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Introduction

Talk is mostly a literature review

A few comments on my own ongoing research

See Jasra “Approximate Bayesian Computation for a Class of
Time Series Models” arXiv (2014) for a thorough overview



Background: ABC and state space models
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Likelihood methods

Statistical inference often based on the likelihood

Probability (density) of data yobs given parameters θ

Maximum likelihood: choose θ which maximises this

Bayes: use likelihood and prior to form posterior parameter
distribution

Both rely on many evaluations of the likelihood for different θ
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Likelihood-free methods

For complex models likelihood evaluation can be too
expensive/impossible (examples later)

But often quick to simulate data given parameters

Motivates likelihood-free methods based on simulation

General idea:

Simulate data ysim from many θs
Select θs giving ysim ≈ yobs

These methods typically give approximate results



Background ABC filtering Parameter inference Degeneracy Conclusion

Approximate Bayesian Computation (ABC)

Puts likelihood-free idea into roughly Bayesian framework

Simple algorithm is to repeat these steps N times

Draw θ from prior
Draw ysim|θ from model
Accept θ if d(ysim, yobs) ≤ ε

Output θs are sample from approximation to the posterior

Approximation quality improves as ε→ 0

But sample size decreases

Choice of ε is a trade-off
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Curse of dimensionality / summary statistics

Quality of results worsens for high dimensional data

Can replace data y with low dimensional summary statistics
S(y)

i.e. accept if d(S(ysim),S(yobs)) ≤ ε
Some research in how to choose S well

e.g. Fearnhead and Prangle (2012)

But this adds further layers of approximation and tuning

For state space models better approaches possible
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State space models

Assume there is a latent Markov chain X1,X2, . . . ,XT

Observations are Y1,Y2, . . . ,YT

Yi is conditionally independent of everything given Xi

Informally: Yi depends only on Xi

Only Yi s observed. Xi s known as hidden/latent states.

Model sometimes referred to as a latent or hidden Markov
model.
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State space models

Often there is an evolution density:

π(Xt+1 = xt+1|Xt = xt , θ) = g(xt+1|xt , θ)

And an observation density:

π(Yt = yt |Xt = xt , θ) = h(yt , |xt , θ)

(Dependence on t possible as well)

Standard particle filter requires tractable observation density
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State space model inference goals

Parameter inference: θ|y1, y2, . . . , yt (learn parameters)

Filtering: xt |y1, y2, . . . , yt (learn current state)

Smoothing: x1, x2, . . . , xt |y1, y2, . . . , yt (learn historic states)

Prediction: xt+1|y1, y2, . . . , yt (learn future state)
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Main example: alpha-stable model

α-stable distribution is a model for heavy-tailed data

Often used in finance

Key parameter is α

Valid range is 0 < α ≤ 2

α = 2 is normal distribution

Smaller α gives heavier tails

e.g. α = 1 gives Cauchy distribution

For most α values the density does not have a closed form

Distribution also has location and scale parameters
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Main example: alpha-stable model

Latent states and observation both scalars

Some Markov model for latent states

Observation Yi is Xi plus α-stable draw

Application: daily log returns of a stock

Xi is “state of economy”

Yi is Xi plus short term variation - sometimes very large!

Simplest case is Xi constant - iid data
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Main example: plot
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Other examples

(Xt ,Yt) together form a Markov process

Xt is unobserved

Yt is observed exactly

This can be put into state space form

Observation density often not tractable

Several applications e.g. chemical reactions, infectious
diseases, population dynamics



ABC filtering
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ABC particle filter

Input: parameters θ, bandwidth ε > 0, number of particles N,
data yobs

1 , . . . , yobs
T

1 Initialise: let t = 1.

2 Sample x (i) values from prior for 1 ≤ i ≤ N

3 Simulate observations y (i) from π(y |x (i), θ)
4 Accept/reject

Let w (i) =

{
1 for ||yobs

t − y (i)||2 ≤ ε,
0 otherwise.

5 Increment t, resample and propagate particles.
Return to step 3.
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Variations

Alternative distance metric

Smooth weights

Summary statistics/data transformations

More later
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Filtering/smoothing output

Consider computing some function of states (e.g. mean)

Can compare algorithm output estimate with true value

Filtering problem: error is O(ε), not affected by amount of
data

Smoothing problem: error is O(T ε)

Strong assumptions required

Error can be controlled by increasing computational effort
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Likelihood estimate

Recall likelihood is density of observations given θ

Can get an estimate from particle filter

In ABC this is product of acceptance frequencies (and
constant)

i.e. C (ε)N
(1)
acc
N

N
(2)
acc
N . . .

Converges to the true value for N →∞, ε→∞ appropriately

(Lebesgue differentiation theorem)
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Degeneracy

A problem with ABC particle filtering is degeneracy

Zero acceptances at some iteration means algorithm cannot
continue

Smooth weights not much help

Possible solution later



Parameter inference
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Strategy

Get likelihood estimates at various θs using ABC PF

Use to approximate maximum likelihood estimator

Or to construct posterior distribution of θ
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Bayesian approach

Use an MCMC algorithm on θ

For each θ proposed, make an associated likelihood estimate
L̂(θ)

The stationary distribution is

∝ prior(θ)× E [L̂(θ)|θ]

This is posterior distribution if L̂(θ) unbiased

Not true for ABC so get an approximate posterior
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Maximum likelihood approach

Stochastic gradient ascent algorithms

Given θ estimate gradient of log likelihood

This can be done from ABC output (various papers)

Move along direction of greatest increase

Several papers on implementation details

This maximises E [L̂(θ)|θ]
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Comparison of methods

MLE approach faster

MLE approach can be updated quickly as new data arrive

Bayesian approach gives uncertainty quantification

Both currently require considerable tuning and assumptions
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Approximation quality

Both approaches effectively use an approximate likelihood

Lε(θ) = E [L̂(θ)|θ]

With MLE θ∗ε

Typically not equal to correct MLE, θ∗

But as ε→ 0, θ∗ε → θ∗
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Consistency

Consider ε > 0 and T →∞
i.e. large amount of data

Under some conditions true MLE converges to true parameter
values (“consistency”)

And θ∗ε converges to a nearby value



Background ABC filtering Parameter inference Degeneracy Conclusion

Noisy ABC: consistency

Noisy ABC adds iid noise to the observations before
performing ABC inference

From a particular noise observation (see next slide)

Achieves consistency: limT→∞ θ
∗
ε is correct even for ε > 0!

With enough data this approx method learns true parameters

But adding noise increases variance
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Noisy ABC: theory

ABC likelihood can be shown to be likelihood of a perturbed
model

Perturbation is adding measurement error

Error distribution is uniform with radius ε

Noisy ABC adds iid noise from same dist so that observations
are now “model+noise”

And the perturbed model is in fact correct

This gives consistency



Avoiding degeneracy
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Alive particle filter: motivation

Consider an iteration of ABC PF with data yi

N simulations performed

Degeneracy if all rejected

Alive PF uses adaptive N

Keeps simulating until M acceptances

(M prespecified)

Avoids degeneracy, has random run-time
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Alive particle filter: technical details

Care is needed in alive PF to get good likelihood estimate
properties

But details not needed in this talk

See Jasra et al (2013)
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Efficiency comparison

Work in progress!

Comparing number of simulations required

For standard ABC PF, this is number needed to avoid
degeneracy with given prob

Standard ABC PF cost is at best O(T logT )

Alive PF cost is at best O(T )
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Efficiency comparison: poor conditions

Both PFs have much higher cost in following situation

Tails of observations are heavy in comparison with tail of
proposals
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Efficiency comparison: improving performance

Transforming data to avoid heavy tails helpful

Modify alive PF to quit early once we know likelihood
estimate is low

Paper later in year hopefully!



Conclusion
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Summary 1

ABC allows inference based on model simulations only

Results are approximate

Summary statistics often necessary for high dim data, but add
further approximation

For simple state space models ABC particle filter can avoid
summary stats

Analyses each data point in sequence
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Summary 2

Filtering, smoothing, parameter inference discussed

Theory on convergence for ε→ 0

Noisy ABC allow consistent estimates

Alive PF avoid degeneracy problems
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Future directions

Tuning - in particular ε

Improving noisy ABC (e.g. multiple noise realisations)

Faster algorithms

More general theory - lots of assumptions currently needed

Higher dimensional data

Choosing between models

Alternative likelihood-free approaches (e.g. via expectation
propagation)
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