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Hybrid Data Assimilation I
A brief recap
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pa(x|y) ∼ pb(x)× pl(y|x)
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What do we have, and what do we want to improve?

1. Kalman filter

update state ... xa
t = xf

t +Kt

(
yt − ht(x

f
t)
)

... and cov Pa
t = (I−KtHt)P

f
t

whereKt = Pf
tH

T
t

(
HtP

f
tH

T
t +Rt

)−1

and Ht = ∂ht(x)/∂x|xft

forecast state ... xf
t+1 = Mt (x

a
t )

... and covariance Pf
t+1 = MtP

a
tM

T
t +Qt

whereMt = ∂Mt (x) /∂x|xat
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What do we have, and what do we want to improve?

1. Kalman filter (cont.)

• The state (1st moments of pa and pf) and
covariance (2nd moments) are updated
and evolved.

• The covariance matrices are potentially
full rank.

• Gold standard for linear systems.

• Non-linear/non-Gaussian effects are not
fully accounted for.

• Restricted to application to small state
spaces, n.

• (Be aware of notation: p is a PDF, P is a
covariance.)
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What do we have, and what do we want to improve?

2. Variational data assimilation (e.g. strong constraint inc. 4D-Var)

J4DVar(δx0) =
1

2
δxT

0B
−1
0 δx0 +

1

2

T∑
t=0

(
yt −H t(x

b
t )−Htδxt

)T
R−1

t

(
•
)

xb
t = M0→t(x

b
0)

δxt ≈ Mt−1Mt−2 . . .M0δx0
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What do we have, and what do we want to improve?

2. Variational data assimilation (cont)
• The state (1st moment of pf and pa – the forecast\background and analysis) is updated
and evolved, but not the covariances.

– I.e. approximation Pf ∼ B is made.

– 4D-Var does implicitly evolve the covariances to each observation time:

∗ Pf
t = Bt = Mt−1 . . .M0BMT

0 . . .M
T
t−1 for 0 ≤ t ≤ T (not shown).

∗ Covariances reset to B at the start of each cycle.

– Pa
t is not normally available explicitly.

– Need to have code for the tangent linear,Mt, Ht and adjoints, MT
t ,H

T
t .

• B is potentially full rank.

• Can cope with some non-linearity of the model and observation operators.

• Is efficient for application to systems with large state spaces, n.
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Aside: what is the analysis increment produced by 3D-Var
due to a single observation of one of the state variables?

Full-fields 3D-Var cost function

J3DVar(x) =
1

2

(
x− xb

)T
B−1

(
•
)
+
1

2
(y −Hx)TR−1

(
•
)

Gradient

∇xJ = B−1
(
x− xb

)
−HTR−1 (y −Hx)

∇xJ |xa = 0

B−1
(
xa − xb

)
−HTR−1 (y −Hxa) = 0
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Equivalent explicit answer

B−1
(
xa − xb

)
−HTR−1 (y −Hxa) = 0

Let xa = xb +∆x:

B−1∆x−HTR−1
(
y −H

[
xb +∆x

])
= 0(

B−1 +HTR−1H
)
∆x−HTR−1

(
y −Hxb

)
= 0

Use the S-M-W formula (or R-U-F):
(
B−1 +HTR−1H

)
BHT = HTR−1

(
R +HBHT

)
:

(
B−1 +HTR−1H

)
∆x−HTR−1

(
R +HBHT

) (
R +HBHT

)−1 (
y −Hxb

)
= 0

((((((((((((((((((
B−1 +HTR−1H

)
∆x−

((((((((((((((((((
B−1 +HTR−1H

)
BHT

(
R +HBHT

)−1 (
y −Hxb

)
= 0

xa − xb = ∆x = BHT
(
R +HBHT

)−1 (
y −Hxb

)
Compare to the Kalman update formula!
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Single observation

xa − xb = BHT
(
R +HBHT

)−1 (
y −Hxb

)
H =

(
0 · · · 1 · · · 0

)
(0 in all elements apart from the jth, which is 1)

Hxb = H


xb
1...

xb
j
...
xb
n

 = xb
j , BHT =


B1j
...

Bjj
...

Bnj

 , HBHT = Bjj

∆x =


B1j
...

Bjj
...

Bnj

 y1 − xb
j

R11 +Bjj
=


structure

function

× innovation
innovation covariance
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What do we have, and what do we want to improve?

2. Variational data assimilation (cont)

Colours: analysis increments of T , arrows: analysis increments of (u, v), contours:
background geopotential height. All data are at 500 hPa [2].

Recall, analysis increment: ∆x =


B1j
...

Bjj
...

Bnj

 y1 − xb
j

R11 +Bjj
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What do we have, and what do we want to improve?

2. Variational data assimilation (cont)
Control variable transforms (CVTs) are used to model the B-matrix.

δx = UvB

if
〈
δxδxT

〉
f
= B

and
〈
vBv

T
B

〉
f
= I

}
then

〈
δxδxT

〉
f
=

〈
UvBv

T
BU

T
〉
pft

= U
〈
vBv

T
B

〉
f
UT

= UUT
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• Minimise the variational cost function with respect to vB instead of with respect to δx:

e.g. J3DVar(vB) =
1

2
vT
BvB +

1

2

(
y −H(xb)−HUvB

)T
R−1

(
•
)
.

• Equivalent to minimising original incremental cost function with B = UUT:

J3DVar(δx) =
1

2
δxTB−1δx +

1

2

(
y −H(xb)−Hδx

)T
R−1

(
•
)
.

• B = UUT is the implied covariance.

• U = B1/2.

• x ∈ Rn, vB ∈ Rnv , U ∈ Rn×nv .

– Can have nv < n, nv = n, or nv > n.

• J3DVar(vB) is numerically better conditioned than J3DVar(δx).

• Applies equally well to 4D-Var.
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What do we have, and what do we want to improve?

3. Ensemble data assimilation
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mean: xf
t ≈ 1

N

N∑
ℓ=1

x
f(ℓ)
t perturbation: xf(ℓ)

t − xf
t

covariance:
[
Pf

t

]
ij

≈ 1

N − 1

N∑
ℓ=1

([
x
f(ℓ)
t

]
i
−

[
xf
t

]
i

)([
x
f(ℓ)
t

]
j
−

[
xf
t

]
j

)

Pf
t ≈ 1

N − 1

N∑
ℓ=1

(
x
f(ℓ)
t − xf

t

)(
x
f(ℓ)
t − xf

t

)T

matrix of ens perts: X′
t
f
=

1√
N − 1

 ↑ ↑ ↑
x
f(1)
t − xf

t · · · x
f(ℓ)
t − xf

t · · · x
f(N)
t − xf

t

↓ ↓ ↓



[
X′

t
f
]
iℓ

=

[
x
f(ℓ)
t

]
i
−
[
xf
t

]
i√

N − 1
Pf

t≈X′
t
f
X′

t
fT
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What do we have, and what do we want to improve?

3. Ensemble data assimilation (cont)
The Ensemble Kalman Filter (stochastic EnKF)

• Evaluate one update equation per ensemble member, xa(ℓ)
t , ℓ = 1, . . . , N.

• Ensemble members ‘interact’ via covariances, Pf
t ≈ X′

t
fX′

t
fT.

• Update equation derived directly from the Kalman update equation.

• Update each ensemble member separately:

x
a(ℓ)
t = x

f(ℓ)
t +X′

t
f
S′
t
T
(
S′
tS

′
t
T
+Rt

)−1 (
yt − ht(x

f(ℓ)
t )− ϵ(ℓ)

)
S′
t = HtX

′
t
f

ϵ(ℓ) ∼ N(0,R)
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What do we have, and what do we want to improve?

3. Ensemble data assimilation (cont)
The Ensemble Transform Kalman Filter (ETKF, a square-root filter)

• Evaluate mean via one update equation, xa
t .

• Ensemble perturbations computed to have the correct covariance, Pa
t≈X′

t
aX′

t
aT.

• Update equations derived from the Kalman update equation.

• Solve an eigenvalue equation in N -dimensional space.

update mean: xa
t = xf

t +X′
t
f
ZΛ−1ZTS′

t
T
R−1

t

(
yt − ht(xf

t)
)

perts: X′
t
a
= X′

t
f
T

T = ZΛ−1/2ZT

ZΛZT = I + S′
t
T
R−1

t S′
t

S′
t = HtX

′
t
f
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What do we have, and what do we want to improve?

3. Ensemble data assimilation (cont)
• The state (1st moments of pat and p

f
t) and the approximate covariances (2nd moments) are

updated and evolved via the ensemble.

– Done approximately, according to number of ensemble members and appropriate-
ness of the spread of the ensemble.

– Pa
t and Pf

t are approximated (and are not computed explicitly).
– Automatically flow-dependent.

• Can cope with some non-linearity of the model and observation operators.

• Is efficient for application to systems with large state spaces, n.

• Suffers from statistical problems due to finite n:

– Pf
t and Pa

t are rank deficient.
– Analysis increments lie in the subspace of the forecast perturbation ensemble.
– The covariances are subject to sampling error (variance deficiency, spurious corre-

lations).
– Need to employ mitigation techniques (e.g. localisation, inflation).
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What do we have, and what do we want to improve?

3. Ensemble data assimilation (cont)

Thick contours: temperature increments after assimilating a single temperature ob. Thin
contours: background temperature [3].

(a) 0000 UTC 14 Jan 2003, (b) 0000 UTC 24 Jan 2003
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How to combine Ens and Var in a simple way? [1]
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Howdowe combine the properties of ‘flow-dependentness’
of ensemblemethodswith the ‘full-rankness’ of variational
methods?

Quiz: Which of the following is a definition of a hybrid data assimila-
tion method?

A. An ensemble DA method that uses a
variational solution?

B. A method that combines the B-matrix of
Var with the Pf-matrix of the EnKF?

C. A method that takes the arithmetic average
of the analysis increments of Var and EnKF?

D. A method that takes the geometric average
of the analysis increments of Var and EnKF?
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