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Application: WIPP test case
US Dept Energy Radioactive Waste Isolation Pilot Plant (WIPP) in New Mexico

Cross-section at WIPP
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Magenta Dolomite

Culebra  Dolomite

Cross section through the rock at the
WIPP site

Crucial to assess the risk of
radionuclides reentering the
human environment

Culebra Dolomite layer acts as
principal pathway for transport
of radionuclides
(2D to reasonable approximation)
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Uncertainty in Groundwater Flow
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Modelling and simulation essential to assess repository
performance

Darcy’s law for an incompressible fluid → elliptic partial
differential equations

−∇ · (k∇p) = f

Lack of data → uncertainty in model parameters

Quantify impact of uncertainty on outputs through
stochastic modelling (→ random variables)
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Typical model

Typical simplified model for k is a log–normal random field,
k = exp[g], where g is a scalar, isotropic Gaussian field.

To sample from k, use Karhunen-Loève expansion:

log k(x, ω) ≈
J∑
j=1

√
µjφj(x)Zj(ω),

with Zj(ω) i.i.d. N(0, 1).

A. Teckentrup (Bath) MLMC May 23, 2013 5 / 23



Stochastic modelling

Many reasons for stochastic modelling in earth sciences:
I lack of data (e.g. data assimilation for weather prediction)
I unresolvable scales (e.g. atmospheric dispersion modelling)

Input: best knowledge about system, statistics of input parameters,
measured data with error statistics, etc...

Output: statistics of quantities of interest or of entire state space

ZJ(ω) ∈ RJ Model(M)−→ XM (ω) ∈ RM Output−→ QM,J(ω) ∈ R
random input state vector quantity of interest

e.g. ZJ multivariate Gaussian; XM numerical solution of PDE; QM,J

a (non)linear functional of XM

Q(ω) inaccessible random variable s.t. E[QM,J ]
M,J→∞−→ E[Q]
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Standard Monte Carlo
Usually interested in finding the expected value (or higher order moments)
of output functional Q.

The standard Monte Carlo estimator for this is

E [Q] ≈ E [QM,J ] ≈
1
N

N∑
i=1

Q
(i)
M,J := Q̂MC,

where Q
(i)
M,J is the ith i.i.d sample computed with Model(M).

The mean square error can be shown to equal

E
[(
Q̂MC
h − E[Q]

)2] = V[Q̂MC
h ] +

(
E[Q̂MC

h ]− E[Q]
)2

=
V[QM,J ]

N︸ ︷︷ ︸
sampling error

+
(
E[QM,J −Q]

)2

︸ ︷︷ ︸
model error (“bias”)

⇒ very large N and M!
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Complexity of Standard Monte Carlo

Assuming that

(A1)
∣∣E[QM,J −Q]

∣∣ = O(M−α) (model error)

(A2) Cost(Q(i)
M,J) = O(Mγ) (PDE solver)

there exist M and N such that the total cost to obtain a mean square
error

E
[
(Q̂MC − E[Q])2

]
= O(ε2)

is

Cost(Q̂MC) = O(ε−2−γ/α)

Typically α = 1/2, γ = 1: for ε = 10−3 we have Cost = O(1012)!
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Multilevel Monte Carlo [Heinrich, ’01], [Giles, ’07]

The multilevel method works on a sequence of levels, s.t. M` = sM`−1

and J` = sJ`−1, ` = 0, 1, . . . , L, and set Q` = QM`,J` .

Linearity of expectation gives us

E [QL] = E [Q0] +
L∑
`=1

E [Q` −Q`−1]

Define the following multilevel MC estimator for E[Q]:

Q̂ML
L := Q̂MC

0 +
L∑
`=1

̂(Q` −Q`−1)
MC

Terms are estimated independently, with N` samples on level `.

A. Teckentrup (Bath) MLMC May 23, 2013 9 / 23



Multilevel Monte Carlo [Heinrich, ’01], [Giles, ’07]

The multilevel method works on a sequence of levels, s.t. M` = sM`−1

and J` = sJ`−1, ` = 0, 1, . . . , L, and set Q` = QM`,J` .

Linearity of expectation gives us

E [QL] = E [Q0] +
L∑
`=1

E [Q` −Q`−1]

Define the following multilevel MC estimator for E[Q]:

Q̂ML
L := Q̂MC

0 +
L∑
`=1

̂(Q` −Q`−1)
MC

Terms are estimated independently, with N` samples on level `.

A. Teckentrup (Bath) MLMC May 23, 2013 9 / 23



Multilevel Monte Carlo [Heinrich, ’01], [Giles, ’07]

The mean square error of the this estimator is

E
[(
Q̂ML
L − E[Q]

)2] = V[Q̂ML
L ]︸ ︷︷ ︸

sampling error

+
(
E[Q̂ML

L ]− E[Q]
)2︸ ︷︷ ︸

model error

=
V[Q0]
N0

+
L∑
`=1

V[Q` −Q`−1]
N`

+
(
E[QL −Q]

)2
N0 still needs to be large, but samples are much cheaper to obtain on
coarser level

N` (` > 0) much smaller, since V[Q` −Q`−1]→ 0 as M` →∞
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Complexity of Multilevel Monte Carlo

Assume (A1) (model error O(M−α` )), (A2) (cost/sample O(Mγ
` )) and

(A3) V[Q` −Q`−1] = O(M−β` )

with 2α ≥ min(β, γ). Then there exist L and {N`} such that the total

cost to obtain a mean square error

E
[
(Q̂ML

L − E[Q])2
]

= O(ε2)

is

Cost(Q̂ML
L ) =


O(ε−2) if β > γ

O(ε−2 log(ε)2) if β = γ

O(ε−2−(γ−β)/α) if β < γ

{N`} chosen to minimise cost for a fixed variance
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Convergence analysis of MLMC

Can prove that for typical 2D model problems in subsurface flow, (A1)
and (A3) are satisfied with α = 1/2, β = 1. With an optimal linear solver
(γ = 1), the computational costs are bounded by:

d MLMC MC

2 O(ε−2) O(ε−4)
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Can prove that for typical 2D model problems in subsurface flow, (A1)
and (A3) are satisfied with α = 1/2, β = 1. With an optimal linear solver
(γ = 1), the computational costs are bounded by:

d MLMC MC

2 O(106) O(1012)

0.1 % accuracy −→ ε = 10−3
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Numerical Example (multilevel MC)
D = (0, 1)2, Q = ‖p‖L2(D), JL =∞, M0 = 82.

Typical 2D model problem.

Left: Number of samples per level. Right: Total computational cost.
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Can the multilevel idea be extended to Markov chain Monte Carlo?
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Incorporating data - Bayesian approach

Recall:

ZJ(ω) ∈ RJ Model(M)−→ XM (ω) ∈ RM Output−→ QM,J(ω) ∈ R
random input state vector quantity of interest

“Prior” in our model was multivariate Gaussian ZJ := [Z1, . . . , ZJ ]:

P(ZJ) h (2π)−J/2
∏J
j=1 exp

(
−Z2

j

2

)

Usually data Fobs related to outputs (e.g. pressure) also available.
To reduce uncertainty, incorporate Fobs → the “posterior”
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Incorporating data - Bayesian approach

Bayes’ Theorem: (RHS computable! Proportionality constant 1/P(Fobs) not!)

πM,J(ZJ)︸ ︷︷ ︸
posterior

:= P(ZJ |Fobs) h LM (Fobs |ZJ)︸ ︷︷ ︸
likelihood

P(ZJ)︸ ︷︷ ︸
prior

Likelihood model (e.g. Gaussian):

LM (Fobs |ZJ) h exp
“−‖Fobs − FM (ZJ)‖2

σ2
fid,M

”
FM (ZJ) ... model response; σfid,M ... fidelity parameter (M -dep.)
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ALGORITHM 1. (Standard Metropolis Hastings MCMC)

Choose Z0
J .

At state ZnJ generate proposal Z′J from distribution q(Z′J |ZnJ)
(for simplicity symmetric, e.g. random walk).

Accept sample Z′J with probability αM,J = min
(

1,
πM,J(Z′J)
πM,J(ZnJ)

)
,

i.e. Zn+1
J = Z′J with probability αM,J ; otherwise stay at Zn+1

J = ZnJ .

Samples ZnJ used as usual for inference (even though not i.i.d.):

EπM,J [Q] ≈ EπM,J [QM,J ] ≈ 1
N

N∑
n=1

Q
(n)
M,J := Q̂MetH

Pros:

Produces a Markov chain
{ZnJ}n∈N, with ZnJ ∼ πM,J
as n→∞.

Cons:

Evaluating αM,J expensive for large M .
Acceptance rate αM,J very low for large J
(< 10%).
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Multilevel Markov Chain Monte Carlo

Key ingredients in multilevel method:

Models with less DOFs on coarser levels much cheaper to solve

V[Q` −Q`−1]→ 0 as `→∞ ⇒ fewer samples on finer levels

Telescoping sum: E [QL] = E [Q0] +
∑L

`=1 E [Q`]− E [Q`−1]

In MCMC setting target distribution depends on `, so need to define
multilevel estimator carefully!

EπL [QL] = Eπ0 [Q0]︸ ︷︷ ︸
standard MCMC

+
L∑
`=1

Eπ` [Q`]− Eπ`−1 [Q`−1]︸ ︷︷ ︸
2 level MCMC (NEW)

Q̂MLMetH
L :=

1
N0

N0∑
n=1

Q0(Zn0 ) +
L∑
`=1

1
N`

N∑̀
n=1

(
Q`(Zn` )−Q`−1(Zn`−1)

)
Idea: Split Zn` = [zn`,C, z

n
`,F], where zn`,C has length J`−1.
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ALGORITHM 2 (Two-level Metropolis Hastings MCMC for Q` −Q`−1)

At states Zn`−1,Z
n
` (of the independent level ` and level `− 1 Markov chains)

1 Generate new state Zn+1
`−1 using Algorithm 1.

2 Propose Z′` = [Zn+1
`−1 , z

′
`,F] with z′`,F generated via random walk.

(novel transition prob. qML depends on level `− 1 acceptance prob. α`−1)

3 Accept Z′` with probability

α`(Z′` |Zn` ) = min
(

1,
π`(Z′`) qML(Zn` |Z′`)
π`(Zn` ) qML(Z′` |Zn` )

)

Follows quite easily & both terms have been computed previously.
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ALGORITHM 2 (Two-level Metropolis Hastings MCMC for Q` −Q`−1)

At states Zn`−1,Z
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Example: one step

Given Zn`−1 and Zn` , the possible (n+ 1)th states of the two chains are:

Level `− 1 test Level ` test Zn+1
`−1 Zn+1

`

reject accept Zn`−1 [Zn`−1, z
′
`,F]

accept accept Z′`−1 [Z′`−1, z
′
`,F]

reject reject Zn`−1 [zn`,C, z
n
`,F]

accept reject Z′`−1 [zn`,C, z
n
`,F]
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Convergence analysis of MLMCMC

What can we prove?

We have a genuine Markov chain on every level.

Multilevel algorithm is consistent (no bias between levels).

Multilevel algorithm converges for any initial state.

Same Complexity Theorem as for Multilevel Monte Carlo.
(completely abstract and applicable also in DA for NWP)

I For typical 2D model problems in subsurface flow, we have α = 1/2,
β = 1/2. With an optimal linear solver (γ = 1), the computational
costs are bounded by:

d MLMCMC MCMC

2 O(ε−3) O(ε−4)
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Convergence analysis of MLMCMC

What can we prove?

We have a genuine Markov chain on every level.

Multilevel algorithm is consistent (no bias between levels).

Multilevel algorithm converges for any initial state.

Same Complexity Theorem as for Multilevel Monte Carlo.
(completely abstract and applicable also in DA for NWP)

I For typical 2D model problems in subsurface flow, we have α = 1/2,
β = 1/2. With an optimal linear solver (γ = 1), the computational
costs are bounded by:

d MLMCMC MCMC

2 O(109) O(1012)

0.1 % accuracy −→ ε = 10−3
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Numerical Example (multilevel MCMC)
D = (0, 1)2, Q = keff , JL = 169, M0 = 162.
Data (artificial): Pressure p at 9 random points in domain.
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Conclusions

Standard (Markov chain) Monte Carlo algorithms are often
prohibitively expensive.

Multilevel versions greatly reduce the cost.

Multilevel algorithms are generally applicable.

Full convergence analysis available.
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