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Joint state-parameter estimation for EnKF

Incorrect parameters causes unrealistic state forecasts
(leading to ensemble collapse)
Goal: simultaneously estimate the state vector and
calibrating parameters
Intuitive approach: Augmented method, applying EnKF
update to z = [x , θ].
Augmented EnKF works well in many cases, but typically
not for identifying “stochastic parameters" (e.g. noise and
observation covariances).



Previous research

Mehra (IEEE, auto. con. 1970): Asymptotically unbiased
and consistent estimates for Q and R (with known
structures) based on innovation sequence, similar to the
results in Bélanger (1974).
Dee, Cohn, Dalcher, Ghil. (IEEE, auto. con., 1985):
Used results in Bélanger, but with a better algorithm
Dee (MWR, 1995): optimize ML for the predictive
distribution, designed for 4D-Var
Griffith and Nichols (FTC, 2001): Augmented 4D-Var,
evolving errors with the states
Chapnik, Desroziers, Talagrand and Rabier (QJRM
Soc. 2004): Derive zero gradient conditions for p(y |r ,m),
which give equations for a fixed-point iteration scheme. Q
and R is known up to a scalar r2 and m2.
Stroud and Bengtsson (MWR 2007): Use the Gamma
prior and assume linear dynamic. (Hierarchial Bayes)
L-Curve with χ2 diagnosis: for Q = m2I and R = r2I in
3D-Var setting



More recent research

More recent methods are geared toward a combination
with EnKF
Berry and Sauer (Tellus A, 2013): Modifying the updating
scheme based on innovation lag-k covariance in Mehra
(1970) for EnKF
Koyama et al. (MWR, 2010): EnKF-EnKF
Yang and DelSole (Phys. D, 2010):MLE+EnKF, Forecast
state→ update variance by solving a nonlinear equation
(required first and second derivatives of Pf w.r.t variance
parameters)→ Re-forecast state with new variance→EnKF
update for the state
Frei and Künsch (MWR 2012):Weighted Gaussian
mixture, the weight comes from evaluating the predictive
density
All of these works have demonstrated that the augmented
EnKF does NOT work well for stochastic parameters.



Augmented ENKF

Parameter set θ is augmented to the state variable x , say
zk = [xk , θk ].

zk+1 = Φ̃k+1
k (zk ) =

[
Φk+1

k (xk , θk )
θk

]
.

yk+1 = Hx + εk ,

The observation operator for the augmented system

H̃zk = [H 0]zk = Hxk .

The error covariance matrix takes the form

P =

[
Px Pxθ
PT

xθ Pθ

]
,

Parameter inference relies on Pxθ



Augmented ENKF

KF update: za = zb + K(y − H̃zb)

The Kalman gain

K :=

[
Kx
Kθ

]
= PH̃T (H̃T PH̃T + R)−1.

The above augmented system can be rewritten by

xa = xb + Kx (y − H̃xb)

θa = θb + Kθ(y − H̃xb),

Kx = PxHT (HPxHT + R)−1

Kθ = PT
xθH

T (HPxHT + R)−1.



Experiment: AR(1)

xk = axk−1 + ση, η ∼ N (0,1)

Prior: a ∼ U([0.1,1]) and σ ∼ U([0.01,1])

θk = αθk−1 + (1− α)θ̄ + (h2S)ηk (α =
√

1− h2).
Observation noise standard deviation r2 = 0.05
How do we know if there is inconsistency?
Many ways: rank histogram, lag-k autocorrelation for the
innovation sequence, etc.



Diagnostic: AR(1)
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Result: AR(1)

Green: EnKF with unknown AR coefficient a
Black: EnKF with both a and σ unknown
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Result: AR(1)

Again, both parameters a and σ are unknown
EnKF (Black) vs. Two-stage filter (Green)

200 400 600 800 1000 1200 1400 1600 1800 2000
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Assimilation Cycle

a

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Assimilation Cycle
σ



Result: AR(1)

a, σ, observation noise (r ) unknown
Using two-stage filtering to estimate them
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Result: AR(1)

Suppose a < 1 is known and σk+1 = σk .

σ̂a
k = σ̂f

k +
cov(x f

k , σ
f
k )

r + var(x f
k )

(yo
k − x̂ f

k )

But x̂ f
k = ax̂a

k−1 + σE [ηk ] = ax̂a
k−1.

cov(x f
k , σ

f
k ) and var(x f

k ) depends on σ
cov(x f

k , σ
f
k ) < a · cov(x f

k−1, σ
f
k−1): covariance is damped

after each step.
Can we rely on cov(x f

k , σ
f
k )/(r + var(x f

k )) to update σ?



Rao-Blackwellized PF (RBPF)

Factorize the joint filtering density as

p(xk , θk |y1:k ) = p(xk |θk , y1:k )p(θk |y1:k ).

Applying the (standard) PF to target p(θk |y1:k )

p(xk , yk |y1:k ) ≈
N∑

i=1

ω
(i)
k p(xk |θ

(i)
k , y1:k )δ(θk − θ

(i)
k ),

We need a recursive update formula for ω(i)
k

We can factor p(θk |y1:k ) to

p(θk |y1:k ) ∝ p(θk |y1:k−1)p(yk |y1:k−1, θk )



Rao-Blackwellized PF (RBPF)

The particle weight can be recursively calculated by

ω
(i)
k ∝ p(yk |y1:k−1, θ

(i)
k )ω

(i)
k−1.

The predictive density conditioned on a particle θ(i)k is

p(yk |y1:k−1, θ
(i)
k ) ∝ N (yk ; Hx f

k (θ
(i)
k ),HP f (θ

(i)
k )HT + R),

Assume that p(x1:k |θi
k , y1:k ) ≈ conditionally Gaussian

Approximate p(x1:k |θi
k , y1:k ) by EnKF

With this setting, one parameter particle is “attached" to
one (conditional) EnKF.



RBPF

A low-cost simplification for RBPF.
Approximation 1:

p(xk |θ
(i)
k , y1:k ) ≈ p(xk |θ̂k , y1:k ),

Approximation 2 (actually a consequence of 1):

p(yk |y1:k−1, θ
(i)
k ) ∝ N (yk ; Hx f

k (θ
(i)
k ),HP f (θ

(i)
k )HT + R)

≈ N (yk ; Hx f
k (θ

(i)
k ),HP f (θ̂)HT + R)

This will split it into two sub-filters: p(xk |θ̂k , y1:k )p(θk |y1:k )

But the weight update for θ is based only on the point
estimate of the state x , but not its uncertainty.
Temporal smoothing may be used to deal with this issue in
practice (Koyama et al., MWR2010)



Two-stage Filter: PF+ENKF

Idea: Run PF for parameter (assuming known states), Run
EnKF for states (assuming known parameters)
Parameter filter with PF: use the state estimate x̂t−1

θ
(i)
t = αθ

(i)
t−1 + (1− α)θ̄t−1 + η

(i)
t 0 < α < 1

y (i)
t = h(Φt

t−1(x̂t−1; θ
(i)
t ))

State filter with EnKF: Use θ̂t to find P(xt |y1:t , θ̂t )

x (i)
t = Φt

t−1(x (i)
t−1; θ̂t ) + ν

(i)
t

y (i)
t = h(x (i)

t ; θ̂t )



Shrinkage of Kernel

Why not persistence model?: θt = θt−1
“Sample attrition” issue in re-weighting
(Parameter) particles always stay with the same sets of
initial guesses

Random Walk (Gordon-Salmon-Smith “jittering"):
θt = θt−1 + ηt

Lead to over-dispersion; posteriors are far too diffuse
A way to compensate this over-dispersion is done in the
framework of kernel smoothing [Liu&West 99]

Liu-West “jittering": θt = αθt−1 + (1− α)θt−1 + ηt

Push samples θt toward the ensemble mean before adding
a small degree of noise
ηt ∼ N (0,h2S), α =

√
1− h2, S is sample variance

0.1 ≤ h < 0.3
This is helpful to parameter learning only for static
parameters!



“Closure" parametrization

True model: L96-fast-slow system

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F − hc

b

Ny∑
j=1

yj,i︸ ︷︷ ︸
fi

dyj,i

dt
= cb(yj−1,i − yj+2,i)yj+1,i − cyj,i +

hc
b

xiyNy−1,i

F = 8, Nx = 18, Ny = 6, the coupling strength h = 1, the
time scale separation c = 10 and the magnitude of the fast
component b = 10
Forecast model: only slow variable, fast-scale process
paramatrized by

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F − g(t , xi)



Closure parametrization: L96-fast-slow

Warning: Model reduction is NOT the main goal for this
study
Stochastic: Assume g(t , xi) = θ1 + θ2xi + ei(t) [Wilks 2005]

ei(t) = φei(t −∆t) + σe(1− φ2)1/2ηi(t).

Try filter θ1, θ2,φ, and σe



Fitting with the truth run

(a) Fitting θ1 and θ2
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Correlogram
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Experimental setup: L96-fast-slow

The parameters are initially drawn from the following prior
distributions; θ1 ∼ N (3,2), θ2 ∼ N (−2,2), φ ∼ U(0.1,0.9),
and σe ∼ U(0.1,0.9).
Set δt = 50∆t .
N = 250 for Augmented ENKF and N = 200,M = 50 for
the two-stage filtering
Augmented ENKF “blows-up"



Comparing the posterior
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RMSE

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1  

φ

 

σ
e

0.35

0.4

0.45

0.5

0.55

0.6

(c) no assimilation

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1  

φ

 

σ
e

0.18

0.2

0.22

0.24

0.26

0.28

0.3

(d) state only assimilation


