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What is Data Assimilation?

Data assimilation is used to solve a particular kind of inverse problem:

Given a set of observations and a numerical model for a dynamical system,
find the best estimate as to the true state of the system.

There are many different methods for data assimilation such as,

the Kalman filter,

3D-Variational (3D-Var) data assimilation,

4D-Variational (4D-Var) data assimilation.
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What is Variational Data Assimilation?

Variational data assimilation solves a specific formulation of the data
assimilation problem:

Given a set of observations and a numerical model for a dynamical system,
find an initial condition for the numerical model that provides the best
approximation to the true state of the system, when a priori information
for the initial condition is available.

There are two different methods generally used for answering this
question,

I 3D-Variational (3D-Var) data assimilation,
I 4D-Variational (4D-Var) data assimilation.

Both methods are used in current operational weather forecast
centres to make short and long range weather predictions.
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4D-Var Cost Function

4D-Var is formulated as a minimisation problem, where the 4D-Var cost
function is minimised with respect to the initial condition for the system.

min
x0

J(x0)

where,

J(x0) = (x0 − xb)TB−1(x0 − xb)

+
L∑
l=0

[yl −Hl(xl)]TR−1
l [yl −Hl(xl)]

xl+1 = Ml+1,l(xl)

The cost function finds the weighted least squares solution between
the sets of observations and the results of the numerical model using
xb as the initial condition.
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Errors in Variational Data Assimilation

The errors in variational data assimilation can be divided into four sources,

background errors,

observational errors: miscalibration of instrumentation,

representative errors: discretisation errors,

model error

{
inaccurate model equations,
inaccurate numerical model.
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Assumptions

Remove all forms of error other than numerical model error and
observations errors,

Neglect the background term of the cost function,

Take observations at every temporal and spatial grid point
⇒ Hl = IN ∀l,
Observations: yl = ỹl + εl such that εl iid N (0, σ2

oIN ), σo ∈ R,
⇒ Rl = σ2

oIN ∀l.

J(x0) =
1
σ2
o

L∑
l=0

[yl − xl]T [yl − xl]

xl+1 = Ml+1,l(xl)
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Linear Advection Equation

Consider the linear advection equation,
u : R× R→ R, (d, t) 7→ u(d, t),

ut + ηud = 0, d ∈ [0, 1), t > 0
u(d, t) = u(d+ 1, t), d ∈ R, t ≥ 0
u(d, 0) = u0(d), d ∈ [0, 1).

Here the wave speed is η ∈ R.

The true solution is u(d, t) = u0(d− ηt) for some function f : R→ R.
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Numerical Dissipation and Dispersion

The initial condition u0(d) can be considered in the form of a Fourier
series,

u0(d) ≈
∞∑

p=−∞
cpe

2πipd, where cp =
∫ 1

0
u(d, 0)e−2πipddd.

http://harishmaas.blogspot.com
www.earthlyissues.com

Definition

Dissipation - The amplitude of the component waves decrease over
time.

Dispersion - The component waves move out of phase over time.
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Numerical Schemes: ut(d, t) + ηud(d, t) = 0

Consider a uniform grid with N + 1 spatial mesh points with a spatial step
size ∆d and timestep ∆t. Let Unj ≈ u(xj , tn) at each grid point,

tn = n∆t, xj = j∆x. Also, let h = η ∆t
∆x . The following finite difference

schemes are considered,

the Upwind (explicit) scheme,

Un+1
j = hUnj−1 + (1− h)Unj ,

the Preissman Box (implicit) scheme,

(1− h)Un+1
j + (1 + h)Un+1

j+1 = (1 + h)Unj + (1− h)Unj+1.

the Lax-Wendroff (explicit) scheme,

Un+1
j =

h

2
(h+ 1)Unj−1 + (1− h2)Unj +

h

2
(h− 1)Unj+1,
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Eigenvalue and Eigenvector Analysis

Each of the methods discussed can be expressed in the form:

Un+1 = MUn,

where the jth element of Un is Unj−1, M ∈ RN×N .

For the Upwind scheme,

M =



1− h 0 h
h 1− h 0

. . .
. . .

. . .

h 1− h 0
0 h 1− h


.
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Eigenvectors of M

M = V ΛV ∗

·∗ denotes Hermitian. Λ = diag(λp), where λp ∈ C are the
eigenvalues.

As M is a circulant matrix, it has eigenvectors,

[vp]q =
1√
N
e

2πi(p−1)(q−1)
N =

1√
N
e2πi(p−1)dq .

The pth eigenvector is the (p− 1)th wavenumber component of the
Fourier series for u0(d), sampled at the N mesh points.

U0 =
N∑
p=1

(v∗pU
0)vp
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Eigenvalues of M

The eigenvalues determine the propagation of the wavenumber
components of u0(d),

Un = V ΛnV ∗U0

The eigenvalues of M control the magnitude and phase shift of each
eigenvector,

λp = |λp|eiθp , θp ∈ (−2π, 0].

|λp| affects the amplitude of vp,

eiθp affects the phase shift of vp.

The ideal model would possess |λp| = 1.
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Sample Error

The system is constructed from the N distinguishable wavenumber
components on the spatial mesh, represented by the eigenvectors,
{vp}Np=1.

The unresolvable wavenumber components are aliased to these.

The coefficient of vp in U0 is given by the Poisson equation,

v∗pU
0 =

∞∑
k=−∞

cp+kN .

If λp applies no numerical dissipation or dispersion to vp, it may still
apply numerical dispersion to the aliased wavenumber components.
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Sample Error: MNIMC scheme, h = 0.5

t = 0:
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Sample Error: MNIMC scheme, h = 0.5

t = ∆t
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Sample Error: MNIMC scheme, h = 0.5

t = 2∆t = ∆x (as η = 1)
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Perfect Observations: NIMC

Could construct perfect observations using the Numerical
Implementation of the Method of Characteristics

Un+1
j = hUnj−1

implemented by the matrix MNIMC .

Always numerically non-dispersive and does not introduce sample
error.

Only numerically stable and non-dissipative when h = 1.

As a result, produces perfect observations every ∆t = ∆d
η .

Imperfect scheme produces observations every ∆t = h∆d
η .
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Perfect Observations: MNIMC

Perfect observations are generated by the Modified NIMC (MNIMC)
finite difference scheme implemented by the matrix M̃ = V Λ̃V ∗,
where λ̃p = eiθ̃p and N is odd such that

θ̃p =

{ −2πi(p−1)h
N , for p ≤ N+1

2

2π
[
(h− 1)− (p−1)h

N

]
, for p > N+1

2

Eigenvectors do not introduce numerical dissipation or dispersion into
the resolvable wavenumber components.

Introduces sample error, so need to add a correction term rl

ỹl = M̃ lU0 + rl
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ỹl = M̃ lU0 + rl

Siân Jenkins (University of Bath) Model Error in DA 11/03/2013 16 / 29



Perfect Observations: MNIMC

Perfect observations are generated by the Modified NIMC (MNIMC)
finite difference scheme implemented by the matrix M̃ = V Λ̃V ∗,
where λ̃p = eiθ̃p and N is odd such that

θ̃p =

{ −2πi(p−1)h
N , for p ≤ N+1

2

2π
[
(h− 1)− (p−1)h

N

]
, for p > N+1

2

Eigenvectors do not introduce numerical dissipation or dispersion into
the resolvable wavenumber components.

Introduces sample error, so need to add a correction term rl
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Dissipation and Dispersion

Choosing h = 0.5 results in,

Upwind: Dissipative,

Box: Dispersive,

Lax-Wendroff: Dissipative and Dispersive.

with respect to the resolvable wavenumber components represented by the
eigenvectors.
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4D-Var Cost Function

Using the finite difference scheme implemented by the matrix M as the
forward model, Ml+1,l := M and xl := Ul ∀l. Hence,

J(x0) =
1
σ2
o

L∑
l=0

[yl −M lx0]T [yl −M lx0]

Consider,

Initially consider perfect observations ie: yl = ỹl ∀l. Arbitrarily
choose σ2

o = 1.

Then re-introduce observation errors.
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Analysing Fourier Components

Let h = q
a , q, a,∈ Z such that gcd(q, a) = 1. Then the analysis vector for

perfect observations can be written as,

xa = ALx̃0 + ρL

where the model resolution matrix AL ∈ RN×N and ρL ∈ RN are,

AL = V

[
L∑
r=0

(Λ∗Λ)r
]−1 [ L∑

l=0

(Λ∗Λ̃)l
]
V ∗,

ρL = V

[
L∑
r=0

(Λ∗Λ)r
]−1




L−[L]a
a
−1∑

l=0

(Λ∗Λ̃)la



a−1∑
y=1

(Λ∗)yV ∗ry


+
(

Λ∗Λ̃
)L−[L]a


[L]a∑
y=1

(Λ∗)yV ∗ry


 ,

where [·]a denotes modulo a.
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Non-Dispersive Eigenvalues: Upwind Scheme

N = 101, L = 4: AL = V diag(νp)V ∗
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Non-Dispersive Eigenvalues: Upwind Scheme

N = 101, L = 4: ρL
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Non-Dispersive Eigenvalues: Upwind Scheme

N = 101, L = 4: xa = ALx̃0 + ρL
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Non-Dissipative Eigenvalues: Preissman Box Scheme

N = 101, L = 4: AL = V diag(νp)V ∗
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Dissipative and Dispersive Eigenvalues: Lax-Wendroff
Scheme

N = 101, L = 4: AL = V diag(νp)V ∗
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Dissipative and Dispersive Eigenvalues: Lax-Wendroff
Scheme

N = 101, L = 4: xa = ALx̃0 + ρL
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Upper Bound

‖x̃0 − xa‖22 ≤ N

{
|1− ν1|D1 + (|1− ν1| − 2ξ1)

D3

Nr+1

}2

+N

N+1
2∑

p=2

{
|1− νp|

D2

(p− 1)r+1
+ (|1− νp| − 2ξp)

D3

Nr+1

}2

+N
N∑

p=N+3
2

(|1− νp| − 2ξp)2

(
D2

(p− 1)r+1
+

D3

Nr+1

)2

,

where D1, D2 and D3 are constants independent of p and N , r ∈ N0

denotes the regularity of the initial condition u(d, 0) and

ξp =

∣∣∣∣∑L−[L]a
a
−1

l=0

[
|λp|aeiaφp

]l∣∣∣∣ {∑a−1
y=1 |λp|y

}
+ |λp|L−[L]a

∑[L]a
y=1 |λp|y∑L

s=0 |λp|2s
.

Siân Jenkins (University of Bath) Model Error in DA 11/03/2013 23 / 29



Upper Bound

‖x̃0 − xa‖22 ≤ N

{
|1− ν1|D1 + (|1− ν1| − 2ξ1)

D3

Nr+1

}2

+N

N+1
2∑

p=2

{
|1− νp|

D2

(p− 1)r+1
+ (|1− νp| − 2ξp)

D3

Nr+1

}2

+N
N∑

p=N+3
2

(|1− νp| − 2ξp)2

(
D2

(p− 1)r+1
+

D3

Nr+1

)2

,

where D1, D2 and D3 are constants independent of p and N , r ∈ N0

denotes the regularity of the initial condition u(d, 0) and

ξp =

∣∣∣∣∑L−[L]a
a
−1

l=0

[
|λp|aeiaφp

]l∣∣∣∣ {∑a−1
y=1 |λp|y

}
+ |λp|L−[L]a

∑[L]a
y=1 |λp|y∑L

s=0 |λp|2s
.

Siân Jenkins (University of Bath) Model Error in DA 11/03/2013 23 / 29



Upper Bound

‖x̃0 − xa‖22 ≤ N

{
|1− ν1|D1 + (|1− ν1| − 2ξ1)

D3

Nr+1

}2

+N

N+1
2∑

p=2

{
|1− νp|

D2

(p− 1)r+1
+ (|1− νp| − 2ξp)

D3

Nr+1

}2

+N
N∑

p=N+3
2

(|1− νp| − 2ξp)2

(
D2

(p− 1)r+1
+

D3

Nr+1

)2

,

where D1, D2 and D3 are constants independent of p and N , r ∈ N0

denotes the regularity of the initial condition u(d, 0) and

ξp =

∣∣∣∣∑L−[L]a
a
−1

l=0

[
|λp|aeiaφp

]l∣∣∣∣ {∑a−1
y=1 |λp|y

}
+ |λp|L−[L]a

∑[L]a
y=1 |λp|y∑L

s=0 |λp|2s
.

Siân Jenkins (University of Bath) Model Error in DA 11/03/2013 23 / 29



Numerical Results

Order of convergence to zero wrt Nα or Lβ.

r
α β

Upper Bound Data Assimilation Upper Bound Data Assimilation

0 −6.7708× 10−15 1.4148× 10−15 5.7945× 10−1 5.6939× 10−1

1 −2.0000 −2.2612 1.5053 1.5096

∞ −3.0000 −3.0000 2.0000 2.0000
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Numerical Model Error

The order of convergence of ‖xa − x̃0‖22 to zero, with respect to N . L = 4
and α = 2 : 7 such that N = 3α.
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Numerical Model Error

The order of convergence of ‖xa − x̃0‖22 to zero, with respect to L.
N = 37 and α = 0 : 9 such that L = 2β.
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Observation and Numerical Model Errors

The order of convergence of ‖xa − x̃0‖22 to zero, with respect to N .
L = 4, σ2

o = 5× 10−6 and α = 2 : 7 such that N = 3α.
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Observation and Numerical Model Errors

The order of convergence of ‖xa − x̃0‖22 to zero, with respect to L.
N = 37, σ2

o = 5× 10−9 and α = 0 : 9 such that L = 2β.
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Summary

Conclusion

Dispersive schemes result in destructive interference. This leads to a
loss of information in the analysis vector and its subsequent forecast.

The order of convergence of ‖x̃o − xa‖22 to zero, with respect to N , is
dependent on the regularity of u0(d).

There is a critical value of N where the effects of both numerical
model error and observation error are minimised.

Future Work
In the future we aim to,

Quantify and reduce the effects of numerical dispersion and
dissipation on the forecast,

Consider the linearised shallow water equations,

Investigate realistic meteorological methods and models.
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