

The impact of the temporal spacing of observations on analysis accuracy

John Eyre and Peter Weston Met Office

© Crown copyright 2007

Seminar, U.Reading, 19 June 2013

The impact of the temporal spacing of observations on analysis accuracy:

implications for optimal distribution of polarorbiting satellites

- Background
- Previous studies in Europe
- A new theoretical study impact of temporal spacing of observations on analysis accuracy
 - highly idealised
 - less idealised using FSO stats to assess observation information
- Conclusions

Acknowledgements

Enza Di Tomaso (ECMWF) Niels Bormann (ECMWF)

Adrian Simmons (ECMWF) Andrew Lorenc (Met Office)

CGMS members – Lars Peter Riishojgaard, Jim Purdom

Bill Bell Neill Bowler

•approved by WMO-EC, 2009

•recommended baseline with in-orbit redundancy

Previous studies in Europe

Assimilation of ATOVS radiances at ECMWF. Enza Di Tomaso and Niels Bormann. EUMETSAT/ECMWF Fellowship Programme Res. Rep. 22

Orbits of current satellites

Thickest lines denote GPCP calibrator.

Image by Eric Nelkin (SSAI), 19 April 2010, NASA/Goddard Space Flight Center, Greenbelt, MD.

"NOAA-19 experiment" * MetOp-A * NOAA-18 * NOAA-19

"NOAA-15 experiment" * MetOp-A * NOAA-18 * NOAA-15

Sample coverage from a 6-hour period around 00Z

Forecast impact of ATOVS

"Averaged over extra-Tropics, impact of **NOAA-15** experiment versus NOAA-19 experiment is neutral to slightly positive "

Note: AIRS and IASI not assimilated in these experiments

GOOD

"NOAA-15 exp" RMSE - "NOAA-19 exp" RMSE

Crown convright 2007 ()

New theoretical study: the impact of temporal spacing of observations on analysis accuracy

or

how to do an OSSE in an Excel spreadsheet

Outline of theoretical study

- Very simple DA system
 - one variable in space
 - observations distributed in time
- Observations inserted in 12-hour cycle
 - to simulate 1-6 satellites
 - with temporal spacing to simulate 3 orbital planes
- Results found to be very sensitive to assumed rates of forecast error growth
 - different rates of doubling time for forecast error variance used:
 - 12 hours, 6 hours, 3 hours
- More details: Met O FR Tech Rep 573

DEFINITIONS

	Error (co)variance	"Accuracy"			
Analysis	A	A -1			
Background	В	B -1			
Observation	R	R^{-1}			
Forecast	F	F ⁻¹			

Kalman filter:

Analysis at time i: $A^{-1}_{i} = B^{-1}_{i} + R^{-1}_{i}$ analysis background observation accuracy accuracy accuracy

Forecast from time i-1 to time i: $B_i = \beta A_{i-1} + Q$

Consistent with a forecast error growth model, dF/dt = α F + γ

Another example

doubling time for forecast error variance = 6 h

With Q=0
$$\rightarrow$$
 A⁻¹_i = B⁻¹_i + R⁻¹_i ; B_i = β A_{i-1}

$$\rightarrow$$
 A⁻¹_i = β A⁻¹_i + R⁻¹_i

Taking time means: $(1/N)\Sigma_{i=j+1}^{j+N} A^{-1}_{i} = \beta^{-1} (1/N)\Sigma_{i=j}^{j+N-1} A^{-1}_{i} + (1/N)\Sigma_{i=j+1}^{j+N} R^{-1}_{i}$... but at equilibrium, $A^{-1}_{i} = A^{-1}_{i+N}$

$$(1/N)\Sigma_{i=j+1}^{j+N}A_{i}^{-1} = (1-\beta^{-1})^{-1}(1/N)\Sigma_{i=j+1}^{j+N}R_{i}^{-1}$$

!!!

$$(1/N)\Sigma_{i=j+1}^{j+N}A_{i}^{-1} = (1-\beta^{-1})^{-1}(1/N)\Sigma_{i=j+1}^{j+N}R_{i}^{-1}$$

Mean analysis accuracy:

- does not depend on observation spacing ...
 - only on mean observation accuracy
 - i.e. how many observations, and how accurate they are
- is proportional to mean observation accuracy

HOWEVER,

no similar equation for mean analysis error covariance

does depend on observation spacing

Discussion of theory

Why is mean analysis error variance the most appropriate metric for global NWP?

Why mean?

 because we wish to optimise the observing system for forecasts for all parts of the world

Why error variance (and not accuracy)

 because we are most interested in improving bad analyses (bad forecasts), and not those that are already good.

Experiments - Part I

The experiments:

different numbers of observations and

different observation spacings

relative	observation time	e (hours) →	0	1	2	3	4	5	6	7	8	9	10	11
expt. number	number of observations	constellation code												
1.1	1	[1,0,0]	1											
1.2	2	[2,0,0]	2											
1.3	2	[1,1,0]	1				1							
1.4	3	[3,0,0]	3											
1.5	3	[2,1,0]	2				1							
1.6	3	[1,2,0]	1				2							
1.7	3	[1,1,1]	1				1				1			
	4	[4,0,0]	4											
1.8	4	[3,1,0]	3				1							
1.9	4	[3,0,1]	3								1			
1.10	4	[2,2,0]	2				2							
1.11	4	[1.2.1]	1				2				1			

WMO Vision = [1,1,1]WMO Vision with back-up = [2,2,2]

Metop-A + NOAA-18 + NOAA-19 = [1,2,0]

Metop-A + NOAA-18 + NOAA-15 = [1,1,1]

Mean analysis error variance: forecast error variance doubling time = 12 hours observation error variance = 1.0, for all obs

Mean analysis error for different observation configurations

Mean analysis error variance: forecast error variance doubling time = 6 hours

Mean analysis error variance: forecast error variance doubling time = 3 hours

 $\bigcirc \mathbf{Cr}$

For 3-satellite constellations: percentage increases in analysis error variance relative to [1,1,1]

C Cro

For 4-satellite constellations: percentage increases in analysis error variance relative to [1,2,1]

Relevance of theoretical results to real world?

Forecast sensitivity to observations (FSO) in global NWP: (Joo, Eyre and Marriott. Met Office FR Tech. Rep. No.562, 2012. Also accepted by MWR.)

~64% of impact comes from satellite observations

of which ~90% from polar sounding data

- - -

. . .

higher for midlatitude oceans

- Mean analysis error variance is most relevant metric when assessing impact of temporal spacing of observations on global NWP performance
- Dependence of mean analysis error variance on observation spacing is very sensitive to assumed rate of forecast error growth:
 - for a 12-hour doubling time of forecast error variance, dependence on observation spacing is significant but small,
 - for a 3-hour doubling time reaching ~25% increase in variance for plausible 3-satellite constellations, and ~8% increase for 4-satellite constellations.
- These simple experiments are relevant to real NWP systems, particularly for rapidly-developing storms over mid-latitude oceans.
- Results support assumptions guiding the WMO Vision: that polar-orbiting satellites should be equally space in time, as far as is practicable.
- © Crown convright 2007

Experiments - Part II

All observations are equal ...

... but some are more equal than others !

a)

a)

FSO: sorted in many ways ...

b)

...by technology

b)

... by Metop instrument

Some more theory

 $A^{-1} = B^{-1} + \sum_{k} R^{-1}_{k}$, where k is obs subset

 $B = A + A B \Sigma_k R^{-1}_k$

 $B - A = A B \Sigma_k R^{-1}_k$

But the FSO method measures $(B-A)_k$,

i.e. contribution to (B-A) from each observation type, k

→ FSO contribution for observation subset k is proportional to R^{-1}_{k}

"Real-world" experiments

Met Office

Satellite	FSO %	FSO normalised	Orbit		
Metop-A	38.8	1.000	late morning		
NOAA-19	14.3	0.373	afternoon		
Aqua	13.7	0.353	afternoon		
NOAA-15	11.3	0.291	early morning		
NOAA-18	5.5	0.142	afternoon		
Meteosat-9	4.9	0.126	geostationary		
COSMIC	3.1	0.080	distributed		
MTSAT	2.2	0.057	geostationary		
GOES	2.1	0.054	geostationary		
Terra	1.2	0.031	late morning		
Coriolis	1.1	0.028	early morning		
DMSP F-16	1.0	0.026	early morning		
NOAA-17	0.5	0.013	late morning		
GRACE	0.2	0.005	distributed		
NOAA-16	0.1	0.003	late morning		
ERS-2	0.1	0.003	late morning		

TOTALS: early a.m. = 0.345, late a.m. = 1.049, p.m. = 0.863, distrib.+geo = 0.322

Met

Average analysis error variance: forecast error variance doubling time = 12 hours

Impact of FY-3C: dependence on orbit

Mean analysis error for different observation configurations

Limitations of this approach

Met Office

- Many very simple system!!!
- One variable, with Q=0 \rightarrow A⁻¹ proportional to R⁻¹
 - In practice, Metop-A accounts for 25% of FSO (R⁻¹)
 - But denial of Metop-A $\rightarrow \sim 10\%$ loss of forecast skill
 - Introduce non-zero Q:
 - breaks proportionality between A⁻¹ and R⁻¹
 - ... but can't account for FSO/OSE discrepancy

 \times \rightarrow needs at least 2 variables (one observed, one not)

- Observation error correlations neglected
 - Probably OK for present-day systems
 - Questionable for future systems with many more obs
- © Crown convright 2007

Overall conclusions

- OSE and theoretical study results support guidance that observations should be roughly equally spaced in time
- Impact of observation spacing on NWP is greatest when forecast error growth rates are high, as likely in rapidlydeveloping storms
- → At least one set of IR+MW sounding instruments in an early morning orbit is highly desirable. China, please note!

Thank you! Questions?

© Crown copyright 2007