Numerical Model Error in 4D-Variational Data Assimilation

$\begin{array}{rl} {\sf Siân \ Jenkins^{1,2}}\\ {\sf Chris \ Budd} \ ^1 & {\sf Melina \ Freitag} \ ^1 & {\sf Nathan \ Smith} \ ^2 \end{array}$

¹Dept. Mathematical Sciences ²Dept. Electronic and Electrical Engineering University of Bath

in association with the Met. Office

Reading, 13/03/2013

Centre for Nonlinear Mechanics

Data assimilation is used to solve a particular kind of inverse problem:

Given a set of observations and a numerical model for a dynamical system, find the best estimate as to the true state of the system.

Data assimilation is used to solve a particular kind of inverse problem:

Given a set of observations and a numerical model for a dynamical system, find the best estimate as to the true state of the system.

There are many different methods for data assimilation such as,

- the Kalman filter,
- 3D-Variational (3D-Var) data assimilation,
- 4D-Variational (4D-Var) data assimilation.

What is Variational Data Assimilation?

Variational data assimilation solves a specific formulation of the data assimilation problem:

Given a set of observations and a numerical model for a dynamical system, find an initial condition for the numerical model that provides the best approximation to the true state of the system, when a priori information for the initial condition is available.

What is Variational Data Assimilation?

Variational data assimilation solves a specific formulation of the data assimilation problem:

Given a set of observations and a numerical model for a dynamical system, find an initial condition for the numerical model that provides the best approximation to the true state of the system, when a priori information for the initial condition is available.

- There are two different methods generally used for answering this question,
 - 3D-Variational (3D-Var) data assimilation,
 - ► 4D-Variational (4D-Var) data assimilation.
- Both methods are used in current operational weather forecast centres to make short and long range weather predictions.

4D-Var Cost Function

4D-Var is formulated as a minimisation problem, where the 4D-Var cost function is minimised with respect to the initial condition for the system.

 $\min_{\mathbf{x}_0} J(\mathbf{x}_0)$

where,

$$J(\mathbf{x}_0) = (\mathbf{x}_0 - \mathbf{x}_b)^T B^{-1}(\mathbf{x}_0 - \mathbf{x}_b) + \sum_{l=0}^L [\mathbf{y}_l - \mathcal{H}_l(\mathbf{x}_l)]^T \mathcal{R}_l^{-1} [\mathbf{y}_l - \mathcal{H}_l(\mathbf{x}_l)] \mathbf{x}_{l+1} = \mathcal{M}_{l+1,l}(\mathbf{x}_l)$$

 The cost function finds the weighted least squares solution between the sets of observations and the results of the numerical model using x_b as the initial condition.

Siân Jenkins (University of Bath)

Model Error in DA

The errors in variational data assimilation can be divided into four sources,

- background errors,
- observational errors: miscalibration of instrumentation,
- representative errors: discretisation errors,

• model error { inaccurate model equations, inaccurate numerical model.

Remove all forms of error other than numerical model error and observations errors,

- Neglect the background term of the cost function,
- Take observations at every temporal and spatial grid point $\Rightarrow \mathcal{H}_l = I_N \ \forall l,$
- Observations: $\mathbf{y}_l = \tilde{\mathbf{y}}_l + \boldsymbol{\epsilon}_l$ such that $\boldsymbol{\epsilon}_l$ iid $\mathcal{N}(\mathbf{0}, \sigma_o^2 I_N)$, $\sigma_o \in \mathbb{R}$, $\Rightarrow \mathcal{R}_l = \sigma_o^2 I_N \quad \forall l.$

Remove all forms of error other than numerical model error and observations errors,

- Neglect the background term of the cost function,
- Take observations at every temporal and spatial grid point $\Rightarrow \mathcal{H}_l = I_N \ \forall l,$
- Observations: $\mathbf{y}_l = \tilde{\mathbf{y}}_l + \boldsymbol{\epsilon}_l$ such that $\boldsymbol{\epsilon}_l$ iid $\mathcal{N}(\mathbf{0}, \sigma_o^2 I_N)$, $\sigma_o \in \mathbb{R}$, $\Rightarrow \mathcal{R}_l = \sigma_o^2 I_N \quad \forall l.$

$$J(\mathbf{x}_0) = \frac{1}{\sigma_o^2} \sum_{l=0}^{L} [\mathbf{y}_l - \mathbf{x}_l]^T [\mathbf{y}_l - \mathbf{x}_l]$$
$$\mathbf{x}_{l+1} = \mathcal{M}_{l+1,l}(\mathbf{x}_l)$$

Linear Advection Equation

• Consider the linear advection equation, $u: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \ (d,t) \mapsto u(d,t),$

$$\begin{aligned} & u_t + \eta u_d = 0, & d \in [0,1), t > 0 \\ & u(d,t) = u(d+1,t), & d \in \mathbb{R}, t \ge 0 \\ & u(d,0) = u_0(d), & d \in [0,1). \end{aligned}$$

Here the wave speed is $\eta \in \mathbb{R}$.

• The true solution is $u(d,t) = u_0(d - \eta t)$ for some function $f : \mathbb{R} \to \mathbb{R}$.

Numerical Dissipation and Dispersion

The initial condition $u_0(d)$ can be considered in the form of a Fourier series,

$$u_0(d)\approx \sum_{p=-\infty}^{\infty}c_p e^{2\pi i p d}, \ \text{ where } c_p=\int_0^1 u(d,0)e^{-2\pi i p d}dd.$$

Definition

- Dissipation The amplitude of the component waves decrease over time.
- Dispersion The component waves move out of phase over time.

Numerical Schemes: $u_t(d, t) + \eta u_d(d, t) = 0$

Consider a uniform grid with N+1 spatial mesh points with a spatial step size Δd and timestep Δt . Let $U_j^n \approx u(x_j, t^n)$ at each grid point, $t^n = n\Delta t$, $x_j = j\Delta x$. Also, let $h = \eta \frac{\Delta t}{\Delta x}$. The following finite difference schemes are considered,

• the Upwind (explicit) scheme,

$$U_j^{n+1} = hU_{j-1}^n + (1-h)U_j^n,$$

• the Preissman Box (implicit) scheme,

$$(1-h)U_j^{n+1} + (1+h)U_{j+1}^{n+1} = (1+h)U_j^n + (1-h)U_{j+1}^n.$$

• the Lax-Wendroff (explicit) scheme,

$$U_j^{n+1} = \frac{h}{2}(h+1)U_{j-1}^n + (1-h^2)U_j^n + \frac{h}{2}(h-1)U_{j+1}^n,$$

Eigenvalue and Eigenvector Analysis

• Each of the methods discussed can be expressed in the form:

 $\mathbf{U}^{n+1} = \boldsymbol{M}\mathbf{U}^n,$

where the *j*th element of \mathbf{U}^n is U_{j-1}^n , $M \in \mathbb{R}^{N \times N}$.

Eigenvalue and Eigenvector Analysis

• Each of the methods discussed can be expressed in the form:

```
\mathbf{U}^{n+1} = \mathbf{M}\mathbf{U}^n,
```

where the *j*th element of \mathbf{U}^n is U_{j-1}^n , $M \in \mathbb{R}^{N \times N}$. • For the Upwind scheme,

$$M = \begin{bmatrix} 1-h & 0 & & h \\ h & 1-h & 0 & & \\ & \ddots & \ddots & \ddots & \\ & & h & 1-h & 0 \\ 0 & & & h & 1-h \end{bmatrix}$$

.

Eigenvectors of M

$$M = V\Lambda V^*$$

• \cdot^* denotes Hermitian. $\Lambda={\rm diag}(\lambda_p),$ where $\lambda_p\in\mathbb{C}$ are the eigenvalues.

Eigenvectors of M

$$M = V\Lambda V^*$$

- \cdot^* denotes Hermitian. $\Lambda={\rm diag}(\lambda_p),$ where $\lambda_p\in\mathbb{C}$ are the eigenvalues.
- As M is a circulant matrix, it has eigenvectors,

$$[\mathbf{v}_p]_q = \frac{1}{\sqrt{N}} e^{\frac{2\pi i (p-1)(q-1)}{N}} = \frac{1}{\sqrt{N}} e^{2\pi i (p-1)d_q}.$$

• The *p*th eigenvector is the (p-1)th wavenumber component of the Fourier series for $u_0(d)$, sampled at the N mesh points.

Eigenvectors of M

$$M = V\Lambda V^*$$

- \cdot^* denotes Hermitian. $\Lambda={\rm diag}(\lambda_p),$ where $\lambda_p\in\mathbb{C}$ are the eigenvalues.
- As M is a circulant matrix, it has eigenvectors,

$$[\mathbf{v}_p]_q = \frac{1}{\sqrt{N}} e^{\frac{2\pi i (p-1)(q-1)}{N}} = \frac{1}{\sqrt{N}} e^{2\pi i (p-1)d_q}.$$

• The *p*th eigenvector is the (p-1)th wavenumber component of the Fourier series for $u_0(d)$, sampled at the N mesh points.

$$\mathbf{U}^0 = \sum_{p=1}^N (\mathbf{v}_p^* \mathbf{U}^0) \mathbf{v}_p$$

The eigenvalues determine the propagation of the wavenumber components of $u_0(d)$,

$$\mathbf{U}^n = V\Lambda^n V^* \mathbf{U}^0$$

The eigenvalues of ${\cal M}$ control the magnitude and phase shift of each eigenvector,

$$\lambda_p = |\lambda_p| e^{i\theta_p}, \ \theta_p \in (-2\pi, 0].$$

- $|\lambda_p|$ affects the amplitude of \mathbf{v}_p ,
- $e^{i\theta_p}$ affects the phase shift of \mathbf{v}_p .

The eigenvalues determine the propagation of the wavenumber components of $u_0(d)$,

$$\mathbf{U}^n = V\Lambda^n V^* \mathbf{U}^0$$

The eigenvalues of ${\cal M}$ control the magnitude and phase shift of each eigenvector,

$$\lambda_p = |\lambda_p| e^{i\theta_p}, \ \theta_p \in (-2\pi, 0].$$

- $|\lambda_p|$ affects the amplitude of \mathbf{v}_p ,
- $e^{i\theta_p}$ affects the phase shift of \mathbf{v}_p .

The ideal model would possess $|\lambda_p| = 1$.

- The system is constructed from the N distinguishable wavenumber components on the spatial mesh, represented by the eigenvectors, $\{\mathbf{v}_p\}_{p=1}^N$.
- The unresolvable wavenumber components are aliased to these.
- The coefficient of \mathbf{v}_p in \mathbf{U}^0 is given by the Poisson equation,

$$\mathbf{v}_p^* \mathbf{U}^0 = \sum_{k=-\infty}^{\infty} c_{p+kN}.$$

- The system is constructed from the N distinguishable wavenumber components on the spatial mesh, represented by the eigenvectors, $\{\mathbf{v}_p\}_{p=1}^N$.
- The unresolvable wavenumber components are aliased to these.
- ullet The coefficient of \mathbf{v}_p in \mathbf{U}^0 is given by the Poisson equation,

$$\mathbf{v}_p^* \mathbf{U}^0 = \sum_{k=-\infty}^{\infty} c_{p+kN}.$$

 If λ_p applies no numerical dissipation or dispersion to v_p, it may still apply numerical dispersion to the aliased wavenumber components.

Sample Error: MNIMC scheme, h = 0.5

Sample Error: MNIMC scheme, h = 0.5

Sample Error: MNIMC scheme, h = 0.5

• $t = 2\Delta t = \Delta x$ (as $\eta = 1$)

Perfect Observations: NIMC

• Could construct perfect observations using the Numerical Implementation of the Method of Characteristics

$$U_j^{n+1} = h U_{j-1}^n$$

implemented by the matrix M_{NIMC} .

Perfect Observations: NIMC

• Could construct perfect observations using the Numerical Implementation of the Method of Characteristics

$$U_j^{n+1} = h U_{j-1}^n$$

implemented by the matrix M_{NIMC} .

- Always numerically non-dispersive and does not introduce sample error.
- Only numerically stable and non-dissipative when h = 1.

Perfect Observations: NIMC

• Could construct perfect observations using the Numerical Implementation of the Method of Characteristics

$$U_j^{n+1} = h U_{j-1}^n$$

implemented by the matrix M_{NIMC} .

- Always numerically non-dispersive and does not introduce sample error.
- Only numerically stable and non-dissipative when h = 1.
- As a result, produces perfect observations every $\Delta t = \frac{\Delta d}{n}$.
- Imperfect scheme produces observations every $\Delta t = \frac{h\Delta d}{\eta}$.

Perfect Observations: MNIMC

• Perfect observations are generated by the Modified NIMC (MNIMC) finite difference scheme implemented by the matrix $\tilde{M} = V \tilde{\Lambda} V^*$, where $\tilde{\lambda}_p = e^{i \tilde{\theta}_p}$ and N is odd such that

$$\tilde{\theta}_p = \begin{cases} \frac{-2\pi i (p-1)h}{N}, & \text{for } p \leq \frac{N+1}{2}\\ 2\pi \left[(h-1) - \frac{(p-1)h}{N} \right], & \text{for } p > \frac{N+1}{2} \end{cases}$$

Perfect Observations: MNIMC

• Perfect observations are generated by the Modified NIMC (MNIMC) finite difference scheme implemented by the matrix $\tilde{M} = V \tilde{\Lambda} V^*$, where $\tilde{\lambda}_p = e^{i \tilde{\theta}_p}$ and N is odd such that

$$\tilde{\theta}_p = \begin{cases} \frac{-2\pi i(p-1)h}{N}, & \text{for } p \le \frac{N+1}{2}\\ 2\pi \left[(h-1) - \frac{(p-1)h}{N} \right], & \text{for } p > \frac{N+1}{2} \end{cases}$$

• Eigenvectors do not introduce numerical dissipation or dispersion into the resolvable wavenumber components.

Perfect Observations: MNIMC

• Perfect observations are generated by the Modified NIMC (MNIMC) finite difference scheme implemented by the matrix $\tilde{M} = V \tilde{\Lambda} V^*$, where $\tilde{\lambda}_p = e^{i\tilde{\theta}_p}$ and N is odd such that

$$\tilde{\theta}_p = \begin{cases} \frac{-2\pi i(p-1)h}{N}, & \text{for } p \leq \frac{N+1}{2}\\ 2\pi \left[(h-1) - \frac{(p-1)h}{N} \right], & \text{for } p > \frac{N+1}{2} \end{cases}$$

- Eigenvectors do not introduce numerical dissipation or dispersion into the resolvable wavenumber components.
- Introduces sample error, so need to add a correction term \mathbf{r}_l

$$\tilde{\mathbf{y}}_l = \tilde{M}^l \mathbf{U}^0 + \mathbf{r}_l$$

- Choosing h = 0.5 results in,
 - Upwind: Dissipative,
 - Box: Dispersive,
 - Lax-Wendroff: Dissipative and Dispersive.

with respect to the resolvable wavenumber components represented by the eigenvectors.

Using the finite difference scheme implemented by the matrix M as the forward model, $\mathcal{M}_{l+1,l} := M$ and $\mathbf{x}_l := \mathbf{U}^l \ \forall l$. Hence,

$$J(\mathbf{x}_0) = \frac{1}{\sigma_o^2} \sum_{l=0}^{L} [\mathbf{y}_l - M^l \mathbf{x}_0]^T [\mathbf{y}_l - M^l \mathbf{x}_0]$$

Using the finite difference scheme implemented by the matrix M as the forward model, $\mathcal{M}_{l+1,l} := M$ and $\mathbf{x}_l := \mathbf{U}^l \ \forall l$. Hence,

$$J(\mathbf{x}_0) = \frac{1}{\sigma_o^2} \sum_{l=0}^{L} [\mathbf{y}_l - M^l \mathbf{x}_0]^T [\mathbf{y}_l - M^l \mathbf{x}_0]$$

Consider,

- Initially consider perfect observations ie: $\mathbf{y}_l = \tilde{\mathbf{y}}_l \ \forall l$. Arbitrarily choose $\sigma_o^2 = 1$.
- Then re-introduce observation errors.

Let $h = \frac{q}{a}$, $q, a, \in \mathbb{Z}$ such that gcd(q, a) = 1. Then the analysis vector for perfect observations can be written as,

$$\mathbf{x}_a = A_L \tilde{\mathbf{x}}_0 + \boldsymbol{\rho}_L$$

where the model resolution matrix $A_L \in \mathbb{R}^{N \times N}$ and $\rho_L \in \mathbb{R}^N$ are,

$$A_{L} = V \left[\sum_{r=0}^{L} (\Lambda^{*} \Lambda)^{r} \right]^{-1} \left[\sum_{l=0}^{L} (\Lambda^{*} \tilde{\Lambda})^{l} \right] V^{*},$$

$$\boldsymbol{\rho}_{L} = V \left[\sum_{r=0}^{L} (\Lambda^{*} \Lambda)^{r} \right]^{-1} \left[\left\{ \sum_{l=0}^{\frac{L-[L]a}{a}-1} (\Lambda^{*} \tilde{\Lambda})^{la} \right\} \left\{ \sum_{y=1}^{a-1} (\Lambda^{*})^{y} V^{*} \mathbf{r}_{y} \right\} + \left(\Lambda^{*} \tilde{\Lambda} \right)^{L-[L]a} \left\{ \sum_{y=1}^{[L]a} (\Lambda^{*})^{y} V^{*} \mathbf{r}_{y} \right\} \right],$$

where $[\cdot]_a$ denotes modulo a.

Let $h = \frac{q}{a}$, $q, a, \in \mathbb{Z}$ such that gcd(q, a) = 1. Then the analysis vector for perfect observations can be written as,

$$\mathbf{x}_a = A_L \tilde{\mathbf{x}}_0 + \boldsymbol{\rho}_L$$

where the model resolution matrix $A_L \in \mathbb{R}^{N \times N}$ and $\rho_L \in \mathbb{R}^N$ are,

$$A_{L} = V \left[\sum_{r=0}^{L} (\Lambda^{*} \Lambda)^{r} \right]^{-1} \left[\sum_{l=0}^{L} (\Lambda^{*} \tilde{\Lambda})^{l} \right] V^{*},$$

$$\boldsymbol{\rho}_{L} = V \left[\sum_{r=0}^{L} (\Lambda^{*} \Lambda)^{r} \right]^{-1} \left[\left\{ \sum_{l=0}^{\frac{L-[L]a}{a}-1} (\Lambda^{*} \tilde{\Lambda})^{la} \right\} \left\{ \sum_{y=1}^{a-1} (\Lambda^{*})^{y} V^{*} \mathbf{r}_{y} \right\} + \left(\Lambda^{*} \tilde{\Lambda} \right)^{L-[L]a} \left\{ \sum_{y=1}^{[L]a} (\Lambda^{*})^{y} V^{*} \mathbf{r}_{y} \right\} \right],$$

where $[\cdot]_a$ denotes modulo a.

Let $h = \frac{q}{a}$, $q, a, \in \mathbb{Z}$ such that gcd(q, a) = 1. Then the analysis vector for perfect observations can be written as,

$$\mathbf{x}_a = A_L \tilde{\mathbf{x}}_0 + \boldsymbol{\rho}_L$$

where the model resolution matrix $A_L \in \mathbb{R}^{N \times N}$ and $\rho_L \in \mathbb{R}^N$ are,

$$A_{L} = V \left[\sum_{r=0}^{L} (\Lambda^{*} \Lambda)^{r} \right]^{-1} \left[\sum_{l=0}^{L} (\Lambda^{*} \tilde{\Lambda})^{l} \right] V^{*},$$

$$\boldsymbol{\rho}_{L} = V \left[\sum_{r=0}^{L} (\Lambda^{*} \Lambda)^{r} \right]^{-1} \left[\left\{ \sum_{l=0}^{\frac{L-[L]a}{a} - 1} (\Lambda^{*} \tilde{\Lambda})^{la} \right\} \left\{ \sum_{y=1}^{a-1} (\Lambda^{*})^{y} V^{*} \mathbf{r}_{y} \right\} + \left(\Lambda^{*} \tilde{\Lambda} \right)^{L-[L]a} \left\{ \sum_{y=1}^{[L]a} (\Lambda^{*})^{y} V^{*} \mathbf{r}_{y} \right\} \right],$$

where $[\cdot]_a$ denotes modulo a.

Let $h = \frac{q}{a}$, $q, a, \in \mathbb{Z}$ such that gcd(q, a) = 1. Then the analysis vector for perfect observations can be written as,

$$\mathbf{x}_a = A_L \tilde{\mathbf{x}}_0 + \boldsymbol{\rho}_L$$

where the model resolution matrix $A_L \in \mathbb{R}^{N \times N}$ and $\rho_L \in \mathbb{R}^N$ are,

$$\begin{split} A_L &= V \left[\sum_{r=0}^{L} (\Lambda^* \Lambda)^r \right]^{-1} \left[\sum_{l=0}^{L} (\Lambda^* \tilde{\Lambda})^l \right] V^*, \\ \boldsymbol{\rho}_L &= V \left[\sum_{r=0}^{L} (\Lambda^* \Lambda)^r \right]^{-1} \left[\left\{ \sum_{l=0}^{\frac{L-[L]\mathbf{a}}{\mathbf{a}} - 1} (\Lambda^* \tilde{\Lambda})^{l\mathbf{a}} \right\} \left\{ \sum_{y=1}^{\mathbf{a} - 1} (\Lambda^*)^y V^* \mathbf{r}_y \right\} \\ &+ \left(\Lambda^* \tilde{\Lambda} \right)^{L-[L]\mathbf{a}} \left\{ \sum_{y=1}^{[L]\mathbf{a}} (\Lambda^*)^y V^* \mathbf{r}_y \right\} \right], \end{split}$$

where $[\cdot]_{\mathbf{a}}$ denotes modulo \mathbf{a} .

 $N = 101, L = 4: A_L = V \operatorname{diag}(\nu_p) V^*$

 $N = 101, L = 4: A_L = V diag(\nu_p) V^*$

 $N = 101, L = 4: A_L \tilde{\mathbf{x}}_0$

 $N = 101, L = 4: \rho_L$

 $N = 101, L = 4: \mathbf{x}_a = A_L \tilde{\mathbf{x}}_0 + \rho_L$

Non-Dissipative Eigenvalues: Preissman Box Scheme

 $N = 101, L = 4: A_L = V diag(\nu_p) V^*$

Non-Dissipative Eigenvalues: Preissman Box Scheme

 $N = 101, L = 4: A_L = V diag(\nu_p) V^*$

Non-Dissipative Eigenvalues: Preissman Box Scheme

 $N = 101, L = 4: \mathbf{x}_a = A_L \tilde{\mathbf{x}}_0 + \boldsymbol{\rho}_L$

Dissipative and Dispersive Eigenvalues: Lax-Wendroff Scheme

 $N = 101, L = 4: A_L = V diag(\nu_p) V^*$

Dissipative and Dispersive Eigenvalues: Lax-Wendroff Scheme

 $N = 101, L = 4: A_L = V diag(\nu_p) V^*$

Dissipative and Dispersive Eigenvalues: Lax-Wendroff Scheme

 $N = 101, L = 4: \mathbf{x}_a = A_L \tilde{\mathbf{x}}_0 + \rho_L$

Upper Bound

$$\begin{split} \|\tilde{\mathbf{x}}_{0} - \mathbf{x}_{a}\|_{2}^{2} &\leq N \left\{ |1 - \nu_{1}| D_{1} + (|1 - \nu_{1}| - 2\xi_{1}) \frac{D_{3}}{N^{r+1}} \right\}^{2} \\ &+ N \sum_{p=2}^{\frac{N+1}{2}} \left\{ |1 - \nu_{p}| \frac{D_{2}}{(p-1)^{r+1}} + (|1 - \nu_{p}| - 2\xi_{p}) \frac{D_{3}}{N^{r+1}} \right\}^{2} \\ &+ N \sum_{p=\frac{N+3}{2}}^{N} (|1 - \nu_{p}| - 2\xi_{p})^{2} \left(\frac{D_{2}}{(p-1)^{r+1}} + \frac{D_{3}}{N^{r+1}} \right)^{2}, \end{split}$$

where D_1, D_2 and D_3 are constants independent of p and N, $\mathbf{r} \in \mathbb{N}_0$ denotes the regularity of the initial condition u(d, 0) and

$$\xi_p = \frac{\left|\sum_{l=0}^{\frac{L-[L]_a}{a}-1} \left[|\lambda_p|^a e^{ia\phi_p}\right]^l\right| \left\{\sum_{y=1}^{a-1} |\lambda_p|^y\right\} + |\lambda_p|^{L-[L]_a} \sum_{y=1}^{[L]_a} |\lambda_p|^y}{\sum_{s=0}^{L} |\lambda_p|^{2s}}.$$

Upper Bound

$$\begin{split} \|\tilde{\mathbf{x}}_{0} - \mathbf{x}_{a}\|_{2}^{2} &\leq N \left\{ |1 - \nu_{1}| D_{1} + (|1 - \nu_{1}| - 2\xi_{1}) \frac{D_{3}}{N^{r+1}} \right\}^{2} \\ &+ N \sum_{p=2}^{\frac{N+1}{2}} \left\{ |1 - \nu_{p}| \frac{D_{2}}{(p-1)^{r+1}} + (|1 - \nu_{p}| - 2\xi_{p}) \frac{D_{3}}{N^{r+1}} \right\}^{2} \\ &+ N \sum_{p=\frac{N+3}{2}}^{N} (|1 - \nu_{p}| - 2\xi_{p})^{2} \left(\frac{D_{2}}{(p-1)^{r+1}} + \frac{D_{3}}{N^{r+1}} \right)^{2}, \end{split}$$

where D_1, D_2 and D_3 are constants independent of p and N, $\mathbf{r} \in \mathbb{N}_0$ denotes the regularity of the initial condition u(d, 0) and

$$\xi_p = \frac{\left|\sum_{l=0}^{\frac{L-[L]_a}{a}-1} \left[|\lambda_p|^a e^{ia\phi_p}\right]^l\right| \left\{\sum_{y=1}^{a-1} |\lambda_p|^y\right\} + |\lambda_p|^{L-[L]_a} \sum_{y=1}^{[L]_a} |\lambda_p|^y}{\sum_{s=0}^{L} |\lambda_p|^{2s}}.$$

Upper Bound

$$\begin{split} \|\tilde{\mathbf{x}}_{0} - \mathbf{x}_{a}\|_{2}^{2} &\leq N \left\{ |1 - \nu_{1}| D_{1} + (|1 - \nu_{1}| - 2\xi_{1}) \frac{D_{3}}{N^{r+1}} \right\}^{2} \\ &+ N \sum_{p=2}^{\frac{N+1}{2}} \left\{ |1 - \nu_{p}| \frac{D_{2}}{(p-1)^{r+1}} + (|1 - \nu_{p}| - 2\xi_{p}) \frac{D_{3}}{N^{r+1}} \right\}^{2} \\ &+ N \sum_{p=\frac{N+3}{2}}^{N} (|1 - \nu_{p}| - 2\xi_{p})^{2} \left(\frac{D_{2}}{(p-1)^{r+1}} + \frac{D_{3}}{N^{r+1}} \right)^{2}, \end{split}$$

where D_1, D_2 and D_3 are constants independent of p and N, $\mathbf{r} \in \mathbb{N}_0$ denotes the regularity of the initial condition u(d, 0) and

$$\xi_{p} = \frac{\left|\sum_{l=0}^{\frac{L-[L]_{\mathbf{a}}}{a}-1} \left[|\lambda_{p}|^{\mathbf{a}} e^{i\mathbf{a}\phi_{p}}\right]^{l}\right| \left\{\sum_{y=1}^{a-1} |\lambda_{p}|^{y}\right\} + |\lambda_{p}|^{L-[L]_{\mathbf{a}}} \sum_{y=1}^{[L]_{\mathbf{a}}} |\lambda_{p}|^{y}}{\sum_{s=0}^{L} |\lambda_{p}|^{2s}}.$$

Order of convergence to zero wrt N^{α} or L^{β} .

r	α		β	
	Upper Bound	Data Assimilation	Upper Bound	Data Assimilation
0	-6.7708×10^{-15}	1.4148×10^{-15}	5.7945×10^{-1}	$5.6939 imes 10^{-1}$
1	-2.0000	-2.2612	1.5053	1.5096
∞	-3.0000	-3.0000	2.0000	2.0000

Numerical Model Error

The order of convergence of $\|\mathbf{x}_a - \tilde{\mathbf{x}}_0\|_2^2$ to zero, with respect to N. L = 4 and $\alpha = 2:7$ such that $N = 3^{\alpha}$.

Numerical Model Error

The order of convergence of $\|\mathbf{x}_a - \tilde{\mathbf{x}}_0\|_2^2$ to zero, with respect to L. $N = 3^7$ and $\alpha = 0:9$ such that $L = 2^{\beta}$.

Observation and Numerical Model Errors

The order of convergence of $\|\mathbf{x}_a - \tilde{\mathbf{x}}_0\|_2^2$ to zero, with respect to N. L = 4, $\sigma_o^2 = 5 \times 10^{-6}$ and $\alpha = 2:7$ such that $N = 3^{\alpha}$.

Observation and Numerical Model Errors

The order of convergence of $\|\mathbf{x}_a - \tilde{\mathbf{x}}_0\|_2^2$ to zero, with respect to L. $N = 3^7$, $\sigma_o^2 = 5 \times 10^{-9}$ and $\alpha = 0:9$ such that $L = 2^{\beta}$.

Conclusion

- Dispersive schemes result in destructive interference. This leads to a loss of information in the analysis vector and its subsequent forecast.
- The order of convergence of $\|\tilde{\mathbf{x}}_o \mathbf{x}_a\|_2^2$ to zero, with respect to N, is dependent on the regularity of $u_0(d)$.
- There is a critical value of N where the effects of both numerical model error and observation error are minimised.

Future Work

In the future we aim to,

- Quantify and reduce the effects of numerical dispersion and dissipation on the forecast,
- Consider the linearised shallow water equations,
- Investigate realistic meteorological methods and models.