x}) /\left.\partial \mathbf{x}\right|_{\mathbf{x}_{t}^{\mathrm{a}}}$

What do we have, and what do we want to improve?

1. Kalman filter (cont.)

- The state (1 st moments of p^{a} and p^{f}) and covariance (2nd moments) are updated and evolved.
- The covariance matrices are potentially full rank.
- Gold standard for linear systems.
- Non-linear/non-Gaussian effects are not fully accounted for.
- Restricted to application to small state spaces, n.
- (Be aware of notation: p is a PDF, \mathbf{P} is a covariance.)

What do we have, and what do we want to improve?

2. Variational data assimilation (e.g. strong constraint inc. 4D-Var)

4D-Var

$$
\begin{aligned}
J^{4 \operatorname{DVar}}\left(\delta \mathbf{x}_{0}\right) & =\frac{1}{2} \delta \mathbf{x}_{0}^{\mathrm{T}} \mathbf{B}_{0}^{-1} \delta \mathbf{x}_{0}+\frac{1}{2} \sum_{t=0}^{T}\left(\mathbf{y}_{t}-\boldsymbol{H}_{t}\left(\mathbf{x}_{t}^{\mathrm{b}}\right)-\mathbf{H}_{t} \delta \mathbf{x}_{t}\right)^{\mathrm{T}} \mathbf{R}_{t}^{-1}(\bullet) \\
\mathbf{x}_{t}^{\mathrm{b}} & =\mathcal{M}_{0 \rightarrow t}\left(\mathbf{x}_{0}^{\mathrm{b}}\right) \\
\delta \mathbf{x}_{t} & \approx \mathbf{M}_{t-1} \mathbf{M}_{t-2} \ldots \mathbf{M}_{0} \delta \mathbf{x}_{0}
\end{aligned}
$$

What do we have, and what do we want to improve?

2. Variational data assimilation (cont)

- The state (1 st moment of p^{f} and p^{a} - the forecast \backslash background and analysis) is updated and evolved, but not the covariances.
- I.e. approximation $\mathbf{P}^{f} \sim B$ is made.
- 4D-Var does implicitly evolve the covariances to each observation time:
* $\mathbf{P}_{t}^{\mathrm{f}}=\mathbf{B}_{t}=\mathbf{M}_{t-1} \ldots \mathbf{M}_{0} \mathbf{B M}_{0}^{\mathrm{T}} \ldots \mathbf{M}_{t-1}^{\mathrm{T}}$ for $0 \leq t \leq T$ (not shown).
* Covariances reset to \mathbf{B} at the start of each cycle.
- $\mathbf{P}_{t}^{\mathrm{a}}$ is not normally available explicitly.
- Need to have code for the tangent linear, $\mathbf{M}_{t}, \mathbf{H}_{t}$ and adjoints, $\mathbf{M}_{t}^{\mathrm{T}}, \mathbf{H}_{t}^{\mathrm{T}}$.
- B is potentially full rank.
- Can cope with some non-linearity of the model and observation operators.
- Is efficient for application to systems with large state spaces, n.

Aside: what is the analysis increment produced by 3D-Var due to a single observation of one of the state variables?

Full-fields 3D-Var cost function

$$
J^{3 \mathrm{DVar}}(\mathbf{x})=\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{\mathrm{b}}\right)^{\mathrm{T}} \mathbf{B}^{-1}(\bullet)+\frac{1}{2}(\mathbf{y}-\mathbf{H} \mathbf{x})^{\mathrm{T}} \mathbf{R}^{-1}(\bullet)
$$

Gradient

$$
\begin{aligned}
& \nabla_{\mathbf{x}} J=\mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}^{\mathrm{b}}\right)-\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{y}-\mathbf{H} \mathbf{x}) \\
& \left.\nabla_{\mathbf{x}} J\right|_{\mathbf{x}^{\mathrm{a}}}=\mathbf{0} \\
& \mathbf{B}^{-1}\left(\mathbf{x}^{\mathrm{a}}-\mathbf{x}^{\mathrm{b}}\right)-\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{y}-\mathbf{H} \mathbf{x}^{\mathrm{a}}\right)=\mathbf{0}
\end{aligned}
$$

Equivalent explicit answer

$$
\mathbf{B}^{-1}\left(\mathbf{x}^{\mathrm{a}}-\mathbf{x}^{\mathrm{b}}\right)-\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{y}-\mathbf{H} \mathbf{x}^{\mathrm{a}}\right)=\mathbf{0}
$$

Let $\mathrm{x}^{\mathrm{a}}=\mathrm{x}^{\mathrm{b}}+\Delta \mathrm{x}$:

$$
\begin{aligned}
\mathbf{B}^{-1} \Delta \mathbf{x}-\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{y}-\mathbf{H}\left[\mathbf{x}^{\mathrm{b}}+\Delta \mathbf{x}\right]\right) & =\mathbf{0} \\
\left(\mathbf{B}^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right) \Delta \mathbf{x}-\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{y}-\mathbf{H} \mathbf{x}^{\mathrm{b}}\right) & =\mathbf{0}
\end{aligned}
$$

Use the S-M-W formula (or R-U-F): $\left(\mathbf{B}^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right) \mathbf{B H} \mathbf{H}^{\mathrm{T}}=\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{R}+\mathbf{H B H}^{\mathrm{T}}\right)$:

$$
\begin{gathered}
\left(\mathbf{B}^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right) \Delta \mathbf{x}-\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{R}+\mathbf{H B H}^{\mathrm{T}}\right)\left(\mathbf{R}+\mathbf{H B H}^{\mathrm{T}}\right)^{-1}\left(\mathbf{y}-\mathbf{H x}^{\mathrm{b}}\right)=\mathbf{0} \\
\left(\mathbf{B}^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right) \Delta \mathbf{x}-\left(\mathbf{B}^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right) \mathbf{B H}^{\mathrm{T}}\left(\mathbf{R}+\mathbf{H B H}^{\mathrm{T}}\right)^{-1}\left(\mathbf{y}-\mathbf{H x}^{\mathrm{b}}\right)=\mathbf{0} \\
\mathbf{x}^{\mathrm{a}}-\mathbf{x}^{\mathrm{b}}=\Delta \mathbf{x}=\mathbf{B H}^{\mathrm{T}}\left(\mathbf{R}+\mathbf{H B H}^{\mathrm{T}}\right)^{-1}\left(\mathbf{y}-\mathbf{H x}^{\mathrm{b}}\right)
\end{gathered}
$$

Compare to the Kalman update formula!

Single observation

$$
\mathbf{x}^{\mathrm{a}}-\mathbf{x}^{\mathrm{b}}=\mathbf{B H}^{\mathrm{T}}\left(\mathbf{R}+\mathbf{H B H}^{\mathrm{T}}\right)^{-1}\left(\mathbf{y}-\mathbf{H} \mathbf{x}^{\mathrm{b}}\right)
$$

$\mathbf{H}=\left(\begin{array}{lllll}0 & \cdots & 1 & \cdots & 0\end{array}\right)\left(\begin{array}{l}0 \text { in all elements apart from the } j \text { th, which is } 1)\end{array}\right.$

$$
\begin{gathered}
\mathbf{H x}^{\mathrm{b}}=\mathbf{H}\left(\begin{array}{c}
\mathbf{x}_{1}^{\mathrm{b}} \\
\vdots \\
\mathbf{x}_{j}^{\mathrm{b}} \\
\vdots \\
\mathbf{x}_{n}^{\mathrm{b}}
\end{array}\right)=\mathbf{x}_{j}^{\mathrm{b}}, \quad \mathbf{B H}^{\mathrm{T}}=\left(\begin{array}{c}
\mathbf{B}_{1 j} \\
\vdots \\
\mathbf{B}_{j j} \\
\vdots \\
\mathbf{B}_{n j}
\end{array}\right), \quad \mathbf{H B H}^{\mathrm{T}}=\mathbf{B}_{j j} \\
\Delta \mathbf{x}=\left(\begin{array}{c}
\mathbf{B}_{1 j} \\
\vdots \\
\mathbf{B}_{j j} \\
\vdots \\
\mathbf{B}_{n j}
\end{array}\right) \frac{\mathbf{y}_{1}-\mathbf{x}_{j}^{\mathrm{b}}}{\mathbf{R}_{11}+\mathbf{B}_{j j}}=\binom{\text { structure }}{\text { function }} \times \frac{\text { innovation }}{\text { innovation covariance }}
\end{gathered}
$$

What do we have, and what do we want to improve?

2. Variational data assimilation (cont)

Colours: analysis increments of T, arrows: analysis increments of (u, v), contours: background geopotential height. All data are at 500 hPa [2].

Recall, analysis increment: $\Delta \mathbf{x}=\left(\begin{array}{c}\mathbf{B}_{1 j} \\ \vdots \\ \mathbf{B}_{j j} \\ \vdots \\ \mathbf{B}_{n j}\end{array}\right) \frac{\mathbf{y}_{1}-\mathbf{x}_{j}^{\mathrm{b}}}{\mathbf{R}_{11}+\mathbf{B}_{j j}}$

What do we have, and what do we want to improve?

2. Variational data assimilation (cont)

Control variable transforms (CVTs) are used to model the B-matrix.

$$
\left.\begin{array}{l}
\quad \delta \mathbf{x}=\mathbf{U} \mathbf{v}_{\mathrm{B}} \\
\text { if }\left\langle\delta \mathbf{x} \delta \mathbf{x}^{\mathrm{T}}\right\rangle_{\mathrm{f}}=\mathbf{B} \\
\text { and }\left\langle\mathbf{v}_{\mathrm{B}} \mathbf{v}_{\mathrm{B}}^{\mathrm{T}}\right\rangle_{\mathrm{f}}=\mathbf{I}
\end{array}\right\} \text { then } \begin{aligned}
\left\langle\delta \mathbf{x} \delta \mathbf{x}^{\mathrm{T}}\right\rangle_{\mathrm{f}} & =\left\langle\mathbf{U} \mathbf{v}_{\mathrm{B}} \mathbf{v}_{\mathrm{B}}^{\mathrm{T}} \mathbf{U}^{\mathrm{T}}\right\rangle_{p_{\mathrm{f}}^{\mathrm{f}}} \\
& =\mathbf{U}\left\langle\mathbf{v}_{\mathrm{B}} \mathbf{v}_{\mathrm{B}}^{\mathrm{T}}\right\rangle_{\mathrm{f}} \mathbf{U}^{\mathrm{T}} \\
& =\mathbf{U U U}^{\mathrm{T}}
\end{aligned}
$$

- Minimise the variational cost function with respect to \mathbf{v}_{B} instead of with respect to $\delta \mathbf{x}$:

$$
\text { e.g. } J^{3 \mathrm{DVar}}\left(\mathbf{v}_{\mathrm{B}}\right)=\frac{1}{2} \mathbf{v}_{\mathrm{B}}^{\mathrm{T}} \mathbf{v}_{\mathrm{B}}+\frac{1}{2}\left(\mathbf{y}-\boldsymbol{\mathcal { H }}\left(\mathbf{x}^{\mathrm{b}}\right)-\mathbf{H U} \mathbf{v}_{\mathrm{B}}\right)^{\mathrm{T}} \mathbf{R}^{-1}(\bullet) .
$$

- Equivalent to minimising original incremental cost function with $\mathbf{B}=\mathbf{U U}^{\mathrm{T}}$:

$$
J^{3 \operatorname{Dar}}(\delta \mathbf{x})=\frac{1}{2} \delta \mathbf{x}^{\mathrm{T}} \mathbf{B}^{-1} \delta \mathbf{x}+\frac{1}{2}\left(\mathbf{y}-\boldsymbol{\mathcal { H }}\left(\mathbf{x}^{\mathrm{b}}\right)-\mathbf{H} \delta \mathbf{x}\right)^{\mathrm{T}} \mathbf{R}^{-1}(\bullet) .
$$

- $\mathbf{B}=\mathbf{U U}^{\mathrm{T}}$ is the implied covariance.
- $\mathbf{U}=\mathbf{B}^{1 / 2}$.
$\cdot \mathbf{x} \in \mathbb{R}^{n}, \mathbf{v}_{\mathrm{B}} \in \mathbb{R}^{n_{v}}, \mathbf{U} \in \mathbb{R}^{n \times n_{v}}$.
- Can have $n_{v}<n, \quad n_{v}=n, \quad$ or $n_{v}>n$.
- $J^{3 \mathrm{DVar}}\left(\mathbf{v}_{\mathrm{B}}\right)$ is numerically better conditioned than $J^{3 \mathrm{DVar}}(\delta \mathbf{x})$.
- Applies equally well to 4D-Var.

What do we have, and what do we want to improve?

3. Ensemble data assimilation

Ensemble Kalman Filter

$$
\text { mean: } \overline{\mathbf{x}_{t}^{\mathrm{f}}} \approx \frac{1}{N} \sum_{\ell=1}^{N} \mathbf{x}_{t}^{\mathrm{f}(\ell)} \quad \quad \text { perturbation: } \mathbf{x}_{t}^{\mathrm{f}(\ell)}-\overline{\mathbf{x}_{t}^{\mathrm{f}}}
$$

$$
\text { covariance: }\left[\mathbf{P}_{t}^{\mathrm{f}}\right]_{i j} \approx \frac{1}{N-1} \sum_{\ell=1}^{N}\left(\left[\mathbf{x}_{t}^{\mathrm{f}(\ell)}\right]_{i}-\overline{\left[\mathbf{x}_{t}^{\mathrm{f}}\right]_{i}}\right)\left(\left[\mathbf{x}_{t}^{\mathrm{f}(\ell)}\right]_{j}-\overline{\left[\mathbf{x}_{t}^{\mathrm{f}}\right]_{j}}\right)
$$

$$
\mathbf{P}_{t}^{\mathrm{f}} \approx \frac{1}{N-1} \sum_{\ell=1}^{N}\left(\mathbf{x}_{t}^{\mathrm{f}(\ell)}-\overline{\mathbf{x}_{t}^{\mathrm{f}}}\right)\left(\mathbf{x}_{t}^{\mathrm{f}(\ell)}-\overline{\mathbf{x}_{t}^{\mathrm{f}}}\right)^{\mathrm{T}}
$$

matrix of ens perts: $\mathbf{X}_{t}^{\prime \mathrm{f}}=\frac{1}{\sqrt{N-1}}\left(\begin{array}{ccc}\mathbf{x}_{t}^{\mathrm{f}(1)}-\overline{\mathbf{x}_{t}^{\mathrm{f}}} \cdots & \mathbf{x}_{t}^{\mathrm{f}(\ell)}-\overline{\mathbf{x}_{t}^{\mathrm{f}}} & \cdots \\ \downarrow & \downarrow \mathbf{x}_{t}^{\mathrm{f}(N)}-\overline{\mathbf{x}_{t}^{\mathrm{f}}} \\ \downarrow & \downarrow\end{array}\right)$

$$
\left[\mathbf{X}_{t}^{\prime \mathrm{f}}\right]_{i \ell}=\frac{\left[\mathbf{x}_{t}^{\mathrm{f}(\ell)}\right]_{i}-\left[\overline{\mathbf{x}_{t}^{\mathrm{f}}}\right]_{i}}{\sqrt{N-1}}
$$

$$
\mathbf{P}_{t}^{\mathrm{f}} \approx \mathbf{X}_{t}^{\prime \mathrm{f}} \mathbf{X}_{t}^{\mathrm{f}^{\mathrm{T}}}
$$

What do we have, and what do we want to improve?

3. Ensemble data assimilation (cont)

The Ensemble Kalman Filter (stochastic EnKF)

- Evaluate one update equation per ensemble member, $\mathbf{x}_{t}^{\mathrm{a}(\ell)}, \ell=1, \ldots, N$.

- Update equation derived directly from the Kalman update equation.
- Update each ensemble member separately:

$$
\begin{aligned}
\mathbf{x}_{t}^{\mathrm{a}(\ell)} & =\mathbf{x}_{t}^{\mathrm{f}(\ell)}+\mathbf{X}_{t}^{\prime \mathrm{f}} \mathbf{S}_{t}^{\prime \mathrm{T}}\left(\mathbf{S}_{t}^{\prime} \mathbf{S}_{t}^{\mathrm{T}}+\mathbf{R}_{t}\right)^{-1}\left(\mathbf{y}_{t}-\mathbf{h}_{t}\left(\mathbf{x}_{t}^{\mathrm{f}(\ell)}\right)-\boldsymbol{\epsilon}^{(\ell)}\right) \\
\mathbf{S}_{t}^{\prime} & =\mathbf{H}_{t} \mathbf{X}_{t}^{\prime \mathrm{f}} \\
\boldsymbol{\epsilon}^{(\ell)} & \sim N(\mathbf{0}, \mathbf{R})
\end{aligned}
$$

What do we have, and what do we want to improve?

3. Ensemble data assimilation (cont)

The Ensemble Transform Kalman Filter (ETKF, a square-root filter)

- Evaluate mean via one update equation, $\overline{\mathrm{x}_{t}^{\mathrm{a}}}$.
- Ensemble perturbations computed to have the correct covariance, $\mathbf{P}_{t}^{a} \approx \mathbf{X}_{t}^{\prime 2} \mathbf{X}_{t}^{\prime 2 \mathrm{~T}}$.
- Update equations derived from the Kalman update equation.
- Solve an eigenvalue equation in N-dimensional space.

$$
\begin{aligned}
\text { update mean: } \overline{\mathbf{x}_{t}^{\mathrm{a}}} & =\overline{\mathbf{x}_{t}^{\mathrm{f}}}+\mathbf{X}_{t}^{\prime \mathrm{f}} \mathbf{Z} \mathbf{\Lambda}^{-1} \mathbf{Z}^{\mathrm{T}} \mathbf{S}_{t}^{\prime \mathrm{T}} \mathbf{R}_{t}^{-1}\left(\mathbf{y}_{t}-\mathbf{h}_{t}\left(\overline{\mathbf{x}_{t}^{\mathrm{f}}}\right)\right) \\
\text { perts: } \mathbf{X}_{t}^{\prime \mathrm{a}} & =\mathbf{X}_{t}^{\prime \mathrm{f}} \mathbf{T} \\
\mathbf{T} & =\mathbf{Z} \boldsymbol{\Lambda}^{-1 / 2} \mathbf{Z}^{\mathrm{T}} \\
\mathbf{Z} \boldsymbol{\Lambda} \mathbf{Z}^{\mathrm{T}} & =\mathbf{I}+\mathbf{S}_{t}^{\prime \mathrm{T}} \mathbf{R}_{t}^{-1} \mathbf{S}_{t}^{\prime} \\
\mathbf{S}_{t}^{\prime} & =\mathbf{H}_{t} \mathbf{X}_{t}^{\prime \mathrm{f}}
\end{aligned}
$$

What do we have, and what do we want to improve?

3. Ensemble data assimilation (cont)

- The state (1 st moments of p_{t}^{a} and p_{t}^{f}) and the approximate covariances (2nd moments) are updated and evolved via the ensemble.
- Done approximately, according to number of ensemble members and appropriateness of the spread of the ensemble.
- $\mathbf{P}_{t}^{\mathrm{a}}$ and $\mathbf{P}_{t}^{\mathrm{f}}$ are approximated (and are not computed explicitly).
- Automatically flow-dependent.
- Can cope with some non-linearity of the model and observation operators.
- Is efficient for application to systems with large state spaces, n.
- Suffers from statistical problems due to finite n :
- $\mathbf{P}_{t}^{\mathrm{f}}$ and $\mathbf{P}_{t}^{\mathrm{a}}$ are rank deficient.
- Analysis increments lie in the subspace of the forecast perturbation ensemble.
- The covariances are subject to sampling error (variance deficiency, spurious correlations).
- Need to employ mitigation techniques (e.g. localisation, inflation).

What do we have, and what do we want to improve?

3. Ensemble data assimilation (cont)

Thick contours: temperature increments after assimilating a single temperature ob. Thin contours: background temperature [3].
(a) 0000 UTC 14 Jan 2003, (b) 0000 UTC 24 Jan 2003

How to combine Ens and Var in a simple way? [1]

How do we combine the properties of 'flow-dependentness' of ensemble methods with the 'full-rankness' of variational methods?

Quiz: Which of the following is a definition of a hybrid data assimilation method?
A. An ensemble DA method that uses a variational solution?
B. A method that combines the B-matrix of Var with the \mathbf{P}^{f}-matrix of the EnKF?
C. A method that takes the arithmetic average of the analysis increments of Var and EnKF?
D. A method that takes the geometric average of the analysis increments of Var and EnKF?

Bibliography

[1] Neill E Bowler, Alberto Arribas, Kenneth R Mylne, Kelvyn B Robertson, and Sarah E Beare. The MOGREPS short-range ensemble prediction system. Quarterly Journal of the Royal Meteorological Society, 134(632):703-722, 2008.
[2] Daryl T Kleist and Kayo Ide. An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Monthly Weather Review, 143(2):452-470, 2015.
[3] Xuguang Wang, Dale M Barker, Chris Snyder, and Thomas M Hamill. A hybrid ETKF3DVar data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Monthly Weather Review, 136(12):5116-5131, 2008.

