Numerical Model Error in 4D-Variational Data Assimilation

Siân Jenkins ${ }^{1,2}$
Chris Budd ${ }^{1} \quad$ Melina Freitag ${ }^{1} \quad$ Nathan Smith ${ }^{2}$
${ }^{1}$ Dept. Mathematical Sciences
${ }^{2}$ Dept. Electronic and Electrical Engineering
University of Bath
in association with the Met. Office

Reading, 13/03/2013

What is Data Assimilation?

Data assimilation is used to solve a particular kind of inverse problem:

Given a set of observations and a numerical model for a dynamical system, find the best estimate as to the true state of the system.

What is Data Assimilation?

Data assimilation is used to solve a particular kind of inverse problem:
Given a set of observations and a numerical model for a dynamical system, find the best estimate as to the true state of the system.

There are many different methods for data assimilation such as,

- the Kalman filter,
- 3D-Variational (3D-Var) data assimilation,
- 4D-Variational (4D-Var) data assimilation.

What is Variational Data Assimilation?

Variational data assimilation solves a specific formulation of the data assimilation problem:

Given a set of observations and a numerical model for a dynamical system, find an initial condition for the numerical model that provides the best approximation to the true state of the system, when a priori information for the initial condition is available.

What is Variational Data Assimilation?

Variational data assimilation solves a specific formulation of the data assimilation problem:

Given a set of observations and a numerical model for a dynamical system, find an initial condition for the numerical model that provides the best approximation to the true state of the system, when a priori information for the initial condition is available.

- There are two different methods generally used for answering this question,
- 3D-Variational (3D-Var) data assimilation,
- 4D-Variational (4D-Var) data assimilation.
- Both methods are used in current operational weather forecast centres to make short and long range weather predictions.

4D-Var Cost Function

4D-Var is formulated as a minimisation problem, where the 4D-Var cost function is minimised with respect to the initial condition for the system.

$$
\min _{\mathbf{x}_{0}} J\left(\mathbf{x}_{0}\right)
$$

where,

$$
\begin{aligned}
J\left(\mathbf{x}_{0}\right)= & \left(\mathbf{x}_{0}-\mathbf{x}_{b}\right)^{T} B^{-1}\left(\mathbf{x}_{0}-\mathbf{x}_{b}\right) \\
& +\sum_{l=0}^{L}\left[\mathbf{y}_{l}-\mathcal{H}_{l}\left(\mathbf{x}_{l}\right)\right]^{T} \mathcal{R}_{l}^{-1}\left[\mathbf{y}_{l}-\mathcal{H}_{l}\left(\mathbf{x}_{l}\right)\right] \\
\mathbf{x}_{l+1}= & \mathcal{M}_{l+1, l}\left(\mathbf{x}_{l}\right)
\end{aligned}
$$

- The cost function finds the weighted least squares solution between the sets of observations and the results of the numerical model using x_{b} as the initial condition.

Errors in Variational Data Assimilation

The errors in variational data assimilation can be divided into four sources,

- background errors,
- observational errors: miscalibration of instrumentation,
- representative errors: discretisation errors,
- model error $\left\{\begin{array}{l}\text { inaccurate model equations, } \\ \text { inaccurate numerical model. }\end{array}\right.$

Assumptions

Remove all forms of error other than numerical model error and observations errors,

- Neglect the background term of the cost function,
- Take observations at every temporal and spatial grid point $\Rightarrow \mathcal{H}_{l}=I_{N} \quad \forall l$,
- Observations: $\mathbf{y}_{l}=\tilde{\mathbf{y}}_{l}+\epsilon_{l}$ such that ϵ_{l} iid $\mathcal{N}\left(\mathbf{0}, \sigma_{o}^{2} I_{N}\right), \sigma_{o} \in \mathbb{R}$, $\Rightarrow \mathcal{R}_{l}=\sigma_{o}^{2} I_{N} \quad \forall l$.

Assumptions

Remove all forms of error other than numerical model error and observations errors,

- Neglect the background term of the cost function,
- Take observations at every temporal and spatial grid point $\Rightarrow \mathcal{H}_{l}=I_{N} \quad \forall l$,
- Observations: $\mathbf{y}_{l}=\tilde{\mathbf{y}}_{l}+\epsilon_{l}$ such that ϵ_{l} iid $\mathcal{N}\left(\mathbf{0}, \sigma_{o}^{2} I_{N}\right), \sigma_{o} \in \mathbb{R}$, $\Rightarrow \mathcal{R}_{l}=\sigma_{o}^{2} I_{N} \quad \forall l$.

$$
\begin{aligned}
J\left(\mathbf{x}_{0}\right) & =\frac{1}{\sigma_{o}^{2}} \sum_{l=0}^{L}\left[\mathbf{y}_{l}-\mathbf{x}_{l}\right]^{T}\left[\mathbf{y}_{l}-\mathbf{x}_{l}\right] \\
\mathbf{x}_{l+1} & =\mathcal{M}_{l+1, l}\left(\mathbf{x}_{l}\right)
\end{aligned}
$$

Linear Advection Equation

- Consider the linear advection equation, $u: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, \quad(d, t) \mapsto u(d, t)$,

$$
\begin{array}{ll}
u_{t}+\eta u_{d}=0, & d \in[0,1), t>0 \\
u(d, t)=u(d+1, t), & d \in \mathbb{R}, t \geq 0 \\
u(d, 0)=u_{0}(d), & d \in[0,1)
\end{array}
$$

Here the wave speed is $\eta \in \mathbb{R}$.

- The true solution is $u(d, t)=u_{0}(d-\eta t)$ for some function $f: \mathbb{R} \rightarrow \mathbb{R}$.

Numerical Dissipation and Dispersion

The initial condition $u_{0}(d)$ can be considered in the form of a Fourier series,

$$
u_{0}(d) \approx \sum_{p=-\infty}^{\infty} c_{p} e^{2 \pi i p d}, \text { where } c_{p}=\int_{0}^{1} u(d, 0) e^{-2 \pi i p d} d d
$$

Definition

- Dissipation - The amplitude of the component waves decrease over time.
- Dispersion - The component waves move out of phase over time.

Numerical Schemes: $u_{t}(d, t)+\eta u_{d}(d, t)=0$

Consider a uniform grid with $N+1$ spatial mesh points with a spatial step size Δd and timestep Δt. Let $U_{j}^{n} \approx u\left(x_{j}, t^{n}\right)$ at each grid point, $t^{n}=n \Delta t, x_{j}=j \Delta x$. Also, let $h=\eta \frac{\Delta t}{\Delta x}$. The following finite difference schemes are considered,

- the Upwind (explicit) scheme,

$$
U_{j}^{n+1}=h U_{j-1}^{n}+(1-h) U_{j}^{n}
$$

- the Preissman Box (implicit) scheme,

$$
(1-h) U_{j}^{n+1}+(1+h) U_{j+1}^{n+1}=(1+h) U_{j}^{n}+(1-h) U_{j+1}^{n}
$$

- the Lax-Wendroff (explicit) scheme,

$$
U_{j}^{n+1}=\frac{h}{2}(h+1) U_{j-1}^{n}+\left(1-h^{2}\right) U_{j}^{n}+\frac{h}{2}(h-1) U_{j+1}^{n},
$$

Eigenvalue and Eigenvector Analysis

- Each of the methods discussed can be expressed in the form:

$$
\mathbf{U}^{n+1}=M \mathbf{U}^{n}
$$

where the j th element of \mathbf{U}^{n} is $U_{j-1}^{n}, M \in \mathbb{R}^{N \times N}$.

Eigenvalue and Eigenvector Analysis

- Each of the methods discussed can be expressed in the form:

$$
\mathbf{U}^{n+1}=M \mathbf{U}^{n}
$$

where the j th element of \mathbf{U}^{n} is $U_{j-1}^{n}, M \in \mathbb{R}^{N \times N}$.

- For the Upwind scheme,

$$
M=\left[\begin{array}{ccccc}
1-h & 0 & & & h \\
h & 1-h & 0 & & \\
& \ddots & \ddots & \ddots & \\
& & h & 1-h & 0 \\
& & & h & 1-h
\end{array}\right]
$$

Eigenvectors of M

$$
M=V \Lambda V^{*}
$$

- .* denotes Hermitian. $\Lambda=\operatorname{diag}\left(\lambda_{p}\right)$, where $\lambda_{p} \in \mathbb{C}$ are the eigenvalues.

Eigenvectors of M

$$
M=V \Lambda V^{*}
$$

- .* denotes Hermitian. $\Lambda=\operatorname{diag}\left(\lambda_{p}\right)$, where $\lambda_{p} \in \mathbb{C}$ are the eigenvalues.
- As M is a circulant matrix, it has eigenvectors,

$$
\left[\mathbf{v}_{p}\right]_{q}=\frac{1}{\sqrt{N}} e^{\frac{2 \pi i(p-1)(q-1)}{N}}=\frac{1}{\sqrt{N}} e^{2 \pi i(p-1) d_{q}}
$$

- The p th eigenvector is the $(p-1)$ th wavenumber component of the Fourier series for $u_{0}(d)$, sampled at the N mesh points.

Eigenvectors of M

$$
M=V \Lambda V^{*}
$$

- .* denotes Hermitian. $\Lambda=\operatorname{diag}\left(\lambda_{p}\right)$, where $\lambda_{p} \in \mathbb{C}$ are the eigenvalues.
- As M is a circulant matrix, it has eigenvectors,

$$
\left[\mathbf{v}_{p}\right]_{q}=\frac{1}{\sqrt{N}} e^{\frac{2 \pi i(p-1)(q-1)}{N}}=\frac{1}{\sqrt{N}} e^{2 \pi i(p-1) d_{q}}
$$

- The p th eigenvector is the $(p-1)$ th wavenumber component of the Fourier series for $u_{0}(d)$, sampled at the N mesh points.

$$
\mathbf{U}^{0}=\sum_{p=1}^{N}\left(\mathbf{v}_{p}^{*} \mathbf{U}^{0}\right) \mathbf{v}_{p}
$$

Eigenvalues of M

The eigenvalues determine the propagation of the wavenumber components of $u_{0}(d)$,

$$
\mathbf{U}^{n}=V \Lambda^{n} V^{*} \mathbf{U}^{0}
$$

The eigenvalues of M control the magnitude and phase shift of each eigenvector,

$$
\lambda_{p}=\left|\lambda_{p}\right| e^{i \theta_{p}}, \quad \theta_{p} \in(-2 \pi, 0] .
$$

- $\left|\lambda_{p}\right|$ affects the amplitude of \mathbf{v}_{p},
- $e^{i \theta_{p}}$ affects the phase shift of \mathbf{v}_{p}.

Eigenvalues of M

The eigenvalues determine the propagation of the wavenumber components of $u_{0}(d)$,

$$
\mathbf{U}^{n}=V \Lambda^{n} V^{*} \mathbf{U}^{0}
$$

The eigenvalues of M control the magnitude and phase shift of each eigenvector,

$$
\lambda_{p}=\left|\lambda_{p}\right| e^{i \theta_{p}}, \quad \theta_{p} \in(-2 \pi, 0]
$$

- $\left|\lambda_{p}\right|$ affects the amplitude of \mathbf{v}_{p},
- $e^{i \theta_{p}}$ affects the phase shift of \mathbf{v}_{p}.

The ideal model would possess $\left|\lambda_{p}\right|=1$.

Sample Error

- The system is constructed from the N distinguishable wavenumber components on the spatial mesh, represented by the eigenvectors, $\left\{\mathbf{v}_{p}\right\}_{p=1}^{N}$.
- The unresolvable wavenumber components are aliased to these.
- The coefficient of \mathbf{v}_{p} in \mathbf{U}^{0} is given by the Poisson equation,

$$
\mathbf{v}_{p}^{*} \mathbf{U}^{0}=\sum_{k=-\infty}^{\infty} c_{p+k N}
$$

Sample Error

- The system is constructed from the N distinguishable wavenumber components on the spatial mesh, represented by the eigenvectors, $\left\{\mathbf{v}_{p}\right\}_{p=1}^{N}$.
- The unresolvable wavenumber components are aliased to these.
- The coefficient of \mathbf{v}_{p} in \mathbf{U}^{0} is given by the Poisson equation,

$$
\mathbf{v}_{p}^{*} \mathbf{U}^{0}=\sum_{k=-\infty}^{\infty} c_{p+k N}
$$

- If λ_{p} applies no numerical dissipation or dispersion to \mathbf{v}_{p}, it may still apply numerical dispersion to the aliased wavenumber components.

Sample Error: MNIMC scheme, $h=0.5$

- $t=0$:

Sample Error: MNIMC scheme, $h=0.5$

- $t=\Delta t$

Sample Error: MNIMC scheme, $h=0.5$

- $t=2 \Delta t=\Delta x \quad($ as $\eta=1)$

Perfect Observations: NIMC

- Could construct perfect observations using the Numerical Implementation of the Method of Characteristics

$$
U_{j}^{n+1}=h U_{j-1}^{n}
$$

implemented by the matrix $M_{\text {NIMC }}$.

Perfect Observations: NIMC

- Could construct perfect observations using the Numerical Implementation of the Method of Characteristics

$$
U_{j}^{n+1}=h U_{j-1}^{n}
$$

implemented by the matrix $M_{\text {NIMC }}$.

- Always numerically non-dispersive and does not introduce sample error.
- Only numerically stable and non-dissipative when $h=1$.

Perfect Observations: NIMC

- Could construct perfect observations using the Numerical Implementation of the Method of Characteristics

$$
U_{j}^{n+1}=h U_{j-1}^{n}
$$

implemented by the matrix $M_{\text {NIMC }}$.

- Always numerically non-dispersive and does not introduce sample error.
- Only numerically stable and non-dissipative when $h=1$.
- As a result, produces perfect observations every $\Delta t=\frac{\Delta d}{\eta}$.
- Imperfect scheme produces observations every $\Delta t=\frac{h \Delta d}{\eta}$.

Perfect Observations: MNIMC

- Perfect observations are generated by the Modified NIMC (MNIMC) finite difference scheme implemented by the matrix $\tilde{M}=V \tilde{\Lambda} V^{*}$, where $\tilde{\lambda}_{p}=e^{i \tilde{\theta}_{p}}$ and N is odd such that

$$
\tilde{\theta}_{p}= \begin{cases}\frac{-2 \pi i(p-1) h}{N}, & \text { for } p \leq \frac{N+1}{2} \\ 2 \pi\left[(h-1)-\frac{(p-1) h}{N}\right], & \text { for } p>\frac{N+1}{2}\end{cases}
$$

Perfect Observations: MNIMC

- Perfect observations are generated by the Modified NIMC (MNIMC) finite difference scheme implemented by the matrix $\tilde{M}=V \tilde{\Lambda} V^{*}$, where $\tilde{\lambda}_{p}=e^{i \tilde{\theta}_{p}}$ and N is odd such that

$$
\tilde{\theta}_{p}= \begin{cases}\frac{-2 \pi i(p-1) h}{N}, & \text { for } p \leq \frac{N+1}{2} \\ 2 \pi\left[(h-1)-\frac{(p-1) h}{N}\right], & \text { for } p>\frac{N+1}{2}\end{cases}
$$

- Eigenvectors do not introduce numerical dissipation or dispersion into the resolvable wavenumber components.

Perfect Observations: MNIMC

- Perfect observations are generated by the Modified NIMC (MNIMC) finite difference scheme implemented by the matrix $\tilde{M}=V \tilde{\Lambda} V^{*}$, where $\tilde{\lambda}_{p}=e^{i \tilde{\theta}_{p}}$ and N is odd such that

$$
\tilde{\theta}_{p}= \begin{cases}\frac{-2 \pi i(p-1) h}{N}, & \text { for } p \leq \frac{N+1}{2} \\ 2 \pi\left[(h-1)-\frac{(p-1) h}{N}\right], & \text { for } p>\frac{N+1}{2}\end{cases}
$$

- Eigenvectors do not introduce numerical dissipation or dispersion into the resolvable wavenumber components.
- Introduces sample error, so need to add a correction term \mathbf{r}_{l}

$$
\tilde{\mathbf{y}}_{l}=\tilde{M}^{l} \mathbf{U}^{0}+\mathbf{r}_{l}
$$

Dissipation and Dispersion

Choosing $h=0.5$ results in,

- Upwind: Dissipative,
- Box: Dispersive,
- Lax-Wendroff: Dissipative and Dispersive.
with respect to the resolvable wavenumber components represented by the eigenvectors.

4D-Var Cost Function

Using the finite difference scheme implemented by the matrix M as the forward model, $\mathcal{M}_{l+1, l}:=M$ and $\mathbf{x}_{l}:=\mathbf{U}^{l} \forall l$. Hence,

$$
J\left(\mathbf{x}_{0}\right)=\frac{1}{\sigma_{o}^{2}} \sum_{l=0}^{L}\left[\mathbf{y}_{l}-M^{l} \mathbf{x}_{0}\right]^{T}\left[\mathbf{y}_{l}-M^{l} \mathbf{x}_{0}\right]
$$

4D-Var Cost Function

Using the finite difference scheme implemented by the matrix M as the forward model, $\mathcal{M}_{l+1, l}:=M$ and $\mathbf{x}_{l}:=\mathbf{U}^{l} \forall l$. Hence,

$$
J\left(\mathbf{x}_{0}\right)=\frac{1}{\sigma_{o}^{2}} \sum_{l=0}^{L}\left[\mathbf{y}_{l}-M^{l} \mathbf{x}_{0}\right]^{T}\left[\mathbf{y}_{l}-M^{l} \mathbf{x}_{0}\right]
$$

Consider,

- Initially consider perfect observations ie: $\mathbf{y}_{l}=\tilde{\mathbf{y}}_{l} \forall l$. Arbitrarily choose $\sigma_{o}^{2}=1$.
- Then re-introduce observation errors.

Analysing Fourier Components

Let $h=\frac{q}{a}, q, a, \in \mathbb{Z}$ such that $\operatorname{gcd}(q, a)=1$. Then the analysis vector for perfect observations can be written as,

$$
\mathbf{x}_{a}=A_{L} \tilde{\mathbf{x}}_{0}+\rho_{L}
$$

where the model resolution matrix $A_{L} \in \mathbb{R}^{N \times N}$ and $\rho_{L} \in \mathbb{R}^{N}$ are,

$$
\begin{gathered}
A_{L}=V\left[\sum_{r=0}^{L}\left(\Lambda^{*} \Lambda\right)^{r}\right]^{-1}\left[\sum_{l=0}^{L}\left(\Lambda^{*} \tilde{\Lambda}\right)^{l}\right] V^{*} \\
\rho_{L}=V\left[\sum_{r=0}^{L}\left(\Lambda^{*} \Lambda\right)^{r}\right]^{-1}\left[\left\{\sum_{l=0}^{\frac{L-[L]_{a}}{a}-1}\left(\Lambda^{*} \tilde{\Lambda}\right)^{l a}\right\}\left\{\sum_{y=1}^{a-1}\left(\Lambda^{*}\right)^{y} V^{*} \mathbf{r}_{y}\right\}\right. \\
\left.+\left(\Lambda^{*} \tilde{\Lambda}\right)^{L-[L]_{a}}\left\{\sum_{y=1}^{[L]_{a}}\left(\Lambda^{*}\right)^{y} V^{*} \mathbf{r}_{y}\right\}\right]
\end{gathered}
$$

where $[\cdot]_{a}$ denotes modulo a.

Analysing Fourier Components

Let $h=\frac{q}{a}, q, a, \in \mathbb{Z}$ such that $\operatorname{gcd}(q, a)=1$. Then the analysis vector for perfect observations can be written as,

$$
\mathbf{x}_{a}=A_{L} \tilde{\mathbf{x}}_{0}+\rho_{L}
$$

where the model resolution matrix $A_{L} \in \mathbb{R}^{N \times N}$ and $\rho_{L} \in \mathbb{R}^{N}$ are,

$$
\begin{gathered}
A_{L}=V\left[\sum_{r=0}^{L}\left(\Lambda^{*} \Lambda\right)^{r}\right]^{-1}\left[\sum_{l=0}^{L}\left(\Lambda^{*} \tilde{\Lambda}\right)^{l}\right] V^{*} \\
\rho_{L}=V\left[\sum_{r=0}^{L}\left(\Lambda^{*} \Lambda\right)^{r}\right]^{-1}\left[\left\{\sum_{l=0}^{\frac{L-[L]_{a}}{a}-1}\left(\Lambda^{*} \tilde{\Lambda}\right)^{l a}\right\}\left\{\sum_{y=1}^{a-1}\left(\Lambda^{*}\right)^{y} V^{*} \mathbf{r}_{y}\right\}\right. \\
\left.+\left(\Lambda^{*} \tilde{\Lambda}\right)^{L-[L]_{a}}\left\{\sum_{y=1}^{[L]_{a}}\left(\Lambda^{*}\right)^{y} V^{*} \mathbf{r}_{y}\right\}\right]
\end{gathered}
$$

where $[\cdot]_{a}$ denotes modulo a.

Analysing Fourier Components

Let $h=\frac{q}{a}, q, a, \in \mathbb{Z}$ such that $\operatorname{gcd}(q, a)=1$. Then the analysis vector for perfect observations can be written as,

$$
\mathbf{x}_{a}=A_{L} \tilde{\mathbf{x}}_{0}+\rho_{L}
$$

where the model resolution matrix $A_{L} \in \mathbb{R}^{N \times N}$ and $\rho_{L} \in \mathbb{R}^{N}$ are,

$$
\begin{gathered}
A_{L}=V\left[\sum_{r=0}^{L}\left(\Lambda^{*} \Lambda\right)^{r}\right]^{-1}\left[\sum_{l=0}^{L}\left(\Lambda^{*} \tilde{\Lambda}\right)^{l}\right] V^{*} \\
\rho_{L}=V\left[\sum_{r=0}^{L}\left(\Lambda^{*} \Lambda\right)^{r}\right]^{-1}\left[\left\{\sum_{l=0}^{\frac{L-[L]_{a}}{a}-1}\left(\Lambda^{*} \tilde{\Lambda}\right)^{l a}\right\}\left\{\sum_{y=1}^{a-1}\left(\Lambda^{*}\right)^{y} V^{*} \mathbf{r}_{y}\right\}\right. \\
\left.+\left(\Lambda^{*} \tilde{\Lambda}\right)^{L-[L]_{a}}\left\{\sum_{y=1}^{[L]_{a}}\left(\Lambda^{*}\right)^{y} V^{*} \mathbf{r}_{y}\right\}\right]
\end{gathered}
$$

where $[\cdot]_{a}$ denotes modulo a.

Analysing Fourier Components

Let $h=\frac{q}{a}, q, \mathrm{a}, \in \mathbb{Z}$ such that $\operatorname{gcd}(q, \mathrm{a})=1$. Then the analysis vector for perfect observations can be written as,

$$
\mathbf{x}_{a}=A_{L} \tilde{\mathbf{x}}_{0}+\rho_{L}
$$

where the model resolution matrix $A_{L} \in \mathbb{R}^{N \times N}$ and $\rho_{L} \in \mathbb{R}^{N}$ are,

$$
\begin{gathered}
A_{L}=V\left[\sum_{r=0}^{L}\left(\Lambda^{*} \Lambda\right)^{r}\right]^{-1}\left[\sum_{l=0}^{L}\left(\Lambda^{*} \tilde{\Lambda}\right)^{l}\right] V^{*} \\
\rho_{L}=V\left[\sum_{r=0}^{L}\left(\Lambda^{*} \Lambda\right)^{r}\right]^{-1}\left[\left\{\sum_{l=0}^{\frac{L-[L]_{\mathbf{a}}}{\mathrm{a}}-1}\left(\Lambda^{*} \tilde{\Lambda}\right)^{l a}\right\}\left\{\sum_{y=1}^{\mathrm{a}-1}\left(\Lambda^{*}\right)^{y} V^{*} \mathbf{r}_{y}\right\}\right. \\
\left.+\left(\Lambda^{*} \tilde{\Lambda}\right)^{L-[L]_{\mathrm{a}}}\left\{\sum_{y=1}^{[L]_{\mathrm{a}}}\left(\Lambda^{*}\right)^{y} V^{*} \mathbf{r}_{y}\right\}\right]
\end{gathered}
$$

where $[\cdot]$ a denotes modulo a.

Non-Dispersive Eigenvalues: Upwind Scheme

$N=101, L=4: A_{L}=V \operatorname{diag}\left(\nu_{p}\right) V^{*}$

Non-Dispersive Eigenvalues: Upwind Scheme

$N=101, L=4: A_{L}=V \operatorname{diag}\left(\nu_{p}\right) V^{*}$

Non-Dispersive Eigenvalues: Upwind Scheme

$N=101, L=4: A_{L} \tilde{\mathbf{x}}_{0}$

Non-Dispersive Eigenvalues: Upwind Scheme

$$
N=101, L=4: \rho_{L}
$$

Non-Dispersive Eigenvalues: Upwind Scheme

$$
N=101, L=4: \mathbf{x}_{a}=A_{L} \tilde{\mathbf{x}}_{0}+\rho_{L}
$$

Non-Dissipative Eigenvalues: Preissman Box Scheme

$N=101, L=4: A_{L}=V \operatorname{diag}\left(\nu_{p}\right) V^{*}$

Non-Dissipative Eigenvalues: Preissman Box Scheme

$N=101, L=4: A_{L}=V \operatorname{diag}\left(\nu_{p}\right) V^{*}$

Non-Dissipative Eigenvalues: Preissman Box Scheme

$$
N=101, L=4: \mathbf{x}_{a}=A_{L} \tilde{\mathbf{x}}_{0}+\rho_{L}
$$

Dissipative and Dispersive Eigenvalues: Lax-Wendroff Scheme

$$
N=101, L=4: A_{L}=V \operatorname{diag}\left(\nu_{p}\right) V^{*}
$$

Dissipative and Dispersive Eigenvalues: Lax-Wendroff Scheme

$$
N=101, L=4: A_{L}=V \operatorname{diag}\left(\nu_{p}\right) V^{*}
$$

Dissipative and Dispersive Eigenvalues: Lax-Wendroff

Scheme

$$
N=101, L=4: \mathbf{x}_{a}=A_{L} \tilde{\mathbf{x}}_{0}+\rho_{L}
$$

Upper Bound

$$
\begin{aligned}
\left\|\tilde{\mathbf{x}}_{0}-\mathbf{x}_{a}\right\|_{2}^{2} \leq & N\left\{\left|1-\nu_{1}\right| D_{1}+\left(\left|1-\nu_{1}\right|-2 \xi_{1}\right) \frac{D_{3}}{N^{\mathrm{r}+1}}\right\}^{2} \\
& +N \sum_{p=2}^{\frac{N+1}{2}}\left\{\left|1-\nu_{p}\right| \frac{D_{2}}{(p-1)^{\mathrm{r}+1}}+\left(\left|1-\nu_{p}\right|-2 \xi_{p}\right) \frac{D_{3}}{N^{\mathrm{r}+1}}\right\}^{2} \\
& +N \sum_{p=\frac{N+3}{2}}^{N}\left(\left|1-\nu_{p}\right|-2 \xi_{p}\right)^{2}\left(\frac{D_{2}}{(p-1)^{\mathrm{r}+1}}+\frac{D_{3}}{N^{\mathrm{r}+1}}\right)^{2}
\end{aligned}
$$

where D_{1}, D_{2} and D_{3} are constants independent of p and $N, \mathrm{r} \in \mathbb{N}_{0}$ denotes the regularity of the initial condition $u(d, 0)$ and

$$
\xi_{p}=\frac{\left\lvert\, \sum_{l=0}^{\frac{L-[L]_{a}}{a}}-1\right.}{\left.\left[\left|\lambda_{p}\right|^{a} e^{i a \phi_{p}}\right]^{l}\left|\left\{\sum_{y=1}^{a-1}\left|\lambda_{p}\right|^{y}\right\}+\left|\lambda_{p}\right|^{L-[L]_{a}} \sum_{y=1}^{[L]_{a}}\right| \lambda_{p}\right|^{y}} \underset{\sum_{s=0}^{L}\left|\lambda_{p}\right|^{2 s}}{\text {. }}
$$

Upper Bound

$$
\begin{aligned}
\left\|\tilde{\mathbf{x}}_{0}-\mathbf{x}_{a}\right\|_{2}^{2} \leq & N\left\{\left|1-\nu_{1}\right| D_{1}+\left(\left|1-\nu_{1}\right|-2 \xi_{1}\right) \frac{D_{3}}{N^{\mathrm{r}+1}}\right\}^{2} \\
& +N \sum_{p=2}^{\frac{N+1}{2}}\left\{\left|1-\nu_{p}\right| \frac{D_{2}}{(p-1)^{\mathrm{r}+1}}+\left(\left|1-\nu_{p}\right|-2 \xi_{p}\right) \frac{D_{3}}{N^{\mathrm{r}+1}}\right\}^{2} \\
& +N \sum_{p=\frac{N+3}{2}}^{N}\left(\left|1-\nu_{p}\right|-2 \xi_{p}\right)^{2}\left(\frac{D_{2}}{(p-1)^{\mathrm{r}+1}}+\frac{D_{3}}{N^{\mathrm{r}+1}}\right)^{2}
\end{aligned}
$$

where D_{1}, D_{2} and D_{3} are constants independent of p and $N, \mathrm{r} \in \mathbb{N}_{0}$ denotes the regularity of the initial condition $u(d, 0)$ and

$$
\xi_{p}=\frac{\left\lvert\, \sum_{l=0}^{\frac{L-[L]_{a}}{a}}-1\right.}{\left.\left[\left|\lambda_{p}\right|^{a} e^{i a \phi_{p}}\right]^{l}\left|\left\{\sum_{y=1}^{a-1}\left|\lambda_{p}\right|^{y}\right\}+\left|\lambda_{p}\right|^{L-[L]_{a}} \sum_{y=1}^{[L]_{a}}\right| \lambda_{p}\right|^{y}} \underset{\sum_{s=0}^{L}\left|\lambda_{p}\right|^{2 s}}{\text {. }}
$$

Upper Bound

$$
\begin{aligned}
\left\|\tilde{\mathbf{x}}_{0}-\mathbf{x}_{a}\right\|_{2}^{2} \leq & N\left\{\left|1-\nu_{1}\right| D_{1}+\left(\left|1-\nu_{1}\right|-2 \xi_{1}\right) \frac{D_{3}}{N^{\mathbf{r}+1}}\right\}^{2} \\
& +N \sum_{p=2}^{\frac{N+1}{2}}\left\{\left|1-\nu_{p}\right| \frac{D_{2}}{(p-1)^{\mathbf{r}+1}}+\left(\left|1-\nu_{p}\right|-2 \xi_{p}\right) \frac{D_{3}}{N^{\mathrm{r}+1}}\right\}^{2} \\
& +N \sum_{p=\frac{N+3}{2}}^{N}\left(\left|1-\nu_{p}\right|-2 \xi_{p}\right)^{2}\left(\frac{D_{2}}{(p-1)^{\mathrm{r}+1}}+\frac{D_{3}}{N^{\mathrm{r}+1}}\right)^{2}
\end{aligned}
$$

where D_{1}, D_{2} and D_{3} are constants independent of p and $N, \mathrm{r} \in \mathbb{N}_{0}$ denotes the regularity of the initial condition $u(d, 0)$ and

$$
\xi_{p}=\frac{\left|\sum_{l=0}^{\frac{L-[L]_{\mathbf{a}}}{\mathbf{a}}-1}\left[\left|\lambda_{p}\right|^{\mathbf{a}} e^{i \mathbf{a} \phi_{p}}\right]^{l}\right|\left\{\sum_{y=1}^{\mathbf{a}-1}\left|\lambda_{p}\right|^{y}\right\}+\left|\lambda_{p}\right|^{L-[L]_{\mathbf{a}}} \sum_{y=1}^{[L]_{\mathbf{a}}}\left|\lambda_{p}\right|^{y}}{\sum_{s=0}^{L}\left|\lambda_{p}\right|^{2 s}}
$$

Numerical Results

Order of convergence to zero wrt N^{α} or L^{β}.

r	α		β	
	Upper Bound	Data Assimilation	Upper Bound	Data Assimilation
0	-6.7708×10^{-15}	1.4148×10^{-15}	5.7945×10^{-1}	5.6939×10^{-1}
1	-2.0000	-2.2612	1.5053	1.5096
∞	-3.0000	-3.0000	2.0000	2.0000

Numerical Model Error

The order of convergence of $\left\|\mathbf{x}_{a}-\tilde{\mathbf{x}}_{0}\right\|_{2}^{2}$ to zero, with respect to $N . L=4$ and $\alpha=2: 7$ such that $N=3^{\alpha}$.

Numerical Model Error

The order of convergence of $\left\|\mathbf{x}_{a}-\tilde{\mathbf{x}}_{0}\right\|_{2}^{2}$ to zero, with respect to L. $N=3^{7}$ and $\alpha=0: 9$ such that $L=2^{\beta}$.

Observation and Numerical Model Errors

The order of convergence of $\left\|\mathbf{x}_{a}-\tilde{\mathbf{x}}_{0}\right\|_{2}^{2}$ to zero, with respect to N. $L=4, \sigma_{o}^{2}=5 \times 10^{-6}$ and $\alpha=2: 7$ such that $N=3^{\alpha}$.

Observation and Numerical Model Errors

The order of convergence of $\left\|\mathbf{x}_{a}-\tilde{\mathbf{x}}_{0}\right\|_{2}^{2}$ to zero, with respect to L. $N=3^{7}, \sigma_{o}^{2}=5 \times 10^{-9}$ and $\alpha=0: 9$ such that $L=2^{\beta}$.

Summary

Conclusion

- Dispersive schemes result in destructive interference. This leads to a loss of information in the analysis vector and its subsequent forecast.
- The order of convergence of $\left\|\tilde{\mathbf{x}}_{o}-\mathbf{x}_{a}\right\|_{2}^{2}$ to zero, with respect to N, is dependent on the regularity of $u_{0}(d)$.
- There is a critical value of N where the effects of both numerical model error and observation error are minimised.

Future Work

In the future we aim to,

- Quantify and reduce the effects of numerical dispersion and dissipation on the forecast,
- Consider the linearised shallow water equations,
- Investigate realistic meteorological methods and models.

