Joint State-Parameter Estimation by

Two-stage Filtering

Naratip Santitissadeekorn*, Chris Jones**

Department of Mathematics
University of Surrey*
Department of Mathematics
University of North Carolina-Chapel Hill**

DARC Seminar, University of Reading, 19 Nov 2014



Joint state-parameter estimation for EnKF

@ Incorrect parameters causes unrealistic state forecasts
(leading to ensemble collapse)

@ Goal: simultaneously estimate the state vector and
calibrating parameters

@ Intuitive approach: Augmented method, applying EnKF
update to z = [x, §].

@ Augmented EnKF works well in many cases, but typically
not for identifying “stochastic parameters" (e.g. noise and
observation covariances).



Previous research

@ Mehra (IEEE, auto. con. 1970): Asymptotically unbiased
and consistent estimates for Q and R (with known
structures) based on innovation sequence, similar to the
results in Bélanger (1974).

@ Dee, Cohn, Dalcher, Ghil. (IEEE, auto. con., 1985):
Used results in Bélanger, but with a better algorithm

@ Dee (MWR, 1995): optimize ML for the predictive
distribution, designed for 4D-Var

@ Griffith and Nichols (FTC, 2001): Augmented 4D-Var,
evolving errors with the states

@ Chapnik, Desroziers, Talagrand and Rabier (QJRM
Soc. 2004): Derive zero gradient conditions for p(y|r, m),
which give equations for a fixed-point iteration scheme. Q
and R is known up to a scalar r? and m?.

@ Stroud and Bengtsson (MWR 2007): Use the Gamma
prior and assume linear dynamic. (Hierarchial Bayes)

@ L-Curve with y? diagnosis: for Q = m?/and R = r?/ in
3D-Var setting



More recent research

@ More recent methods are geared toward a combination
with EnKF

@ Berry and Sauer (Tellus A, 2013): Modifying the updating
scheme based on innovation lag-k covariance in Mehra
(1970) for EnKF

@ Koyama et al. (MWR, 2010): EnKF-EnKF

@ Yang and DelSole (Phys. D, 2010):MLE+EnKF, Forecast
state — update variance by solving a nonlinear equation
(required first and second derivatives of P’ w.r.t variance
parameters)— Re-forecast state with new variance—EnKF
update for the state

@ Frei and Kunsch (MWR 2012):Weighted Gaussian
mixture, the weight comes from evaluating the predictive
density

@ All of these works have demonstrated that the augmented
EnKF does NOT work well for stochastic parameters.



Augmented ENKF

@ Parameter set 9 is augmented to the state variable x, say
Zi = [Xk, Ox]-

O (X, k) } '

Vi1 = HX + ¢,
@ The observation operator for the augmented system
FIZk = [H O]Zk = HXk.

@ The error covariance matrix takes the form

o Px PX9
AL

@ Parameter inference relies on Py



Augmented ENKF

@ KF update: z2 = z + K(y — Hz?)
@ The Kalman gain

K= [ Y ] — PAT(ATPAT +R) .
0

@ The above augmented system can be rewritten by
x? = xP + K (y — HxP)
07 = 6° + Ky(y — HxP),

Ky = PxH'(HP,H™ + R)™"
Ko =PL,H' (HP,H” + R)~".



Experiment: AR(1)

Xk = aXk—1 +on, UNN(O,”

@ Prior: a ~ U([0.1,1]) and o ~ 14/([0.01,1])

@ Ok =abk_1+(1—a)f+(PS)nk (a=V1-h2).
@ Observation noise standard deviation r> = 0.05

@ How do we know if there is inconsistency?

@ Many ways: rank histogram, lag-k autocorrelation for the
innovation sequence, etc.



Diagnostic: AR(1)
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Result: AR(1)

) : EnKF with unknown AR coefficient a
@ Black: EnKF with both a and o unknown
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Result: AR(1)

@ Again, both parameters a and o are unknown
@ EnKF (Black) vs. Two-stage filter (Green)
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Result: AR(1

@ a, o, observation noise (r) unknown
@ Using two-stage filtering to estimate them
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Result: AR(1)

@ Suppose a < 1is known and o1 = 0.

cov(xf. of)

58 — 6’f + o _ )"(f
k k P var(x,ﬁ)(yk %)

® But X/ = a%@ | + oE[n] = a%? ;.

@ cov(xf,o}) and var(x!) depends on o

@ cov(x},ol) < a-cov(x[_,,ol_,): covariance is damped
after each step.

@ Can we rely on cov(xf,o})/(r + var(xf)) to update o?



Rao-Blackwellized PF (RBPF)

@ Factorize the joint filtering density as

P(Xk, Ok|y1:6) = P(Xk|Ok, Y1:6)P(Okc| Y1 :k)-
@ Applying the (standard) PF to target p(0x|y1.)
N . . .
P, Yilyin) = D w pxiclo . yr.)d(0k — 0,
i=1

@ We need a recursive update formula for w,((i)
@ We can factor p(6x|y1.x) to

P(Ok|y1:x) o< P(Ok|Y1:k—1)P(Vk|¥1:k-1, Ok)



Rao-Blackwellized PF (RBPF)

@ The particle weight can be recursively calculated by

wi o p(ykly1k—1, 0w .

@ The predictive density conditioned on a particle 9,((') is
POV 1ik-1.65) o N (i HXE(6), HP' (0)HT + R),

@ Assume that p(x1:k|9;'(,y1:k) ~ conditionally Gaussian

@ Approximate p(x1.x|0}, y1.k) by EnKF

@ With this setting, one parameter particle is “attached" to
one (conditional) EnKF.



RBPF

@ A low-cost simplification for RBPF.
@ Approximation 1:

PO, vik) = POXK1Oks 1),

@ Approximation 2 (actually a consequence of 1):

PklYik—1,09) o« N(yi; HxG(6Y), HP'(0\YHT + R)
~ N (v HXL(0Y), HP (O)HT + R)

@ This will split it into two sub-filters: p(xk|0k, y1.k)P(0k|V1:x)

@ But the weight update for ¢ is based only on the point
estimate of the state x, but not its uncertainty.

@ Temporal smoothing may be used to deal with this issue in
practice (Koyama et al., MWR2010)



Two-stage Filter: PF+ENKF

@ Idea: Run PF for parameter (assuming known states), Run
EnKF for states (assuming known parameters)

@ Parameter filter with PF: use the state estimate %;_4

00 = b, + (1 =) 1 +7)  O0<a<i
¥ = h(®f_ (Re-1:6,))

e State filter with EnKF: Use 0; to find P(x;|y.;, 0)

Xlgl) = ¢>L1( Xi 1,9)+V
yt(’) — h(Xt(’); 91)



Shrinkage of Kernel

@ Why not persistence model?: 6; = 6;_
e “Sample attrition” issue in re-weighting
o (Parameter) particles always stay with the same sets of
initial guesses
@ Random Walk (Gordon-Salmon-Smith “jittering"):
0t = 0t—1 +nt
o Lead to over-dispersion; posteriors are far too diffuse
e A way to compensate this over-dispersion is done in the
framework of kernel smoothing [Liu&West 99]

@ Liu-West “jittering": 0y = ab;_1 + (1 — )01 + ¢
o Push samples 0; toward the ensemble mean before adding
a small degree of noise
e 1t~ N(0,?S),a = V1 — h2, Sis sample variance
0 0.1<h<03
o This is helpful to parameter learning only for static
parameters!



“Closure' parametrization

@ True model: L96-fast-slow system

N,
dx; he
b= (X1 — Xi—2)Xio1 — Xi+ F — B > Y
=

dt
f
dy. he
d;” = CO(Yj—1,i = Vjr2)Yj+1,i = C¥ji + —p XiYN, i

@ =38, Ny =18, N, = 6, the coupling strength h =1, the
time scale separation ¢ = 10 and the magnitude of the fast
component b= 10

@ Forecast model: only slow variable, fast-scale process
paramatrized by

ax i

— = (Xip1 — Xi—2)Xi—1 — Xi + F — g(t, x;)
at



Closure parametrization: L96-fast-slow

@ Warning: Model reduction is NOT the main goal for this
study

@ Stochastic: Assume g(t, x;) = 01 + 62x; + (t) [Wilks 2005]
ei(t) = deilt — At) + oe(1 — ¢)'2(t).

@ Try filter 01, 05,0, and o,



Fitting with the truth run

Offline fitting

=1.3840.102x, 0ss

(a) Fitting 61 and 6> (b) Fitting ¢ and oe



Correlogram
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Experimental setup: L96-fast-slow

@ The parameters are initially drawn from the following prior
distributions; 6y ~ N(3,2), 6> ~ N(-2,2), ¢ ~1(0.1,0.9),
and og ~ 1(0.1,0.9).

@ Set it = 50AL.

@ N = 250 for Augmented ENKF and N = 200, M = 50 for
the two-stage filtering

@ Augmented ENKF “blows-up”



Comparing the posterior
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