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ABSTRACT

Clouds play a fundamental role in the Earth’s radiation ltdgrhey have a major impact on
surface temperature forecasts and have been identified asih source of uncertainty in climate
prediction. Clouds have significant structure at smallegabut computational constraints mean
that general circulation models (GCMs) only resolve clotrdciure at much larger scales. The
radiative effect of a cloud is non-linearly dependent onpitysical properties. Consequently,

unresolved cloud structure can have significant radiaffests.

This thesis addresses the problem of representing unessoloud structure in GCMs, in par-
ticular the Met Office Unified Model (MetUM). We begin by codsiing evaluation, reduction
and impacts of the random errors associated with the Monte Galependent Column Approx-
imation, (McICA, a method for representing the radiativieets of subgrid-scale cloud structure
in GCMs). A new method for reducing the magnitude of the n@sescribed, which halves the
noise for an increase in computational cost of less than &#focusing on surface temperature

errors, the suitability of McICA for numerical weather prettbn models is demonstrated.

Next the subgrid cloud structure itself is considered. D several A-train satellites are
used to study horizontal water content variability andieattoverlap of clouds. A parametriza-
tion of the fractional standard deviation (FSD) of unresdhice water content is derived, in-
corporating the effects of horizontal and vertical resolut and cloud fraction. The observed
distribution of overlap is studied and a new parametriratitat captures this distribution is de-

scribed and tested.

Finally the impacts of changes to subgrid-scale cloud siracon 10-year MetUM climate
simulations are investigated. Global mean cloud radiaiects (CRE) may be changed by as
much as 10%. Local changes to cloud cover, surface temperata precipitation rate can be
quite large, but are not statistically significant. Complai® a simulation using the same mean
value globally, the FSD parametrization reduces CREs byratd. Wn?, which implies that a

globally varying FSD is necessary to obtain unbiased CREs.
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CHAPTER 1:

INTRODUCTION

Calculating the significant radiative effect of clouds isarf the most important requirements
of the radiative transfer schemes employed in generalletion models (GCMs). It is also one
of the most uncertain aspects of the radiative transfemutation, due to the complex structure
of clouds at temporal and spatial scales much smaller thameaesolved by GCMs. The non-
linear relationship between radiation and clouds meansiricarrect assumptions about cloud
properties at subgrid-scales may cause radiative biagesfabhe cloud properties are accurate at

the resolved scale.

This chapter describes the background to and motivatiothfsithesis. We begin by empha-
sising the critical nature of radiative transfer schemesimerical weather prediction (NWP) and
climate models, and in particular the importance of thesudl representation. We then describe
how the radiative effects of clouds are calculated in GCNghlighting the approximations that
are applied and may be improved and focusing in particulathenEdwards-Slingo radiative
transfer scheme (E-S) used in the Met Office Unified Model (DMY. In section 1.3 we briefly
discuss how GCM cloud-radiation interactions are validata sections 1.4 and 1.5, we discuss
the two aspects of subgrid cloud representation addressdudbthesis, horizontal cloud water
content variability and cloud vertical overlap. This cleptoncludes with a description of the

goals of this project, followed by an outline of the thesis.

1.1 RADIATIVE TRANSFER AND CLOUDS

Ultimately, almost all the energy in the earth system oaggs from the sun and arrives in the
form of radiative energy. The global mean solar (also knowrslzortwave, SW) insolation is
around 340 Wit (Trenberthet al,, 2009). This is not distributed uniformly and the geographi

and temporal differences in solar insolation and henceargedtive the large-scale circulation of
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Chapter 1: Introduction

the atmosphere. Infrared (also known as longwave, LW) tiadids emitted by the earth sys-
tem into space and also redistributes energy within the sppimere. The distribution of radiative
energy is sensitive to many of the other properties of theogfinere (e.g. temperature, clouds,
aerosols, gases) and constantly evolves in response tagiteric changes. Moreover, anthro-
pogenic activity can change the properties of the atmosgpdied hence influence the distribution
of radiation; the most famous example being the emissioraddan dioxide, which absorbs LW
radiation, leading to warming of the earth’s surface. Cqosatly most NWP and climate models

include interactive radiative transfer schemes.

Given a well-characterised atmosphere and sufficient ctatipnal resources, it is possible
to perform very accurate radiative transfer calculatiang.(Cahalaret al,, 2005). However, in
GCMs, many of the input parameters must be predicted by traeh{e.g. cloud properties and
vertical temperature profiles) and may contain large ertdigreover, in GCMs it is necessary to
balance the accuracy and computational cost of the radiatbheme, resulting in compromised
spectral, temporal and spatial resolution and numeroupliications, such as the two-stream
approximation (Meador and Weaver, 1980) which reduces edculation to two discrete

directions.

Clouds are a key component of the earth’s radiation budgeé radiative effect of a cloud
depends on many aspects of the cloud, both microphysiagl deoplet size distribution) and
macrophysical (e.g. coverage and height), and also on mamcloud parameters (e.g. surface
albedo). Consequently, the distribution of cloud rada&tiffects is very broad and clouds can
cause either cooling or heating of the surface. The globanmedfect of clouds is a cooling
of the atmosphere by around 15 Winwhich arises due to an imperfect cancellation between
mean SW cooling and mean LW heating (Ramanatttaal., 1989). Instantaneous local cloud
radiative effects (CRE) may be much larger, with instandaiseestimates of SW CRE in excess
of —400 Wm? and LW values as large as 100 Whnte.g. Allan, 2011). As mean CREs are
large, relatively small errors can exceed in magnitude ffeeteof other significant atmospheric
constituents. For example the forcing due to doubling thecentration of carbon dioxide in the
atmosphere, estimated to be around 3.7 ¥({Ramaswamt al,, 2001), is equivalent to around

25% of the global mean net CRE.
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Chapter 1: Introduction

In NWP models, the interactions of cloud and radiation havgd impacts on surface tem-
perature, which is a critical forecast variable, used fanegle in road gritting decisions. By
reflecting solar radiation, clouds cool the surface. Howestuds also trap LW radiation, so
low clouds cause LW warming of the surface. The net effeceddp on the magnitude of solar
insolation and the cloud and surface properties, but gépelauds cool the surface during the

day and warm it at night.

Despite the obvious importance of clouds in both NWP andatiémodels, and the consid-
erable time devoted to their study, they remain a leadingcsoof uncertainty and errors. Cloud
feedbacks have long been identified as the dominant soungeceftainty in climate prediction
(e.g. Ces=t al, 1990) and clouds remain the foremost source of differeedaween GCMs
(Soden and Held, 2006). This is generally attributed toedffices between the gridbox-mean
cloud properties predicted by the cloud schemes ratherdifi@nences in the radiation schemes.
Nevertheless, there is significant scope to improve thatiaditreatment of clouds; a recent inter-
comparison of radiation codes (Oreopoutbsl., 2012) found CRE percentage errors larger than
20%. A reduction of radiative errors and biases may lead pyavements in other model fields,
either directly by refining the temperature fields, or indilg by allowing existing compensating
errors to be removed. Moreover it would lead to better eveloa of other model fields (particu-
larly cloud fields), which are often assessed through tlagliative effects (e.g. Allaet al., 2007;
Suet al, 2010).

1.2 THE REPRESENTATION OF CLOUD -RADIATION INTERAC -

TIONS IN GCMs

This section describes how the radiative impacts of clove<alculated in a typical GCM, with
a particular focus on the MetUM (e.g. Waltezs al., 2011), which is used in this thesis. The
MetUM is used operationally across many different spatial ®emporal resolutions, from high
resolution (1.5 km) forecasts of UK weather over the next tdags to climate modelling over
hundreds of years using horizontal resolutions on the @fi&®0 km. The E-S radiative transfer
scheme (Edwards and Slingo, 1996) is used to calculatetirsdftuxes and heating rates in all

versions of the MetUM.
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Chapter 1: Introduction

Numerical models of the atmosphere generally divide thespinere into discrete gridboxes.
These gridboxes are not usually small enough to resolveithdgil clouds, so cloud schemes are
used to predict the proportion of each gridbox that is cloullg proportion of the cloud that
consists of each phase (i.e. ice and liquid), and the meaiuland ice water content within the
cloudy part of the gridbox. Generally clouds are assumedl tbdigridbox vertically and partially
fill it horizontally and each gridbox is considered indepemity. However, parametrizations exist
(e.g Boutle and Morcrette, 2010), that reduce the extenthiziwthe gridbox is filled in the
vertical by spreading the cloud over a larger horizontahat@CM cloud fields may include quite

large biases and errors, as discussed in section 1.3.

The cloud schemes in modern GCMs can be broadly divided wiochategories: prognostic
and diagnostic. In diagnostic schemes (e.g. Smith, 1988hamtaneous cloud properties are de-
termined from the large-scale variables (e.g. temperagdhumidity). Diagnostic schemes have
no memory; cloud properties are calculated afresh on eawdiep. However, they are simpler
and require less computational resources than prognagtenses. In prognostic schemes (e.g.
Tiedtke, 1993) some cloud properties are ‘remembered’ fiore-step to time-step and advected
around by the large-scale flow. On each time-step, thesenpstig variables are modified by
each of the physical processes in the model. Note that ntiteallloud properties in a prognostic
scheme are prognosed, some are diagnosed. In the MetUMasiomsl described in this the-
sis, cloud fields are handled by the prognostic cloud fractiwognostic condensate (PC2) cloud
scheme (Wilsoret al., 2008a). PC2 prognoses liquid, ice and total cloud frastiovater vapour,
and ice and liquid condensate. Increments to each of thegmstic variables are calculated
from each physical process represented in the MetUM. Fdr gadbox, separate gridbox-mean
liquid and ice water content mixing ratios and a cloud fi@attare passed to the E-S radiation

scheme.

Conceptually, one of the most fundamental approximaticedun GCM radiative transfer
schemes is the neglect of the full 3D dimensionality of thebfem. While full 3D calculations
are possible (e.g. Cahalabal, 2005), they are very computationally expensive. Congeityyén
GCMs, only vertical fluxes are calculated and the effect ofZomtal photon transport is ignored.
The difference between full 3D calculations and 1D caléoret is known as the 3D effect (e.g.

Pincuset al., 2005). For clear-sky calculations, the 3D effect is snilt effect of horizontal
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Chapter 1: Introduction

photon transport in opposite directions tends to cancel a~cloudy domain, the magnitude
of the 3D effect depends on the properties of the cloud (eaun@u and Hogan, 2007) and,
in the SW, the solar zenith angle (e.g. Tompkins and Giusepp@7). Efficient methods for

approximating the 3D effect in GCM radiative transfer scksrare in development (e.g. Hogan
and Shonk, 2012). However, as far as we are aware, such geesnhave yet to be incorporated

into any GCM. Consequently, the global mean magnitude o8heffect is unknown.

Atmospheric extinction spectra show significant vari&pilover small spectral intervals.
To account for this variability, most GCM radiative transgehemes employ the correlated k-
distribution method (e.g. Lacis and Oinas, 1991). The SWlANdspectra are each divided into
a number of bands. Cloud optical properties are generadlyrasd to be ‘grey’; they are constant
across each band. Each band is divided into ‘k-terms’, wiephesent all the wavelengths within
the interval that have a similar absorption coefficient. Aumo-monochromatic radiative transfer
calculation is performed for each k-term. The fluxes for datdrm are summed with appropriate
weighting to calculate the fluxes for each band, which arersadto give the total SW or LW
flux. The division of the spectrum into bands and k-termsegfiom model to model; increasing
the number of bands or k-terms leads to more accurate fluxfeating rates, but at greater
computational expense. In the E-S scheme, the configurafibands and k-terms depends on

the particular ‘spectral file’ used, making the model veryifike.

Within each spectral band, cloud optical properties areutalled in terms of scattering and
extinction coefficients and the asymmetry parameter. Noosparametrizations of the cloud
optical properties exist (e.g. Slingo and Schrecker, 1882;1996). The current operational ver-
sion of the MetUM uses the liquid parametrization of Edwaadsl Slingo (1996) and the ice
parametrization of Edwardst al. (2007). In reality, the mean in-cloud optical properties de
pend on the distribution of water content and droplet/alysizes within the cloud. Up until
relatively recently, most GCM radiative transfer schemasudated cloud optical properties us-
ing the mean in-cloud water content and droplet/crysta; smbgrid variability of microphysical
cloud properties was ignored. This is commonly known as theeparallel homogeneous ap-
proximation. The radiative effect of a cloud is non-lingadependent on both the water content
and the droplet/crystal size. As a result, neglecting tihhgsd-scale variability of either leads to a

biased estimate of the effect on the domain mean fluxes arithpeates (Raisaneet al., 2003).
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Chapter 1: Introduction

The water content homogeneity bias is much larger than thaetfcrystal size homogeneity bias
(Barker and Raisanen, 2004) and has been much more wideligd (e.g. Borde and Isaka, 1996;
Cairnset al, 2000). The water content homogeneity bias is one of the praiblems addressed

in this thesis and more detail is available in section 1.4.

As GCMs allow layers to be partially filled with cloud, the stibn to the radiative transfer
problem depends on the proportion of the radiative fluxes dha transferred between cloudy
and clear-sky regions as they pass through layer boundafies is determined by the cloud
overlap assumption, which is generally incorporated iheoradiative transfer solver (e.g. Geleyn
and Hollingsworth, 1979). A number of different overlapusptions have been used in GCMs,
including random, maximum-random (Geleyn and Hollingavot979) and exponential-random
(Hogan and lllingworth, 2000). Changes to cloud overlapitare large impacts on the radiative
transfer calculation and this is one of the aspects of thedctepresentation considered in this

project. Cloud overlap is discussed in further detail irtisaxcl.5 and chapter 4.

Despite the numerous simplifications described above, GG radiative transfer schemes
are too computationally expensive to run on every model-gtee and are run with a lower tem-
poral resolution than the rest of the model. Several methasle been suggested to reduce the
computational burden of radiative transfer schemes antbwethe sampling of the fast-changing
cloud field. One method involves compromising between apatid temporal resolution (Mor-
crette, 2000). Another solution involves ‘adaptive’ rdilia transfer schemes, where expensive,
accurate calculations are only performed when most needlsdi,cheaper, more approximate
calculations are performed more regularly (Venegzhal, 2007). In the MetUM, ‘incremental’
time-stepping (Mannerst al,, 2009) is adopted. This involves two different radiativensfer
calculations in both the SW and LW: an expensive ‘full’ cddd¢ion, using many monochromatic
calculations to represent the whole of the SW/LW spectrutheacheaper, more frequent ‘incre-
mental’ calculation, which uses only one or two pseudo-ncbnamatic calculations to represent
the optically thin part of the spectrum that is most respangd changes in the cloud field. The
frequency of these calculations depends on the model coafign. In the GA3.0 configuration
(Walterset al.,, 2011), full radiative calculations are performed evengéhhours while incremen-

tal calculations are made every hour.
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1.3 EVALUATING CLOUD -RADIATION INTERACTIONS IN GCMs

Evaluation of GCM clouds fields, radiation fields, and thaeieractions is a difficult process.
Ground based in-situ observations and aircraft obsenatiave poor coverage, but may be use-
ful for case studies. Satellite observations have bettardtill not complete) coverage, but only
measure radiation; they cannot measure cloud propertiestidi Most GCMs are continually
evolving and observational evaluation often lags the moeégklopment by several model ver-
sions (as illustrated below). Nevertheless, it is usefuidosider this subject briefly, if only to
provide further context for the results described latehia thesis. By briefly considering a small
subset of the vast body of literature on this subject, wel sim@w that errors in clouds and ra-
diation vary from GCM to GCM and between different versiofishe same model, but MetUM

errors remain fairly typical of the errors observed in otG&Ms.

Radiation fields at the top of the atmosphere (TOA) can bectiyreneasured by passive
satellites, which observe broad areas instantaneouslgn &t al. (2007) compared around three
years (2004-2007) of forecasts of TOA fluxes from severatatmmal cycles (G32-G42) of the
global MetUM with geostationary earth radiation budget & satellite observations. Several
systematic errors linked to clouds were identified. Overogar a net (SW+LW) model bias
of over 30 Wn? was found to correspond to underestimates of cloud fradtjoaround 20%,
while model overestimates of cloud water content were icapéid in a 60 Wnt overestimate of
the TOA reflected SW flux over marine stratocumulus cloudeu€ltet al. (2011) conducted a
similar study, comparing version two of the Regional Atniwesfic Climate Model (RACMO) to
GERB observations over Africa for July 2006. They found éargdiative errors in the opposite
direction in the simulation of marine stratocumulus, wiibud cover, cloud water path and albedo
all underestimated. Moreover, in the continental intguittal convergence zone (ITCZ), the mean
modelled outgoing LW radiation at the top of the atmosph@ieR) was 30 WrT? too high, which
was attributed to the modelled cirrus clouds being too tharine stratocumulus have also been
found to be poorly simulated by other GCMs. For example, \&fild Roeckner (2006) found that
European Centre Hamburg Model 5 (ECHAM5) underestimatedséasonal mean SW CRE of

marine stratocumulus by as much as 40 Y&Wm
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Although cloud properties cannot be measured directly lbgllgas, algorithms exist to re-
trieve cloud properties from the observed quantities (BgJanoé and Hogan, 2010). The re-
trieved cloud fields can then be compared to GCM cloud fieldglambéet al. (2011) used
CloudSat observations to compare the retrieved distdhudf ice water content to modelled (cy-
cle G40, operational from June-September 2006 of the Metlital forecast model and cycle
32r3 of the European Centre for Medium-Range Weather Fste GCMWF) global model) dis-
tributions. They found that both models captured most offéatures of the ice water content
distribution reasonably well. Moreover, most of the deficies of MetUM ice water content dis-
tribution were replicated by the ECMWF model. However, ottedies are less complimentary
about the representation of ice clouds in GCMs. Eliassioal. (2011) compared estimates of
monthly average ice water path (IWP) from CloudSat to egtsi&rom other satellites and used
this information to evaluate a subset of the Intergovernaidpanel on Climate Change (IPCC)
Fourth Assessment Report (AR4) climate models. There veege Idiscrepancies between the

models and all models had difficulty capturing the obserW&@ distribution.

An alternative approach, which is becoming increasinglyypar, is to simulate the observed
quantities using the GCM. Bodas-Salcedal.(2008) estimated radar reflectivity from cycle G42
(operational from December 2006 to May 2007) MetUM globatéast fields, and compared the
values to observed CloudSat reflectivity. Clouds and théhEsaRadiant Energy System (CERES)
and Earth Radiation Budget Experiment (ERBE) observatwa® used to show corresponding
differences in TOA CREs. Midlatitude systems were found édbbtter represented then trop-
ical convection, though the occurrence of midlatitude dkbelow 5 km was underestimated.
Modelled convective cloud amounts around 8-12 km were evienated but above and below
this height, they were underestimated, leading to a 5-103umderestimate of LW CRE. For
the marine stratocumulus region off California, they fodimat LW CRE was underestimated (by
around 5 W) due to too few high cirrus clouds in northern hemisphereevjrwhile SW CRE
was overestimated(by around 7 Windue to an overestimate of the amount of thick low cloud.
Zhanget al. (2010) simulated CloudSat and Cloud-Aerosol Lidar andalmfd Pathfinder Satel-
lite Observation (CALIPSO) observations in the tropicsagghe community atmosphere model
(CAM). In order to minimise the impact of large-scale dynesnon their analysis, they ran short-
range forecasts and studied the average results. Many @ftbes in the CAM simulation are

similar to the MetUM errors discussed by Bodas-Saloetdal. (2008), for example the frequency
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of occurrence of stratocumulus clouds is overestimatedh&yCAM.

1.4 3UB-GRID CLOUD WATER CONTENT INHOMOGENEITY

1.4.1 REPRESENTING CLOUD HORIZONTAL INHOMOGENEITY

As indicated in section 1.2, CREs depend non-linearly ondlwater content (e.g. Haet al.,
1998). Moreover, as we shall discuss in section 1.4.2, ghsens of cloud water content show
that it exhibits significant horizontal variability at sealthat are unresolved by GCMs. Combining
this knowledge with Jensen’s inequality (Jensen, 1906$%, éear that the domain mean cloud
water content is insufficient information for calculatingetcorrect domain mean radiative fluxes
and heating rates. The problem of neglecting horizontainmbgeneity has long been recognised
(e.g. Weinman and Swarztrauber, 1968). Nevertheless, tipth@ last decade, the radiative
transfer schemes used in most GCMs simply used the gridb@n raeud water content and
assumed that clouds were horizontally homogeneous. Uressavater content variability is
also important for microphysics and thermodynamics (eagstnet al., 2001; Jakob and Klein,
1999). For example, many autoconversion parametrizaaomsion-linearly dependent on cloud

water content.

Early studies of the radiative effect of cloud horizontahamogeneity (e.g. Van Blerkom,
1971; McKee and Cox, 1974) generally used 3D radiative teamaodels. Hence the radiative
effects of inhomogeneity and horizontal photon transpateacombined. For the domain sizes
generally used in global NWP or climate models, the effecharfizontal photon transport on
the domain mean radiative fluxes is smaller than the inhomgigeeffect (Barkeset al,, 1999).
Cahalaret al. (1994b) disentangled inhomogeneity and horizontal phtremsport by estimating
the effect of inhomogeneity when horizontal photon trams@oneglected. This is a much more

straightforward problem.

The most effective method for representing horizontal mbgeneity consists of dividing
each horizontally inhomogeneous domain into a number oiztwotally homogeneous sub-
columns, each containing a different water content andwddi@ction of either one or zero. This

is often referred to as the independent column approximgti©A) (Ronnholmet al., 1980), or
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the independent pixel approximation (IPA) and this is wisaiieant by ICA in this thesis. The
number of sub-columns needed depends on the cloud field andaay required. Full 3D ra-
diative transfer models (e.g. Monte Carlo photon transalgbrithms, Barkeet al. (1998)) may

be used to estimate the impact of the neglect of net horikphtaton transport by the ICA (e.g.
Barker and Davies, 1992; Cahalehal., 1994b). However, the computational expense of these
models has restricted these analyses to a limited set ofl dlelds. The ICA is often used as a
benchmark in radiation studies (e.g. Barker and Fu, 2000aWdiLiang, 2005), but is too com-
putationally expensive for operational use in a GCM. The I@éthod is described in more detalil

in chapter 2.

The simplest efficient method for accounting for water contiehomogeneity involves scal-
ing the cloud optical properties. The ‘scaling factor’ oduced by Cahalaet al. (1994a) is de-
fined as the log-average (exponential of the mean of theitbgarwater content divided by the
mean water content. Oreopoulos and Davies (1998b) suggastalternative scaling factor that
takes the value required for the albedo to match the ICA alpetiile Li et al. (2005) describes
an empirically based parametrization for the scaling facagaling requires negligible additional
computational expense and can work reasonably well if thiewee is small (Oreopoulos and
Davies, 1998b); ECMWEF used a global scaling factor of 0.7rf@ny years (Tiedtke, 1996).
However, irrespective of which particular scaling fac®mused, the magnitude will depend on:
gridbox size (Pomroy and lllingworth, 2000); time of yeagcation and cloud phase (Oreopoulos
and Cahalan, 2005); cloud fraction (Koganal, 1995); cloud type (Baungt al, 2004); solar
zenith angle (Shonk and Hogan, 2008); and even the optiopkpty that the scaling is based on
(Szczapet al,, 2000).

The ICA calculation of albedo/transmittance can be reprteskeas the integral over opti-
cal depth of the optical depth distribution times the plpaeallel albedo/transmittance. Barker
(1996) showed that if the optical depth can be representedgaynma distribution, then these in-
tegrals can be solved analytically, leading to new equationsolar albedo and transmittance that
include the effect of subgrid-scale optical depth varighilThis method can also be extended to
the LW (Barker and Wielicki, 1997). However, it increases tomputational cost of the radiation
calculation by at least 25% (Barker and Fu, 2000), increlssomplexity of the calculation,

and also suffers from many of the same problems as the siroglieg factor.
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More recently, Shonk and Hogan (2008) introduced the ‘“€djduds’ method. This works
by splitting each layer of each GCM column into three regiomse clear-sky and two equally
weighted cloudy regions. One of the cloudy regions is assigo optically thinner cloud, the
other represents the optically thicker cloud. Tripleckids been implemented and tested in the

Met Office Unified Model (Shonkt al., 2012).

The Monte Carlo Independent column approximation (McICR)hn¢uset al, 2003) mim-
ics the ICA calculation, but is noisier and more computatlgnefficient. The ICA requires a
monochromatic calculation for every sub-column for eacimipia the integral over wavelength.
In McICA, for each point in the integral over wavelength agémmonochromatic calculation
with a randomly chosen sub-column is performed. This resltice cost of the radiative trans-
fer calculation considerably, but introduces unbiasedioam errors, which can be reduced by
performing more monochromatic calculations for a selectbwavelengths (e.g. Raisanen and
Barker, 2004). However, unless this noise is quite largeast been shown to have no significant
impact on GCM climate simulations (e.g. Raisame¢al., 2005, 2007, 2008; Barket al,, 2008).
An important additional advantage of both ICA and McICA isitithe cloud representation is
separated from the radiative transfer scheme, so makimgekao the subgrid-scale cloud struc-
ture is easier. This is the reason for the adoption of McICAhm E-S scheme, as described in

chapter 2.

1.4.2 How MUCH INHOMOGENEITY EXISTS ?

As remarked in section 1.4.1 unresolved cloud water comamdbility has significant radiative
impacts and the magnitude of these impacts depends on th@toegof the unresolved variabil-

ity. This section addresses the issue of how much subgridbitity exists.

While numerous observational studies of water contentldity have been carried out (e.qg.
Smith and Del Genio, 2001; Ross@t al., 2002), they use different inhomogeneity parameters
and observations sources and the results are rather disp&taonket al. (2010) reviewed many
of these articles. For ease of comparison, the differerdrmgeneity parameters were converted
to fractional standard deviation (FSD); the standard denalivided by the mean. Estimates of

mean FSD ranged from 0.445 to 1.374. Moreover, while indigidtudies identified correlations
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between FSD and other variables (as detailed below), there mo obvious relationships when

the different studies were combined.

Both Barkeret al. (1996) and Pincust al. (1999) identified a relationship between cloud type
and variability, with cumulus clouds showing more inhommgjey than stratocumulus. Hogan
and lllingworth (2003) found that variability increased th®& domain size increased and that
wind shear was negatively correlated with variability. @alnet al. (1994a) and Oreopoulos and
Cahalan (2005) show conflicting results concerning theiocgiship between cloud fraction and
variability; Cahalaret al. (1994a) found that variability increased with increasitaud fraction,
while Oreopoulos and Cahalan (2005) found that cloud foactind variability were essentially

independent, except close to cloud fractions of one, wheredriability decreased very sharply.

While knowledge of the water content variability alone iffisient for Tripleclouds and scal-
ing factor calculations, a statistical distribution isu@gd for McICA calculations. Many differ-
ent distribution functions have been suggested for suksgrade inhomogeneity, including normal
(Gollmeret al,, 1995), log-normal (Bony and Emanuel, 2001), beta (Tomgpk002) and gamma
(Barker, 1996) distributions. Observational studies.(El@gan and lllingworth, 2003; Leet al.,,
2010; de la Torre Juares al,, 2011) have generally found that the log-normal and gamsta-di

butions provide the best matches to the observed disiitsiti

1.4.3 BEFECTS OF REPRESENTING INHOMOGENEITY

Outgoing LW radiation (OLR) is a concave function of optidaipth (Fuet al., 2000), so neglect
of subgrid water content variability leads to an overestara the reduction in OLR by clouds
(i.e. an underestimate of OLR). Similarly, in the SW, negtgénhomogeneity leads to an overes-
timate of the CRE. Thus the net effect of adding a representaf variability will be a reduction

in the CRE for a given water content.

For individual cloud scenes, instantaneous OLR errors dureglecting subgrid-scale water
content variability may be as large as 60 Wr{Fu et al., 2000), while instantaneous TOA SW
errors may exceed 100 Wfn(Barkeret al, 1999). However, average errors for large numbers
of realistic cloud scenes are smaller. Applying Tripledsuo four months of ERA-40 cloud

fields and employing a constant global value for the FSD, Blamd Hogan (2010) found that
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the magnitude of the water content homogeneity bias depgeadehe magnitude of the FSD.
For an FSD of 0.57, the effect on TOA CREs was found to be 3.1-ah® Wni? in the SW
and LW respectively, while for an FSD of 0.93, the correspogd/alues were 12.1 and4.1
Wm2. Barker and Raisanen (2005) performed ICA calculationstochastically generated cloud
fields initialized by data from a super-parametrized (Kiiaiidinov and Randall, 2001) GCM. By
perturbing the FSD of the generated cloud fields by smallesaAnd assuming that the radiative
effect could be linearly extrapolated, they estimated ¢hat0 change in FSD would change SW
and LW TOA fluxes by 8.75 and-3.86 Wm? respectively. Note that estimating the effect of a
1.0 change in FSD from the values in Shonk and Hogan (201Qjtsea a much larger estimate
of this sensitivity (24.8 Wit for SW fluxes and-8.6 Wm? for LW fluxes). Nevertheless, both
studies suggest that the sensitivity of TOA fluxes to charnigdghe FSD is significant, which

implies that better estimates of the magnitude of unregohegiability are required.

The effects of introducing the radiative effect of inhomoegiy in GCMs have generally been
found to be consistent with the off-line calculations désemi above (i.e. CREs are reduced).
Comparing a five year climate simulation with scaling of ogkidepth (by 0.7) to account for
inhomogeneity to one with no scaling, @t al. (2003) found that OLR was increased by 4.6
Wm2 and the reflected SW was reduced by around 12%\Vkdsing Tripleclouds, Shonkt al.
(2012) identified a smaller effect (around 3 Wnin both SW and LW TOA fluxes) in 20 year
MetUM climate simulations and also showed changes in sert@mperature and cloud fraction.
GCM sensitivity to changes in the distribution of varialyilwas considered by Gu and Liou
(2006); they compared two five year climate simulations, apglying a global scaling factor
to cirrus clouds, the other applying a geographically vagyscaling factor based on ISCCP data.
The non-uniform scaling factor was generally larger thaglobal value (i.e. inhomogeneity was
smaller), so global mean CRE was increased in the experiosémg the geographically varying
scaling factor. Perhaps more significantly, there were@tsmges to the geographic distributions

of cloud and precipitation.

Climate models are usually ‘tuned’ in order to get the cdrgiobal-mean TOA radiative
fluxes. This means that the homogeneous clouds bias is oifielern by other compensating
biases in the model and the direct effect of introducing mbgeneity will be an increase in the

magnitude of the TOA radiative flux bias.
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1.5 CLouD VERTICAL OVERLAP

Another ramification of the non-linear relationship betwetuds and radiation is the sensitivity
to the assumptions about vertical overlap of the subgridd:loFor a pair of partially cloudy
layers, the radiative fluxes and heating rates depend on éyethat clouds in each layer are
aligned vertically: the radiative effect of the cloud dexges as the area of overlapping cloud
increases. Cloud overlap is also important for GCM estimafesurface precipitation; whether
precipitation falls into cloudy or clear air affects acavatand evaporation rates. (Jakob and

Klein, 1999).

There are three standard overlap assumptions, which im ofdecreasing total cloud cover
are maximum, random and minimum overlap. These are illiggtray Figure 1.1. Maximum
overlap can be physically justified by each layer contaimag of the same cloud (i.e. a single
cloud extending over multiple layers). Random overlap @explained by different clouds being
present in each layer, so that the cloud in each layer is extgmt. Minimum overlap is harder to
justify based on meteorological processes, but could g the presence of one cloud inhibits
the formation of another, for example turbulent mixing @ssed with shallow cumulus clouds
inhibits the growth of deep convective clouds (e.g. Chertém, 2006). Note that the definition
of random overlap is somewhat ambiguous; for random ovenldpCMs the areal fraction of
overlapping cloud is generally equal to the product of tleaidlfraction in each layer, as shown
in the schematic. This is the overlap that would be obseifvesich cloud was divided horizontally
into an infinite number of independent cloud cells, which eveandomly overlapped with each

other.

Up until relatively recently, GCM overlap assumptions wgemerally embedded in the ra-
diative transfer solver, as described by Geleyn and Hdlvagth (1979). In this case, only the
overlap between adjacent layers can be prescribed; théapJveetween discontiguous layers is
obliged to be random, while the overlap between contiguaisbn-adjacent cloudy layers is
only constrained by the overlap of the set of adjacent lalget&een them and is otherwise ran-
dom. These overlap constraints do not apply to the ICA andMdchemes (See section 1.4.1),
which separate the assumptions concerning subgrid clondthe radiative transfer solver, facil-

itating modifications to the overlap assumptions.
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Maximum Overla

Random Overla

Minimum Overla

Figure 1.1 lllustration of the maximum, random and minimum overlapuasgtions.

While this split between contiguous and discontiguous ayolayers was originally moti-
vated by the practicalities of calculating the transmissid fluxes between layers of a GCM,
observations have confirmed that the overlap assumpti@isate required for contiguous and
discontiguous layers may indeed be different. Overlaprpatazations that treat contiguous and
discontiguous cloud layers separately are often denoteéteogverlap parametrization for each,
separated by a hyphen, with contiguous overlap first (e.girman-random means contiguous
layers are maximally overlapped and discontiguous layexsandomly overlapped). This con-

vention will be used in this thesis.

1.5.1 CONTIGUOUS CLOUDS

Up until relatively recently, most models used maximum @gerfor contiguous clouds, as de-
scribed by Geleyn and Hollingsworth (1979). This method s@sported by the study of Tian
and Curry (1989), which found that maximum overlap was m@@@priate than either random

or minimum overlap.

The development of cloud radars in the 1990s provided nemsdgd for studying cloud over-
lap; Hogan and lllingworth (2000) found that the averagerlayefor contiguous clouds was best
represented by a linear combination of maximum and randariay, with the overlap becoming

increasingly random as the vertical distance between tferdancreased. They suggested that
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the ‘overlap parameter’, which controls the proportion @ximum and random overlap could be
represented by an inverse exponential function of thecadrtlistance between the layers, with a
‘decorrelation length’ to control the rate at which the dapmparameter decreases with increasing

distance.

Subsequent research (e.g. Mace and Benson-Troth, 2002 déflat, 2009; Oreopoulos and
Norris, 2011) has confirmed that the exponential overlaghotesuggested by Hogan and llling-
worth (2000) is an excellent approximation for the averagerlap between contiguous clouds.
However, there remains considerable uncertainty conugriie most appropriate decorrelation
length. Hogan and lllingworth (2000) found that decoriielaiength varied with horizontal and
vertical resolution, while Barker (2008a) found that it iaked to cloud fraction and horizontal
resolution had little impact. Shorgt al. (2010) suggested a latitudinally dependent value ranging
linearly from less than 0.5 km at the poles to around 3 km atetiigator. On the other hand,
there is a growing body of evidence showing that, at leashfeoglobal mean radiation budget
perspective, GCMs are reasonably insensitive to the meeisie of the decorrelation length (e.g.

Barker, 2008b; Shonk and Hogan, 2010).

While the mean overlap for contiguous layers can be well@pprated by exponential over-
lap, the distribution of overlap is less well studied. It & nlear how representative of individual

cloud scenes the mean overlap is.

1.5.2 NON-CONTIGUOUS CLOUDS

GCMs generally assume that non-contiguous clouds are @migmt and overlap is random. Ran-
dom overlap of non-contiguous clouds has been affirmed bgrabwbservational studies (e.qg.
Hogan and lllingworth, 2000). While some studies have amhedl that certain cloud types are
correlated and random overlap is not appropriate, thesstagées that consider overlap in terms
of frequency of co-occurrence of multiple discontiguousud layers within each observed do-
main (e.g. Cheret al., 2000; Wang and Dessler, 2006). The overlap in questioniesp very

large domains and is not directly comparable to the subgmllap that is required by the radia-
tion scheme; the equivalent model values also depend orsioé/ed cloud overlap as predicted

by the cloud scheme.
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As for contiguous clouds, previous observational studesettonsidered the mean overlap
only; in order to add further insight on both contiguous aond-oontiguous clouds, we intend
to study the distribution of overlap parameters. Moreower,shall consider the implications of

using the mean overlap rather than the true overlap for ggheoi radiative transfer calculations.

1.5.3 BFECTS OF CHANGING OVERLAP

For individual cloud scenes, the overlap assumption caa hakery large impact on the radiative
fluxes and heating rates (e.g. Barletral. (1999) showed that changing the overlap assumption
could change the TOA SW fluxes by more than 300 WmThe effect on global mean fluxes
is smaller, due to the presence of overcast layers. For deamging year-long climate sim-
ulations, Morcrette and Jakob (2000) found that the diffeeebetween maximum-random and
random overlap in terms of global mean TOA fluxes were 6.9 aBdMn7? in the LW and SW

respectively.

As acknowledged earlier, if exponential-random overlamdepted, the sensitivity of the
global mean radiation budget to the exact magnitude of ticerdelation length is smaller still.
Barker (2008b) found that zonal-average CRE biases affiingthe use of a global decorrelation
length of 2km were at most around 10 and 5 Win the SW and LW receptively, while root mean
square errors were less than 30 and 12 ¥Vi®honk and Hogan (2010) estimated that the range of
net CRE values resulting from the estimated uncertaintheir zonal mean decorrelation length

parametrization was 0.5 W

1.6 THIS THESIS

1.6.1 Awms

The primary aim of this work is to improve understanding afuzl structure and the affect that
unresolved cloud structure has on cloud-radiation intemas. In particular this work focuses
on two radiatively important facets of cloud structure;udlovertical overlap and subgrid-scale

horizontal cloud water content variability.
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The secondary aim of this thesis is to improve the representaf cloud in the Edwards-
Slingo radiative transfer scheme that is used in the Met Offlnified model. This will give us
more confidence in the model and potentially contribute td&@mproved weather forecasts and

climate prediction.

1.6.2 QUTLINE

The following chapter, which has been published asé{iil. (2011), concerns the use of McICA
to represent the radiative effects of unresolved cloudcttra in the MetUM, focusing on eval-
uation, reduction and impacts of the associated randomseri@e introduce a new algorithm
for choosing how cloudy sub-columns should be sampled byab&tion scheme in order to
efficiently reduce noise. We consider how McICA noise affeet NWP simulation and com-
pare surface temperature errors related to McICA noisedcethors arising from an incorrect

treatment of subgrid cloud structure.

Chapter 3, published as Hék al. (2012), employs a set of combined CloudSat and Moderate
Resolution Imaging Spectroradiometer (MODIS) observetiof ice water content to determine
how much ice water content variability is unresolved by GCNike FSD of ice water content
is found to increase with the horizontal scale over whicls italculated and also with the thick-
ness of the layer. The connection to cloud fraction is morealwated; for small cloud fractions
FSD increases as cloud fraction increases while FSD dexsesfwrply for overcast scenes. The
derivation of a simple parametrization of ice water contariability including these relation-

ships, suitable for use in GCMs, is detailed.

Chapter 4 concerns cloud vertical overlap. CloudSat raddrGALIPSO lidar observations
are merged in order to produce a combined cloud mask. Wetiga&sthe mean overlap param-
eter and confirm that it is well predicted by the exponemnaaldom overlap parametrization. We
also consider the distribution of overlap parameters angvghat the mean overlap parameters
given by exponential-random overlap are rarely suitabtérfdividual cloud scenes. We investi-
gate the relationship between horizontal cloud structodeaverlap and suggest some changes to
the representation of cloud overlap in models in order ttebeapture the observed distribution

of overlap. The impact of these changes on total cloud caveieatimates of OLR is described.
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Chapter 5 describes the impact of changes to subgrid-sicald structure on 10-year climate
simulations, focusing in particular on the effect of the H&Dametrization derived in chapter 3.
The climatology of the FSD that arises from applying the pea@ization in the model is dis-
cussed. Comparing a climate simulation using the FSD paremation to one using the same
mean FSD applied globally, we show that allowing the FSD ty e&cording to the parametriza-

tion reduces the global mean CREs.

Finally, chapter 6 contains a summary of the thesis, folthwa outline of potential future

work.
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CHAPTER 2:
REDUCING NOISE ASSOCIATED WITH

MCICA FOR WEATHER FORECASTING

MODELS

The following chapter has been published as Etilal. (2011).

2.1 INTRODUCTION

The importance of cloud to the distribution of radiative tiveg rates has long been recognised
(e.g. Liou, 1986), as has the importance of representingrgl#scale cloud inhomogeneity (e.g.
Cahalaret al, 1994a). However, the radiative transfer schemes usedmy general circulation
models ignore subgrid-scale cloud water content varighdind assume that clouds are vertically
overlapped according to the maximum-random approxima@g. Geleyn and Hollingsworth,
1979). Barkeret al. (1999) showed that these assumptions lead to biases inlthgatad fluxes

and heating rates, both individually and when combined.

The Monte Carlo Independent Column Approximatidic(CA), described by Pincust al.
(2003), is a method for representing cloud inhomogeneitsadiative transfer schemes. It ap-
proximates the accurate but costly full independent colapproximation CA) calculation (e.g.
Barkeret al,, 1999), at considerably less computational expense. Edntégral over wavelength,
at each quadrature point, instead of calculating the mawaoatic flux for every sub-column, the
monochromatic flux for one or more randomly chosen sub-cokiis calculated. For further

details, see section 2.2.

McICA has two major advantages compared with the alteraatiethods for representing

Page 20




Chapter 2: Reducing noise associated with MclICA for wedihracasting models

cloud inhomogeneity in GCMs, such as the use of a scalingifdetg. Cahalaet al, 1994a) or
‘Tripleclouds’ (e.g. Shonk and Hogan, 2008). Firstly, itisbiased with respect to the full ICA
calculation. Secondly and perhaps more importantly, itowss the cloud structure representation
from the radiative transfer code and thus allows for a morélle cloud representation. On the
other hand it introduces conditional random errors, whiepethd on the choice of sub-columns
mapped to each quadrature point. The amount and effect ohthse has been the subject of
several papers. However, such papers have generally téadedus on its impacts in climate

models.

Pincuset al. (2003) performed a number of tests on cloud fields from a elesdlving model
(CRM). They calculated a standard deviation of McICA errfarsshort-wave (SW) surface flux
of 105 Wm? (approximately 10% of the incident TOA radiation). The effef this noise on a
seasonal forecast model was estimated by randomly parturadiative fluxes and heating rates.

They found no statistically significant differences to thaantrol.

Raisaneret al. (2005) and Raisanest al.(2007) investigated the effect of McICA noise on the
National Center for Atmospheric Research (NCAR) Commuatiyjosphere Model (CAM) and
European Centre Hamburg Model 5 (ECHAMDS) climate modelpeaetvely, using a low-noise
version of McICA as the reference. In both models they fodmad their noisiest implementations
of MclICA led to a significant reduction in low cloud fractianghey were able to remove this

effect by reducing the level of noise.

More recently, Barkeet al. (2008) investigated the effect of McICA noise on severabglo
models. Again using a low-noise version of McICA as the refiee, they ran 14 day simulations.
They found that some of their models responded significdattie noisiest tests, but no models

displayed significant impacts when noise was reduced.

While the effect of McICA noise on climate models has beenegaktensively studied, its
effect on numerical weather prediction (NWP) models, paldrly where the time and spatial
scales of interest are smaller, is not so well documentedCMbas been tested in the European
Centre for Medium-Range Weather Foreca&€MWH integrated forecast system (Morcrette
et al, 2008), and as in the climate simulations, the related neaenot found to be detrimental

to results. However, the radiation scheme employed at ECM#gHmany more quadrature points
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than most other forecast models and as a result the magrafudelCA noise in the ECMWF

model is significantly smaller.

As McICA noise is generally thought to be of little consequenonly a single article has
been published regarding methods for reducing noise. aRéis and Barker (2004) suggested
two methods for minimising McICA noise. Combining these hoets they found that they could
reduce the standard deviation of McICA noise by approxitgatéactor of three, while increasing

the number of monochromatic calculations required by 50%.

This chapter investigates the effect of McICA noise on theélWé. In section 2.2 we con-
sider the McICA scheme in more detail, discuss its impleie@nt in the MetUM and describe
the cloud generator that provides the subgrid cloud profégsired. Section 2.3 considers the
magnitude of the noise associated with McICA, introducebneues for efficiently minimising
this noise and compares these techniques to a previous nelihaection 2.4 we consider the
effect of McICA noise on a MetUM NWP simulation, with regaris1.5 metre temperature in

particular. Finally, conclusions are presented in se@ién

2.2 THE McICA METHOD AND ITS IMPLEMENTATION

2.2.1 THE McICA METHOD

At its core, the McICA method is an efficient mechanism forragpmating the full ICA calcula-
tion. As such, we shall first describe the full ICA calculatio detail and then go on to describe

how the McICA method relates to it.

The full ICA calculation consists of splitting each GCM colo into a number of sub-
columns, each of which is either overcast or cloud-free. dibibution of water content within
the cloud can be represented by allocating different watetent values to each sub-column.
Assuming the flux in each sub-column is independent of theifitke other sub-columns, i.e
using the independent column approximation, the radidtevesfer calculation is performed for
each sub-column individually. The fluxes for the entire pecdire then determined as the mean of

the sub-column fluxes. Considering a profile divided iNtsub-columns and a radiative transfer
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scheme withK quadrature points to approximate the integral over waggterthe full ICA flux,

F,is given by
_ 1 N K

F= N Zi] X (2.1)
wheref; ; denotes the flux calculated for the quadrature ppartd the sub-column This method
is far too computationally expensive for practical use inN&C due to the double sum over
quadrature points and sub-columns (in the equation albdemonochromatic radiative transfer
calculations are required, as opposedKtanonochromatic calculations for the corresponding
plane-parallel homogeneous calculation). However, itfisroapplied as a benchmark when

evaluating other methods of treating horizontal inhomeggn

In the McICA scheme, each GCM column is again divided intosollomns. However, rather
than calculating fluxes for every combination of quadrapoits and sub-columns, the flux for
each quadrature point is calculated using one or more ralydcmsen sub-columns. Thus the

McICA flux, F, is given by:
(j)

i Zx f’a”d " (2.2)
wheren(j) denotes the number of randomly chosen sub-columns for thdrgture poin and
frand(i,j),j denotes the flux calculated for the quadrature pgirind a randomly chosen sub-
column, rand(i, j). If the distribution of sub-columns amongst the quadrapoets is truly
random, then McICA fluxes are unbiased with respect to thHel@A fluxes. However condi-
tional random errors are introduced. If the sub-columnsamepled without replacement, then at

the limit of n(j) equalsN for all j, we have exactly the full ICA calculation.

2.2.2 IMPLEMENTATION IN THE MET OFFICE UNIFIED M ODEL

The Edwards-Slingo radiative transfer code (e.g. Edwardbk &lingo, 1996) employed in the

MetUM currently splits both the SW and long-waue/)) spectra into a number of distinct bands.
Within each band, extinction due to cloud condensate idddeas a ‘grey’ process. The corre-
latedk-distribution method (e.g. Fu and Liou, 1992) is employedefaresent gaseous absorption
within the bands. This consists of reducing the number oficatare points representing the inte-
gral over wavelength by binning those wavelengths with lsindbsorption coefficients (hereafter

referred to a&-terms). Overlap of absorption is accounted for by equivadstinction (Edwards,
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1996) where full calculations are only performed for Kaerms representing the ‘major’ gas in
each band. External ‘spectral files’ are used to providerimédion on the decomposition of the
spectrum into bands ardterms, along with the optical properties of gases, aesoaot cloud

condensate.

The homogeneous plane-parallel method currently in ojperat Edwards-Slingo allows for
fractionally cloudy layers, by splitting each layer intorizontally homogeneous regions (e.g.
Shonk and Hogan, 2008). Thus, assuming we have two regioaacin layer (i.e. cloudy and
clear) we must solve for a clear and cloudy flux in each layeoraher to obtain total up and

downwelling fluxes.

The McICA scheme requires information about subgrid cloMde use a stochastic cloud
generator that implements the approach described bRt al. (2004). This generates 100
sub-columns, which may or may not contain cloud, once peatiad time-step, so the same set
of sub-columns can be sampled in both the SW and the LW. Merdbig called independently of
the radiation scheme. Hence the cloud sub-columns arehbiailor use in other parametrisation

schemes, such as the precipitation scheme, if required.

We have extended the generator to include a representdtibe exponential-random overlap
approximation suggested by Hogan and lllingworth (2000addition to the separate exponential
and random overlap parametrisations already availablee Efentiguous clouds are overlapped
according to the exponential parametrisation while namigaous clouds are randomly over-
lapped. In addition, we redefined the decorrelation lengéhesof Hogan and lllingworth (2000)
in terms of pressure, as a pragmatic measure to more closgbhrthe vertical coordinates used

within the radiation scheme.

For our implementation of McICA, we allocate a distinct alosub-column to eack-term.
Thus cloud optical properties must be calculated oncejterm rather than once per band as in
the plane-parallel case. Moreover, each sub-column isreitercast or clear, so we only need to

solve for a single set of fluxes, which is significantly lesmpaoitationally expensive.

The computational cost of the McICA method depends on theahaumbers fon in equa-
tion 2.2. Clearly, as the values ofincrease, more monochromatic calculations are requieed, s

the cost of the code increases. Consider a McICA calculatioich requires the same number
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of monochromatic calculations as the plane-parallel ¢afmn (so in equation (2.2n(j) =1

for all j). As we have the same number of monochromatic calculatiorispnly require a ho-
mogeneous solver, calculating fluxes once the optical ptiegehave been calculated is compu-
tationally cheaper. However, calculating the optical jemies is more expensive, as the cloud
contributions must be calculated once gderm rather than once per band. Moreover we must
account for the further cost of generating the cloud subroolk. Thus the total cost of such a

MCcICA calculation is comparable to that of the plane-p&iathalculation.

2.3 EVALUATION AND OPTIMISATION OF NOISE

In order to study whether noise has an impact, a mechanisroofarolling the level of noise
is necessary. Thus in this section we consider methods tanally reducing the magnitude of

McICA noise.

2.3.1 METHODS FOR REDUCING NOISE

Techniques for efficiently reducing McICA noise were firshsimlered by Raisanen and Barker
(2004). Two methods were introduced: optimising the spaéiepling and optimising the spec-

tral sampling.

The method of optimising the spatial sampling consists oftisyy the flux calculation into
clear and cloudy parts and restricting the random samplirsgile-columns to the cloudy part of

the calculation. Thus equation (2.2) becomes:

K K n(j) fcld

F=(1-Co) 3 f"+Ca3 5 i (2:3)
j=1i=

whereCq is the total cloud cover in the profilef,-"'r is the clear sky flux calculated for the j-th
k-term andf%ﬁd(i D] is the flux calculated for the j-tk-term and a randomly chosen cloudy sub-
column. Clear-sky fluxes are often determined for diagngaiirposes, in which case this optimal

spatial sampling is no more expensive than the basic céioalas given by equation (2.2).
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The method of optimising the spectral sampling is based erfétt that the variouk-terms
in a spectral file respond differently to changes in cloud.(®annerset al, 2009). The idea
is to sample more cloudy sub-columns with #erms which contribute most to the radiative
effects of cloud. Thus in equation 2.3, higher valuer afe used for th&-terms which are more
responsive to cloud. Hence a method is required to choosenemy sub-columns eadtterm
should sample. Note that as described in section 2.2.2 eiiMigtUM, cloud sub-columns are
generated independently of the radiative transfer sch&imgs, we are taking additional samples

from an existing pool of sub-columns.

We developed a simple algorithm that can be run once offlinehttose how many sub-
columns eacl-term should sample. The aim of our algorithm is to identifggek-terms which
contribute most to the changes in fluxes that occur for a ahamgloud water content. Sev-
eral factors contribute to the magnitude of this change ix: fthe weight of thek-term, which
represents the proportion of the total flux correspondintpéd-term, the atmospheric clear-sky
transmission, and the difference in atmospheric transoms®r the two different cloud water
contents. The importance of theterm increases as the magnitude of each of these factors in-
creases. As the weight increases, the proportion of thé flataincreases. Similarly, as the
clear-sky transmission increases, there is less cleaexdkyction and a greater proportion of the
flux is available to be extinguished by the cloud. A largefadénce in cloud transmission cor-
responds to greater sensitivity to the actual value of tbacticondensate. Thus the following

equation gives the relative ‘importanaedf eachk-term:

(J) xtg(j) x (tchin(j) — ternick(i))
n(j)

(i) == (2.4)

where,n(j) is the number of sub-columns sampled by jkl k-term,w(j) is the weight of
thek-term, given by equation (2.5)g(j) is the atmospheric gaseous transmission forkiatm,
calculated as in equation (2.6%nin(]) is the total atmospheric transmission value for optically
thin cloud, as given by equation (2.7) atuthick( ] ) is the total atmospheric transmission value for

optically thick cloud, calculated as in equation (2.8).

W(j) = wo(]) x W (]) (2.5)
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tg(j) = g (Kestt(])xUg) (2.6)
tCthin(j) = e (€<t (2.7)
tCihick = & 1)) (2.8)

In equations (2.5) to (2.8):

e Wy(]) is the weight of thék-term as a fraction of the band.

e Wi (]) is the weight of the band as a fraction of the flux, calculatgdgithe solar spectrum

in the SW and a Planck function in the LW.
e kesti(]) is the absorption coefficient for the gas for #aeerm.
e Ug is the integrated column amount of the gas.

e £(]) is either the total extinction coefficient of the cloudy campnt or the absorption
coefficient of the cloudy component, depending on whetheim is to minimise surface

flux or heating rate errors.
e Uy is the integrated column amount of condensate for an oftitidh cloud, 0.002 kgrif.

e Uy is the integrated column amount of condensate for an otttk cloud, 0.2 kgn?.

We include three gases in this calculation: water vapouharadioxide and ozone, with
integrated column amounts of 25 kgfn5 kgm? and 0.008 kgrit respectively. Eaclik-term
represents absorption by one of these gases. The partahdares of condensate values above
are rather arbitrary, but allow us to estimate the changeaimstnission due to changes in cloud
thickness, as opposed to whether or not cloud is presens. pravents us from wasting samples

onk-terms which respond strongly to cloud but quickly becontarsaed.

Initially, n(j) equals 1, for alk-terms. The algorithm consists of the following steps:
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Calculate the values of j) for all k-terms.

Allocate an additional sample to theterm with the largest value of.

Add 1 to the value of(j) for thek-term which has been allocated an additional sample.

If there are further sub-column samples to allocate, go badke first step.

By assigning each additional sample to the most ‘importk#i€rm, rather than thi-term
which will have its importance reduced most, we minimiseitiddvidual importance of thé-
terms rather than the sum of their importances. Minimisheyihdividual importance results in
more samples being assigned to felkderms. Moreover, results showed that this leads to lower

heating rate errors than when the sum is minimised.

As mentioned above, we suggest tbgit) is defined as the total extinction coefficient of the
cloudy component if one wishes to minimise flux errors andahsorption coefficient if one
wishes to minimise heating rate errors. In the SW, both hgatates and the surface flux are
significant, so we assigned sub-columns to minimise heatites and fluxes alternately. In the
LW, there is far more absorption than scattering, so we fdhatiwe got the same values fidr

irrespective of whether we used total cloud extinction aaaption.

Raisanen and Barker (2004) use an alternative methoddoas¢ sub-columns tk-terms.
This algorithm consists of calculating the global mean dloadiative effect CRE for eachk-
term, either in terms of surface flux or heating rates. Therthér sub-column samples are
allocated one-by-one to tHeterm whose CRE is reduced most by allocating it an additiona

sub-column. We compare the two algorithms in the case stedgribed in the following section.

2.3.2 TEST SET-UP AND RESULTS

The magnitude of noise associated with the McICA method wakiated using the offline ver-
sion of the Edwards-Slingo code, together with the spedilied which are used for both the
HadGEM climate model and the global forecast model. The S&\cfintains 6 spectral bands
and 20k-terms for the major gases, while the LW file contains 9 spébiands with a total of 33

k-terms for the major gases.
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We shall discuss heating rate and SW surface flux errors fodifferent versions of MclCA.
In the single sampling version of McICA, optimal spatial gdimg is applied, but no further
additional cloud sub-columns are used. In the optimal warsf McICA both optimal spatial and
optimal spectral sampling are applied. Here we distribtedditional sub-columns in the SW
and 12 in the LW using the algorithm outlined above (the ¢ftdachanging these numbers is

discussed later in the chapter).

As mentioned in the previous section, the choices of gas kmdl @mounts used in the al-
gorithm were somewhat arbitrary. In the SW, for this pattcispectral file, the algorithm is
rather insensitive to the particular integrated column ant®of gas used; doubling or halving the
amount of any of the gases has no effect. The algorithm is semsitive to the cloud amounts,
which of course are more variable. Nevertheless, modifgitiger of the cloud amounts by a fac-
tor of 10 only changes the distribution of at most three (dut&) sub-columns. In contrast, in the
LW, the algorithm is more sensitive to the gas amounts tharckbud amounts, but is relatively
insensitive to both the gas and cloud amounts and the tetoperdaom which the Planckian is
calculated. While the algorithm showed little sensitiitythe particular values used for the tem-
perature, gas and cloud amounts for the particular spditestested, it should be noted that this

may not be the case for significantly different spectral dgoositions.

The test cases were nine 100 column strips taken from vaciousl resolving modelGRM)
simulations. Properties of these cases are given in TableEach of these strips is considered
to be representative of a single GCM gridbox, divided int@ $Qb-columns. For each case, the
full ICA calculation was applied to obtain benchmark fluxesl deating rates. For each of the
versions of MclCA, for each CRM case, 1000 different MclCAccéations were performed, with
a different random assignment of sub-columns-terms for each calculation. For each of the
1000 versions of McICA, differences relative to the full I@alculation were determined. The
absolute values of these errors were then averaged, resuitimean absolute heating rate and

SW surface flux errors for each cloud case.

In order to put the degree of noise into context, we also useahmvater content and cloud
fraction profiles from each of the CRM fields to calculate feixsing the homogeneous plane-
parallel maximum-random overlap treatment of cloud, whiaghshall hereafter refer to as PP-

MRO. It is important to remember that the McICA values belepresent the expected magnitude
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Description of Total cloud Fractional standard deviation of
Case Layers
CRM simulation fraction integrated total water content
A extensive stratocumulus 1.0 127 0.166
B extensive stratocumulus 1.0 127 0.249
C extensive stratocumulus 1.0 127 0.560
D | convection over west Pacific 1.0 52 0.834
E | convection over west Pacific 1.0 52 0.834
F | convection over west Pacific 0.16 52 1.066
G convection over Amazon 0.74 167 1.352
H convection over Amazon 0.47 167 1.531
I convection over Amazon 0.34 167 1.072

Table 2.1 Properties of the CRM cloud fields on which methods for renigidviclCA noise are

tested.

of an unbiased error. On the other hand, the PP-MRO errorow@are them to are biases, due

to the combination of two biased assumptions: maximum-aandverlap of plane-parallel cloud.

Figure 2.1 shows the mean value of the SW downwelling surfaceabsolute errors for
each of the CRM cloud fields. Note that although the magnitfdbe noise varies significantly
from case to case, the optimal method is always less noisy tte single-sampling method.
Furthermore, the range of values for the optimal McICA eipent is significantly less than that
of the PP-MRO experiment. It should be noted that the PP-MR@sdepend on the particular
combination of the maximum-random and plane-parallelrerrdhe McICA errors on the other
hand depend on the cloud water content fractional standaratibn and the number of cloudy

sub-columns available to sample.

Table 2.2 shows the mean across all cloud cases for the S\Acsuiliix errors shown in
Figure 2.1. Also shown are the equivalent SW, LW and net hgatite errors. These mean
absolute heating rate errors were calculated as followmse&ch cloud case, the absolute heating
rate error for each of the rows between the cloud top and theldbase was diagnosed. These
absolute heating rate errors were then weighted by the isedanass of the layer. Finally, the

mean of these weighted absolute heating rate errors wenglatd.
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Figure 2.1 Mean SW surface down-welling flux absolute error. Each paptesents a different
cloud case. The solid, dotted and dashed lines correspatig t8P-MRO, single sampling and

optimal results respectively.

Note that unlike for the SW surface flux errors, both SW and BWH(consequently net) mean
absolute weighted heating rate errors are smaller for thtIRBP experiment than either of the
McICA experiments. This is because the surface fluxes depeitide water content values in the
entire column. Thus, assuming that the distributions ofewabntent in distinct layers are not
completely correlated, there is some cancellation of webetent sampling errors within each
sub-column. The heating rates for each layer depend onlgenltange in flux for that layer and

thus in their case no such cancellation of errors occurs.

We repeated the experiment described above using the atlterralgorithm suggested by
Raisanen and Barker (2004), tuned using the mean clouatiredeffect for eactk-term from the
CRM cases. The results are included in Table 2.2. As we usedaime CRM cases on which
we test the algorithm to tune the algorithm, the magnitudéeferrors is probably somewhat

underestimated. Nevertheless, the results are not sigmiljcdifferent to those obtained using
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Mean Error
Code Version down-welling SW  SW heating rates LW heating rates Net hgatites
surface flux (W) (Kday™?) (Kday™?) (Kday?)
PP-MRO 35 0.3 1.0 0.9
Single sampling 53 1.2 2.6 3.0
Optimal sampling 25 0.6 1.2 1.4
Raisanen and Barker 24 0.6 11 1.3

Table 2.2 Mean absolute surface flux and heating rate errors for eattteghethods of represent-

ing clouds.

the simpler and quicker ‘importance’ algorithm.

For the initial experiments we have used an arbitrary nunobedditional sub-columns for
optimal sampling (16 SW and 12 LW). Thus we performed furtbgoeriments to investigate
how the magnitude of the noise depends on the number of additsub-columns used. These
experiments consisted of repeating the tests describaa alwith different numbers of additional
sub-columns, assigned using the ‘importance’ algorithrmcéOwe had derived mean absolute
errors for each cloud case, we then averaged these valuet togngle value for each num-
ber of sub-columns. Figures 2.2 and 2.3 show the result oéasing the number of additional
sub-columns for heating rates and SW surface fluxes resphctirhe magnitude of the noise de-
creases sharply with the first few additional sub-columrtslass sharply as further sub-columns
are added. The number of additional sub-columns applied oparational model will depend on
the accuracy and cost constraints of that particular m@dsb shown in 2.3 is the corresponding
error calculated when two and three sub-columns are ddsigit@ eactk-term. This line shows
how the error would decrease if the number of sub-columngkahby eaclk-term was chosen

randomly.

2.3.3 COMBINING SW AND LW E RRORS

Generally, individual SW and LW heating rates are significary in the context of their contri-

bution to the net heating rates. Comparing the net heatieg ra Table 2.2 we see that for the
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Figure 2.2 Total mass-weighted heating rate absolute errors, avegrag®ss all CRM cases as
in table 2.2, compared to the number of additional sub-caokiosed. The solid line shows SW

values, while the dotted line shows LW values.

McICA experiments the mean absolute weighted net heatitegenaor is larger than either the
SW or LW values, which is not the case for PP-MRO. This resaift lbe explained as follows.
As a general rule, clouds have a warming effect in the SW arabling effect in the LW. Thus
in both the full ICA and plane-parallel methods, the net ditveating is smaller than either the
SW or LW components. In particular, this leads to a candgefiabf errors in the plane-parallel
run. In the McICA experiments described in the previousisacthe sampling of sub-columns
in the SW is independent of the sampling in the LW. Thus it ifqudly feasible for the domi-
nantk-terms in the SW to be randomly assigned sub-columns whiehedatively optically thin,
while the dominank-terms in the LW are assigned relatively optically thick sadbumns (or vice
versa). In this case, the errors are in the same directiahthennet (SW+LW) error is larger than

either of the constituent SW and LW errors.

This combination of errors of the same sign increases theniuate of the mean errors and
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Figure 2.3 As Figure 2.2, but shows the dependence of SW surface fluxsesrothe number of
additional sub-columns used. The solid line shows the doroour optimal sampling, while the

dotted line shows the error when the sub-columns are spresmdlyeamong thék-terms.

can lead to very large deviations. Table 2.3 shows the pt&xgerof errors exceeding a given
threshold, calculated from the cloudy layers in every cdsea GCM simulation, calculating a
heating rate with large errors in the same direction on |sspee time-steps is unlikely. However,
due to the long time-steps generally utilised in radiaticmesnes, errors persist for long enough to
lead to quite a large erroneous temperature change. Fompdxamthe HadGEM climate model,
which has radiation time-steps of three hours, a radiataagihg error of 30 Kday would lead

to erroneous heating of almost 4 K.

In order to reduce the mean net heating rate errors and thkhblod of very large errors
occurring, we introduced an extension to the method ofidiging sub-columns t&-terms. For
the single sampling case, we rank aterms in order of 'importance’ separately for the LW and
SW. We then assign the same cloud sub-column to LW andkS&vms of the same rank. This

ensures the dominaktterm calculations in both the SW and LW are done for the sdmglc

Page 34




Chapter 2: Reducing noise associated with MclICA for wedihracasting models

Percentage of Errors
Code Version Exceeding... (Kday?)
10 20 30
PP-MRO 2.30 0.00 0.00
Single sampling | 8.01 3.18 1.31
Single + reordering | 7.43 2.71 1.00
Optimal sampling | 1.82 0.17 0.01
Optimal + reorderingl 1.38 0.08 0.00

Table 2.3 The percentage of mass-weighted heating rate errors drgetid given magnitude,

calculated for layers between cloud top and base, in evemylation.

When the list of either SW or LW k-terms is exhausted sdrterms will remain unmatched, but
these are the least important and will have the smallestteffe the total error. For the optimal
sampling case the ranking will include a number of terms afaéémportance for eack-term,

but otherwise the assignment of sub-columns proceeds #sf@ingle sampling case.

The rearrangement of the sub-columns has no effect on thaitndg of the noise for the
individual SW and LW calculations, but reduces the magwtatithe noise for the net (SW+LW)
heating rates for each CRM case as shown in Figure 2.4. Fgpaigon to Table 2.2, the mean
net absolute heating rate error across all cases is redo@#8 K for the single sampling version
of McICA and 1.2 K for the optimal sampling version of McICAh&se reductions in mean net
heating rate errors are significant. Moreover the rearmraegé comes at no additional compu-
tational cost and can be used in conjunction with any metlodeducing noise that involves
estimating the importance of thketerms. The rearrangement also reduces errors in totalinet s

face and TOA fluxes.

Some of the reduction in the total error shown in Figure 2.dingply due to the fact that
the same set of sub-columns is used in both the SW and the IWfrrditan the actual matching
of terms of equal rank. Further experiments were conduaeskparate these effects. For the
single sampling experiments, virtually all of the reduntim error was due to the reordering,
while for the optimal experiment, most of the reduction iroewas due to sampling the same

set of sub-columns in both regions. This is because thaldigtin of ‘importance’ amongst the
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Figure 2.4 Mean total mass-weighted heating rate absolute errorsdch ef the cloud cases.
The solid, dotted and dashed lines correspond to the plaralgl, single sampling and optimal
results respectively, while lines with-* symbols denote results without the rearrangement and

lines with ‘o’ symbols denote results where sub-columns have been ngaado minimise errors.

sub-columns is much smoother by design in the optimal sag@kperiments and matching the

terms in exact rank order is less important.

2.4 THE EFFECT OF McICA NOISE ON AN NWP MODEL

In this section we study the effect of McICA noise on a glokedsion of the MetUM. We compare
the errors due to noise with those due to the combination epthne-parallel and maximum-

random overlap assumptions.
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2.4.1 MODEL SET-UP

The case study adopted for test purposes is a five day siouldteginning on 16th December
2002 at 0900 GMT, as used by Mannetsal. (2009). The model considered was a reduced res-
olution configuration of the operational global forecastdelo This model has 50 vertical levels
of varying resolution and is divided into 96 longitudes aldatitudes. The model dynamics use
a semi-implicit time-integration scheme with a time-stél® minutes. The radiation scheme
is called every 12 time-steps (i.e. every three hours), athtofull operational resolution. The
spectral files are the same as those used in the offline cidmdalescribed in section 2.3.2. A

fixed distribution of sea surface temperatures was used.

Although the resolution of the test model is significantlwés than that of operational NWP
models, it was necessary to run at this resolution in ordgrerdorm the benchmark ICA cal-
culations described below. Increasing resolution will mézat more water content variance is
resolved, and noise will be injected at smaller scales. hWewecloud water content variance
remains significant at higher resolutions (e.g. Hogan dimdyiorth, 2003) and gridbox scale re-
sults remain important for forecasting applications evieresolutions of 25 km. Thus we would

expect our results to remain applicable at higher resaiatio

Benchmark fluxes and heating rates were derived by fully §amthe generated cloud with
everyk-term (i.e using the full ICA). Three different versions oCNCA were tested: the noisiest
using the single sampling method, a second using the siaghpléhng method together with the
reordering of sub-columns, and the third using the optimathod for sampling sub-columns
together with reordering. As in the offline experiments, aNPRO simulation was performed

which uses the plane-parallel and maximum-random ovepapoximations.

For the ICA and McICA experiments, subgrid-scale cloud jsfivere generated using the
generator described in section 2.2. The exponential-randeerlap method was used, with a
global cloud decorrelation scale of 100 hPa and a condedsatarelation scale of 50 hPa. In-
cloud water condensate followed a gamma distribution, aifiactional standard deviation of

0.75. The sensitivity of the results to these parametersésigdsed below.

Although exponential-random overlap can be representédtbut using the MclICA scheme,
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the combination of the exponential-random overlap andeplzarallel assumptions leads to larger
errors than the combination of the maximum-random oventappgane-parallel assumptions (e.g.
Shonk and Hogan, 2010). This is because the maximum-randentap and plane-parallel ap-
proximations have biases in opposite directions. Thus wherbined, there is some cancellation
of errors. For this reason, we compare the exponentialer@anfcICA results to maximum-

random plane-parallel results.

2.4.2 RESULTS

The following results mainly concern the model 1.5 metrederature. This near-surface tem-
perature is an important forecast variable. Moreover, vgeeikit to respond strongly to radiative
changes, due to its dependence on surface SW fluxes. Pagoipitvas also considered, but was

found to be insensitive to the radiative changes.

For each experiment a set of instantaneous absolute 1.5petatare errors, relative to the
full ICA value, was calculated every three hours. The meathe$e absolute errors was then
calculated and is shown in Figure 2.5. As the simulation @skxkd sea surface temperature, we
excluded sea points from the calculation of the mean eri@sdnly land and sea ice points are

included).

At the start of the forecast, the lowest errors are obtairsadguthe optimal McICA experi-
ment, with slightly larger errors for PP-MRO, and largeesragain for the two single sampling
experiments. The relative magnitudes of these errors anitasito the relative magnitudes of the
SW surface flux absolute errors shown in Figure 2.1 whichergihhe dependence of near-surface
temperatures on the SW surface flux, may be expected. Thigsghat our results for the CRM

cases hold globally.

As the forecast progresses, the errors grow due to radietrees propagating into the rest
of the model, which cause the experiments to diverge. Whieetrrors in each of the McICA
experiments appear to grow at roughly the same rate, the atsatute error for the PP-MRO run
grows more quickly. Thus after 48 hours the PP-MRO errorsaariarge as the single sampling
errors and by the fifth day of the experiment, the PP-MRO srace larger than any of the McICA
errors. This can be explained by the fact that the PP-MRQs&® biased.
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Figure 2.5 Mean 1.5m temperature absolute error. The solid, dotteddash and dashed lines
correspond to the single sampling without reordering, Isirrgmpling with reordering, plane-

parallel and optimal with reordering experiments respebti

Errors in the single sampling experiments are consistdatler when sub-columns are re-

ordered, indicating that noise in the net flux values couateb to the surface temperature errors.

Figure 2.6 shows the distribution of the 1.5m temperaturergrthree hours into the forecast
and on the final time-step of the forecast for the optimal Mclénd PP-MRO experiments.
These errors were calculated by subtracting the temperatlues in the benchmark from their
equivalent values in the experiments. The vertical scalegarithmic and in order to avoid
discontinuities, we added one to all frequencies. Moreaainough only errors of magnitude

four Kelvin are shown, larger errors were obtained, butdtmsur very infrequently.

As the radiative transfer scheme is called every three hdliestemperature errors at noon
on the first day of the forecast (the inner two distributiocah be traced to radiative fluxes and
heating rates on the first model time-step, where the radiatnsfer calculation was performed

for identical atmospheres. Subsequent temperature em@contaminated by radiative feedbacks
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in the simulations.

The flux errors introduced by the McICA scheme are unbiasedhere is no bias in the
1.5m temperature errors, as Figure 2.6 shows. The mean MEtI®A temperature errors at the
start and end of the model are -0.007 K and -0.008 K respégtiva contrast, the PP-MRO
temperature errors are biased; on average the PP-MRO tetuggr are too small, corresponding
to atendency to overestimate the SW cloud extinction. Btiecause the overestimation of cloud
forcing due to the plane-parallel approximation is largeagerage than the underestimation due
to the maximum-random overlap assumption, (e.g. Shonk axgah| 2010; Barkeet al,, 1999).

As a result, the corresponding mean temperature erroreddPP-MRO experiment are -0.022 K

and -0.125 K respectively.

The results presented so far depend on the generated clduithahin particular the input
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estimates of fractional standard deviation and decoroglatcale. We tested the sensitivity of
the results to these parameters by repeating the aboveireepés using a range of parameter
values. Sensitivity to fractional standard deviation waaneined by conducting experiments
with fractional standard deviations of 0.5 and 1.0, whilas#vity to decorrelation scales was
studied in further simulations with decorrelation scaleS®hPa and 200 hPa. Table 2.4 presents

the results from these experiments. For conciseness, veedadsulated mean values in time.

Decorrelation  Fractional Optimal  Single  No reordering
PP-MRO
Scale (hPa)  Stand. DeV. McICA McICA McICA
100 0.75 0.247 0.182 0.234 0.244
100 0.5 0.266 0.193 0.239 0.246
100 1.0 0.244 0.182 0.242 0.241
50 0.75 0.292 0.184 0.236 0.236
200 0.75 0.220 0.189 0.241 0.245

Table 2.4 Absolutel.5 m temperature errors for each of the methodgafing cloud and a selec-
tion of decorrelation scales and fractional standard dievis. For conciseness, these means are

calculated by averaging across all model points at all times

From Table 2.4 we can see that the extent of horizontal inly@meity and vertical overlap in
the generated cloud has little impact on the magnitude dfiti€A 1.5m temperature errors. On
the other hand the PP-MRO errors are sensitive to the chbaescorrelation scales and fractional
standard deviation used in the benchmark. If the input patars are considered individually, the
PP-MRO error will tend to zero as fractional standard desmtends to zero and decorrelation
scales tend to infinity. However, the pattern is complicdigdhe fact that the inhomogeneity
and overlap errors are in opposite directions. In any cdmumh the PP-MRO errors depend
on the input parameters to the cloud generator, for all @soat parameters, the optimal McICA

experiment results in a smaller mean absolute 1.5m temyeratror than the PP-MRO.

For GA3.0 (Global Atmosphere 3.0; Waltegs al. (2011)) N320 (640 longitude points and
481 latitude points) 1.5 m temperature forecasts, glol@l mean square errors (with respect to
observations) for land points are typically an order of nmitagle larger than the mean absolute

errors considered here (i.e. 2-3 K). In comparison, the nedfact of reducing noise on surface
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temperature absolute errors (around 0.05 K) is rathernifgignt. Nevertheless, the optimal ver-
sion of McICA is recommended because of the significantlyiced likelihood of larger surface

temperature errors.

2.5 CONCLUSIONS

This chapter has considered the effect of McICA noise on NVWiRilations. We used CRM
cloud fields and an offline version of the radiative transtdresne to examine the magnitude of
McICA noise and suggested methods for efficiently redudiggnhagnitude of this noise, includ-
ing a mechanism for reducing the net error when SW and LW ®iaoe combined. We tested
the effect of noise on a low resolution global NWP simulatiotusing in particular on near-
surface temperature. We found that a simple implementatidicl CA gives worse forecasts of
near-surface temperature than the widely-used combimafithe plane-parallel and maximum-
random overlap assumptions. However, when noise was réddigieg the methods we suggest,
the temperature forecasts were an improvement over thosetfie plane-parallel, maximum-

random overlap simulation.

While we have shown that the McICA scheme can improve fotsadsear-surface temper-
ature in comparison to a full ICA benchmark, it remains tovshbat it gives an improvement
compared to observations. This will depend on the abilitthefcloud generator to provide real-
istic cloud fields, which in turn depends on the input valukedexorrelation scale and fractional
standard deviation. Thus future work shall consider theeglof these input parameters, with
the aim of refining the generator, thereby improving the rhadeoss all time-scales, from NWP

through monthly and seasonal to climate.
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CHAPTER 3:
PARAMETRIZING THE HORIZONTAL

INHOMOGENEITY OF ICE WATER
CONTENT USING CLOUD SAT DATA

PRODUCTS

This chapter has been published as Hilhl. (2012).

3.1 INTRODUCTION

Many of the processes that are modelled in general ciroulatiodels (GCMs) are non-linear
and the physical quantities on which these processes deperaften spatially variable at unre-
solved scales. Consequently, the process rate calculated the gridbox mean value of such
a variable is a biased estimate of the mean process rateneitich gridbox. One such physical
quantity is cloud water content. Pincus and Klein (2000)nested that process rates calculated
from gridbox mean water content values could have relatigeds as large as 100%. Larson
et al. (2001) showed that representing subgrid-scale water obrtgiability is important for
microphysics and thermodynamical processes. In partith&y suggested that neglecting wa-
ter content variability could lead to reduced autoconegrsates in GCMs. Subgrid-scale water
content variability is also important for radiative tragmistalculations; the radiative effect of a
cloud depends non-linearly on the cloud water content (ewgydt al., 1998). As a result, GCM
radiative transfer calculations that use the mean clou@émaEintent and assume that clouds are
horizontally homogeneous do not give the correct domainnmeadiative fluxes (e.g. Cahalan

et al, 1994a).
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In the past decade, computationally efficient methods foresenting the radiative effects of
subgrid cloud water content variability have been developed tested (e.g. Pinces al, 2003,
Li et al, 2005; Shonk and Hogan, 2008; Hét al, 2011). Monte Carlo methods have also
been suggested for representing the microphysical effeatsonet al, 2005). While progress
has been made towards representing the effects of suligie-sloud variability in GCMs, it

remains unclear how much subgrid-scale water contenthiityaexists.

A number of articles have used observations to quantifyzlbatal cloud water variability
(e.g. Rossovet al., 2002; Hogan and lllingworth, 2003; Oreopoulos and Cah&a05). How-
ever, as highlighted in the review of Shoekal. (2010), these published articles use different
inhomogeneity parameters, observation sources, clouestgpd space and time scales. As a
consequence of this their results and conclusions are diffikeent and in some cases seem con-

tradictory.

Studies that have considered radiative sensitivity to tlagnitude of cloud water content
variability suggest that it can have a significant impactor&hand Hogan (2010) estimated that
the uncertainty in their estimate of a global mean varigbparameter could change the global
mean top of atmosphere (TOA) net radiation budget by 2-4&\/For a small systematic change
to a globally varying inhomogeneity parameter, Barker aats&en (2005) estimated a smaller,
but still significant change of 0.98 W#) with larger changes at most latitudes. Although these
values are small, they are a significant proportion of thecloetd radiative effect (CRE) at TOA,
estimated to be around 18 WAtAllan, 2011). Gu and Liou (2006) considered the difference
between two 5-year climate simulations. In one they scdledoptical depth of all clouds by a
globally constant factor of 0.7 to account for water coniehbmogeneity. In the other they used
a globally varying climatological scaling factor for hidéwel clouds derived from International
Satellite Cloud Climatology Project (ISCCP) data. Theyngsignificant differences, not only in
the cloud albedo, which is directly affected by the change also in the cloud and precipitation
fields.

Barkeret al. (1996) found significantly different inhomogeneity paraemns for stratocumu-
lus and cumulus clouds, while Oreopoulos and Cahalan (2i%yed that cloud inhomogeneity
varies with latitude. This implies that cloud water contestiability depends on the meteorologi-

cal regime, which means that a global mean inhomogeneignpeter will be a biased estimate of

Page 44




Chapter 3: Parametrizing the horizontal inhomogeneitgefiater content using CloudSat data products

the inhomogeneity for different regimes. In a GCM simulattbhese biases could have feedback
effects leading to further errors. GCMs do not generallygjmtemeteorological regimes explicitly
(e.g. they don't explicitly predict whether a cloud is sb@imulus or cumulus). Moreover using
an inhomogeneity parameter that depends on location as an@uiou (2006) means that the
inhomogeneity parameter will be unable to respond to chaitgelimate. However, it may be

possible to capture this dependence on regime using sorhe wétiables predicted in a GCM.

In this chapter we describe water content variability inmerof the fractional standard de-
viation (FSD) of cloud water content. The FSD is simply thensiard deviation divided by the
mean. FSD was chosen as the inhomogeneity parameter bécacseunts for the strong corre-
lation (e.g. Carliret al, 2002) between the mean and standard deviation of cloud waitent,
and it has been used in previous studies of water contergbitity (e.9. Raisaneet al., 2004;
Shonket al,, 2010). We are interested in in-cloud variability, so omglude cloudy values (i.e.
water content greater than zero) in the calculation of FSDrddver, we are interested only in
the instantaneous spatial variability, not unresolvedp@mal changes in cloud water content, the
radiative effects of which can be modelled by using outpaifia GCM cloud scheme (e.g. Man-

nerset al,, 2009)

This study of cloud water content variability is based onudiBat data. CloudSat (Stephens
et al, 2008) is a polar orbiting satellite that carries a cloudaraand is part of the ‘A-train’,
a constellation of satellites each carrying differentnmsients, orbiting the earth in sufficiently
close proximity for their observations to be combined. Th&doroduct resolves cloud water
content (the mass of liquid or ice water per unit volume of aartically and horizontally and
thus is an excellent resource for the study of the magnitdide doud water content variability.
This chapter focuses on ice water content (IWC) variabdgythe retrieval is thought to be more
accurate than that of liquid water. For further details a@oudSat data used in this study, see

Section 3.2.

This chapter describes the development of a parametnzédiothe FSD of ice water con-
tent, suitable for use in both numerical weather predic(dWP) and climate models, based on
CloudSat data. Section 3.2 consists of a brief descriptidheoCloudSat data used in the study.
In section 3.3 we perform a spectral analysis of the datarderao inform the study of the de-

pendence of water content variability on horizontal regoiy which is described in section 3.4.
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Section 3.5 discusses the sensitivity of FSD to the cloudtifra, while section 3.6 considers the
effect of vertical resolution on the FSD. The final paranzetiion for use in GCMs is presented
and tested in 3.7. Finally, conclusions are drawn and awefardurther work are highlighted in

section 3.8.

3.2 CLOUD SAT DATA

CloudSat was launched in April 2006 and data are availalola flune 2006. As one of five
satellites in the sun-synchronous A-train, CloudSat srinitclose proximity to the Aqua satel-
lite carrying the Moderate-Resolution Imaging Spectraatter (MODIS), which measures ra-
diances. A number of CloudSat products have been developleidh combine observations
from CloudSat, Aqua and other A-train satellites and arelada from the CloudSat website
(http://www.cloudsat.cira.colostate.edu). In part@uthis study uses the 2B-CWC-RVOD (cloud
water content, radar and visible optical depth) productictvitcombines CloudSat observations
with MODIS radiance observations from the Aqua satelliterider to estimate the distribution of

cloud water content within the atmosphere.

The algorithm used to produce this product is a modified garsif that used to produce
the equivalent radar only product that is described by Austial. (2009). We shall provide a
brief description of the method for retrieving ice water . A more extensive description is

available from the CloudSat website.

The retrieval assumes that ice particles are spheres watradrmal particle size distribution
(PSD). The PSD has three parameters: the geometric meadeaiameter, the distribution
width parameter and the total particle number concentrati& priori values for the first two
parameters are temperature dependent. The a priori pacticicentration is more complex (see
Austin et al. (2009) for details). Optimal parameter values are obtaimedising the PSD to
forward model the extinction and backscatter, then comga observations. Once the optimal
parameters have been calculated, ice water content isla@duby integrating over the PSD,
assuming the ice particles have the density of solid icel{0lgym?). Separate retrievals are
performed for liquid and ice; ice properties are used at sratpres less thar20°C, liquid at

temperatures larger thafi®and a linear combination of the two at intermediate tempeeat
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Each of the 2B-CWC-RVOD profiles measures 1.7 km along tradkla3 km across track and
divides the atmosphere into 125 vertical layers each of @240 m thick. At this horizontal
scale, almost all of the cloud water content variabilitydptured (Oreopoulos and Davies, 1998a).
The largest length scales used in this study consist of 56Qd3at profiles, which corresponds
to 850 km. As a new CloudSat profile is observed every 0.16rek;@50 km of data is observed
in only 80 seconds and any variability is approximatelyanshneous, an advantage over ground-
based studies where changes in time are assumed to be dungestin space advected over the

site (e.g. Hogan and lllingworth, 2003).

The cloud profiling radar on board CloudSat operates at 94.Gkizhis frequency radars
suffer virtually no attenuation by ice water (Hogan anchtilivorth, 1999). However, in liquid
clouds, drizzle droplets can dominate the radar reflegtaictor while containing negligible lig-
uid water and thus the radar reflectivity factor is not a gowticator of the liquid water content
(Fox and lllingworth, 1997). For this reason, CloudSateates of ice water content are expected
to be more accurate than those of liquid water content. Herctcus on the FSD of ice water
content. It should be noted that this ice water content ghesuall frozen hydrometeors. Thus
the results presented here are not necessarily applicaide particles that have been split into

multiple categories, such as “precipitating” and “suspeetid

This study uses data from two separate arbitrarily chosengse Initially we use data ob-
served between 22nd December 2007 and 10th January 20Q8| aft®,752,539 CloudSat pro-
files, and over a billion values of ice water content. As thelfite is polar orbiting, this includes
observations from all latitudes and longitudes and shoeltepresentative of the whole CloudSat
data set. Nevertheless, to check that it is indeed reprsentwe test the parametrization on
data observed between 15th June and 25th June 2006 (5,806 @fHes and over 500 million

water content observations).

3.3 SPECTRAL ANALYSIS

A number of metrics have been used to study the statisticgdgpties of clouds (e.g. Marshak
et al, 1997). In this section we use one such technique, spectedysis, to study CloudSat

ice water content. We chose this metric as it is most widegdua the existing literature (e.g
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Cahalan and Joseph, 1989; Lewisal., 2004; Daviset al,, 1999) and thus allows us to confirm
that the spatial statistical properties of the CloudSatweger content are consistent with other
observation sources. This spectral analysis complemeeatliowing section, which considers

how the FSD changes with horizontal domain size.

Many previous studies have observed that for scales betmegres and tens of kilometres,
the wavenumber spectrum of cloud water content approxignfikows a —5/3 power law (e.g.
Daviset al, 1996; Kinget al,, 1981). However, this-5/3 power law is not observed universally.
For example, using ground-based radar observations ofwsaitoud, Hogan and Kew (2005)
found that for scales less than 50 km, the power spectrumeohdttural logarithm of ice water
content appears to obey-e5/3 power law at cloud top, with the spectra becoming steeptr wi
depth into the cloud, obtaining values as low-&&5 in some cases. This is thought to be due to
the effects of wind shear. For scales larger than 50 km thelytfiat the spectra are flat. Lewis
et al. (2004) calculated spectra for LandSat observations ofmadroundary layer clouds. They
considered 12 overcast and 12 partially cloudy scenes amdifthat the spectrum of liquid water
path obeyed a-5/3 power law for overcast scenes. For the partially cloudyssédhe spectra

displayed more scene to scene variability with the averpgetsum following a—1 power law.

We calculated the mean ice water content spectrum for esblelbuds of various sizes, the
smallest containing 8 CloudSat cells and the largest contail28 cells (i.e. 13.6 km and 217.6
km long respectively). These spectra were produced asMell&ach layer of the CloudSat data
was divided into individual clouds, separated by at least@ear-sky cell. The ice water content
for each cloud was divided by the mean ice water content firdtoud and the spectrum for the
resulting normalised ice water content was calculated. sfjeetra for individual clouds of the
same size were then averaged together and multiplied byizeeokthe cloud (i.e. the number
of cells in the cloud). By Parseval's theorem, the integfahe resulting mean spectrum for a
given cloud size is equal to the mean fractional varianceA@Mor clouds of that size, where
the FVAR of a cloud is defined as the square of the FSD of thatdcI@Note however, that as the
square is non-linear, the mean FVAR is not equal to the squfaitee mean FSD.) These spectra

are shown in Figure 3.1 below.

Figure 3.1 shows several interesting features. The spediou each cloud size appears to

approximately obey a5/3 power law, as shown by the thick black line. This is consisteth
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Figure 3.1 Mean spectra for clouds of fixed size, ranging from 8 to 128:G%at cells (thin lines).

For comparison, the thick black line obeys-&/3 power law.

the existing literature, as described at the beginningisfaction. While the spectra obey-&/3
power law for all cloud sizes, the values of the spectra @serdor larger clouds. This implies
that the FVAR per unit length of a small cloud is larger on ager than that of a larger cloud.
Despite this, the integral under the spectrum increasdarfper clouds, because we integrate over

a larger horizontal scale.

As the mean spectrunk, for a cloud of lengthx can be approximated by a power law of the
form

E = A(X)k™¥3, (3.1)

wherek is the wavelength, the mean FVAR for a cloud of lengttan be calculated by integrating

under the spectrum as follows

1/x
FVAR = / "E(K)dk= AX) (22 2. (3.2)
1/x
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The upper limit of the integral, /x; corresponds to the maximum wavenumber for which the
spectrum is defined. This means tikats equal to the resolution of the data, which in the case of

the 2B-CWC-RVOD data used here equals 1.7 km.

Water content spectra have been observed to follow powes diwn to scales as small as 3
m (King et al,, 1981). This suggests that the spectra observed in FiglieaB. be extrapolated to

smaller scales. In this case, the mean FVAR for a cloud oftlexwill simplify to
FVAR = A(x)x%/3, (3.3)

Note however, that while this is a prediction of the actualRYto ensure the best comparison to
the CloudSat data we must include thein order to exclude the variability that is unresolved in

the data.

In our spectral analysis, we have considered how ice watgenb variability changes with
cloud size. However, the sizes of individual clouds are metjgted in GCMs, which in gen-
eral simply predict the cloud fraction within a gridbox. Gewuently the observed relationship

between variability and cloud size cannot be used as a ladisd parametrization.

3.4 HORIZONTAL SCALE

In this section we consider how the FSD of ice water conteahgks with the scale of the domain
over which it is calculated. For ground-based cloud rad#a,ddogan and Illingworth (2003)
found that, for overcast gridboxes, the FVAR of ice watertenhwas proportional to the size of
the gridboxes to the power of 0.3 for scales up to 60 km, butitlgrows no further for larger

gridboxes.

To calculate the IWC FSD for a given domain size, each lay¢éhedata is sub-divided hor-
izontally into adjacent ‘gridboxes’ each containing theneanumber of CloudSat cells. For each
gridbox that contains more than one cloudy cell the FSD isutaled. Figure 3.2 shows the mean
FSD of both ice water content and ice water path (calculagesinming the ice water content in
a column), calculated for gridboxes ranging from 4 to 50Cif@® (6.8 to 850 km) in size. The

FSD rises sharply with gridbox size at smaller scales, theel$ off at larger scales. Note that the
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FSD for water path is larger than that for water content. Thigtradicts the suggestion by Shonk
et al. (2010) that the FSD for water content was larger. This matetiip is considered in more

detail in section 3.6, where we consider the effect of thedalgickness on the inhomogeneity.
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Figure 3.2 Mean FSD of ice water content (solid line) and ice water pdésked line) when data

is divided into horizontal boxes containing the given numifeCloudSat profiles.

The trend of the FSD can be explained by the results of thetrsppeamalysis. The FSD
increases with gridbox size because as the gridbox sizecisdred, the gridbox may contain
larger clouds, which have larger values of FSD. The slopeedses with gridbox size because

the rate at which the FSD rises with cloud size decreasesaagel|clouds occur less frequently.

Figure 3.3 again shows how the FSD of ice water content iseeavith gridbox size (solid
black line), this time with vertical bars that show the stamldeviation of the FSD for a selection
of the gridbox sizes. The dashed line shows the case whenclugléonly overcast gridboxes, in
which case the results are similar to those of Hogan andy¥lorth (2003), who also considered
only overcast gridboxes. Note that the standard deviatidheoFSD is much smaller when only

overcast gridboxes are included. This implies that a cenalile amount of the variability of the
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FSD is due to the variability in cloud fractions, which sugigethere is a significant relationship
between FSD and cloud fraction, which is considered in metailin Section 3.5. As the FSD
for overcast gridboxes is less variable, we shall begin mgmpatrizing this and then extend the
parametrization to capture some of the extra variabiligt ik introduced when different cloud

fractions are considered.
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Figure 3.3 Mean FSD of ice water content as a function of gridbox sizeafiadata (solid line) and
only those gridboxes that are overcast (dashed line). Titieaibars show the standard deviation

of the FSD for the given gridbox size. The grey line shows t8®fgiven by equation 3.5.

An overcast gridbox can only contain clouds that are largantor equal to that gridbox in
size. Thus the mean FSD for an overcast gridbox of gizan be calculated by summing the
contributions to the FSD for each cloud size, approximaggjyal to the square root of equation

3.2, and weighting by the likelihood of sampling a cloud ditthize,

FSD=\/x2/3 -3 i VARZW(2), (3.4)

whereW(z) is the likelihood of an overcast gridbox of sizebeing a sample from a cloud of

sizez. Using a gradient-expansion algorithm to compute a nagalineast squares fit, we can
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approximate the sum by a combination of power laws, regultirthe following parametrization

for the FSD of an overcast gridbox of sixém,

—0.26
FSD=0.13V/x?/3 — 1.41[(0.01&)1410 + 1} : (3.5)

The FSD predicted by equation 3.5 is shown by the grey lindgare 3.3 and is an excellent
fit to the mean observed FSD. Note that th&.41 term corresponds to putting the CloudSat
resolution as the value of; and is only necessary when comparing to the observed data, to

account for the unresolved variability.

3.5 VARIABILITY AS A FUNCTION OF CLOUD FRACTION

According to Cahalan (1994), in the case of California mastratocumulus, the liquid water
content variance increases as the cloud fraction increalgis could perhaps be explained by
the horizontal scale dependence discussed in the prewaatisrs. By contrast, Oreopoulos and
Cahalan (2005) found no strong relationship between cloactibn and inhomogeneity, except
for cloud fractions greater than 0.9, when clouds becomsiderably more homogeneous. In this
section, we investigate the relationship between FSD amadciraction and attempt to explain

these apparently contradictory results.

Figure 3.4 shows the mean FSD when gridboxes with cloudifraetithin a given range are
binned together. Values for gridboxes containing 25, 50, &0d 200 CloudSat cells are shown.
For all gridbox sizes, FSD initially increases with clouddtion, then remains fairly constant,
before dropping off sharply if the gridbox is overcast. Ae tridbox size is increased, the cloud
fraction at which the FSD no longer increases gets smalldris Suggests that the observed

increase in FSD with cloud fraction is related to cloud sether than cloud fraction.

Assuming that the CloudSat resolution is sufficient to nescloud edges, an overcast gridbox
contains only a single cloud and in almost all cases excltliegdges of that cloud. In theory,
either or both of these could lead to the steep decrease inf&i» observed as cloud fractions
approach one. A gridbox containing a single cloud may havenei in-cloud FSD than one

containing multiple clouds, which includes contributidnsm both internal cloud variability and
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Figure 3.4 Fractional standard deviation of ice water content (IWC F&®a function of cloud
fraction for gridboxes containing 200, 100, 50, and 25 C&aidcells (solid, dotted, dashed and

dot-dashed lines respectively).

the variance in mean water content between different clgcids-igure 3.8). Cloud edges often
contain lower values of liquid water content than the restefcloud, and as a result have the
effect of both increasing the variability of water contenttihe cloud and decreasing the mean

water content of the cloud. Both of these lead to larger \wbfd-SD.

Alongside the FSD for all gridboxes, Figure 3.5 shows the F&Dthose gridboxes that
contain exactly one cloud, but not necessarily the entoedc(where a gridbox contains one cloud
if the cloudy cells are not separated by any clear cells)o Aloown is the FSD for gridboxes that
contain exactly one cloud and both cloud edges (where thesagig defined as the single cloudy
cells at either end of the cloud). Data for gridboxes colmgis0 cells are shown. It is clear that
the drop in FSD as cloud fraction nears one is due to the fattovercast gridboxes tend not to

include cloud edges.

Equation 3.5 gives the FSD only for a cloud fraction of oneddweloping a parametrization
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Figure 3.5 Fractional standard deviation of ice water content (IWC F&®a function of cloud
fraction for gridboxes containing 50 cells. Solid lines whilhe FSD for all gridboxes. Dotted
lines show the FSD for those gridboxes that contain one cbmlyl Dashed lines show the FSD

for those gridboxes that contain only one cloud and conthiof ¢éhis cloud.

applicable to smaller cloud fractions, we start by replgdime dependence on gridbox sizé (

with a dependence on cloud extert)((i.e. the gridbox size multiplied by the cloud fraction).
However, the resulting FSD is an underestimate for clouctisas smaller than one. The four
thin black lines in Figure 3.6 show the ratio of the observehmFSD to this predicted FSD, for
the same 20 cloud fractions and four gridboxes sizes in Ei§ut. Note that we do not include
overcast scenes, for which equation 3.5 is a good estimdteseTratios are reasonably similar
for all gridbox sizes, except for small cloud fractions, wéthe FSD is already small, so a large
difference in ratio has less impact. Since the ratios ardaimve average across the four gridbox
sizes, as shown by the light grey line and then fit a lineartfanof cloud fraction to this average,

as shown by the thick dark grey line.
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Figure 3.6 Ratio of observed ice water content fractional standardatien (FSD) and the FSD

predicted by equation 3.5 as a function of cloud fractionteNbat we use the cloud extent instead
of the gridbox size in equation 3.5. The thin black lines espond to the observed relationship
for the different gridbox sizes. The light grey line shows #verage relationship for these gridbox

sizes and the dark grey line shows a linear fit to this averalgéonship.

Combining the average ratio estimated from Figure 3.6 aad-®D based on cloud extent

gives the following equation for the FSD for a partially aityugridbox.
-~ —-0.26
FSD= (0.25— 0.04c)\/ (xc)2/3 — 1.41[(0.016@)1'10 + 1} (3.6)

wherec is the cloud fraction. The FSD predicted by this equationhisws in Figure 3.7.
The equation captures the FSD pattern well, though thetstigbrease in FSD as cloud frac-
tions approach one, which is particularly evident for thgdagridboxes, is not captured by the
parametrization. As a result the FSD for cloud fractionsuah0.9 is overestimated. For the
smallest gridboxes, the FSD for very small cloud fractianeverestimated. However, for other
gridbox sizes the initial increase in FSD with cloud frantis very well predicted and for inter-

mediate cloud fractions the parametrization errors ardlsiaspite being relatively simple, the
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parametrization provides a very good estimate of the caxmelationship between IWC variabil-

ity and cloud fraction at all gridbox sizes.
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Figure 3.7 Fractional standard deviation of ice water content (IWC F&®a function of cloud

fraction. Black lines are as in Figure 3.4. Grey lines shosvRSD predicted by equation 3.6.

3.6 VERTICAL LAYER THICKNESS

Figure 3.2 shows that the FSD of ice water path is larger thahdf ice water content, which
suggests that the FSD increases as vertical resolutioeaiss. This section considers the rela-

tionship between FSD and vertical layer thickness in motailde

To determine the sensitivity of FSD to vertical scales, IW&LLies are averaged in the vertical
to create thicker layers. For example, after the originghddne next highest resolution data was
calculated by summing the IWC in adjacent layers to creat®fg containing 124 overlapping
vertical layers each of which is 480 m thick (recall the orgidata has 125 layers, each of which

is 240 m thick).
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Figure 3.8 shows the mean FSD calculated for layers of thengivickness, for two different
horizontal gridbox sizes, containing 200 and 25 CloudSHs.c&he solid lines include all data
and show that the FSD increases as layer thickness increBlsesncrease is most rapid for the

thinnest layers, which correspond to the vertical resohgithat are likely to be used in GCMs.

Thickness of layer (km
1 1

1.0 1

IWC FSD

------ one cloud only

--- one cloud with exact overlap
0.1 . R . .

1 10 100
Number of CloudSat levels per layer

Figure 3.8 Mean fractional standard deviation of ice water content@I¥ASD) for given vertical

resolution. The solid lines show the mean FSD when no réstne are applied to the data, the
dotted lines show the mean FSD for those gridboxes that icoatdy one cloud (i.e. no breaks
between cloudy cells) and the dashed lines show the FSD dgetgridboxes that contain only
one cloud where exactly the same cells contain cloud in eaar bf the original data. The black
lines correspond to gridboxes containing 200 cells and thg ines to gridboxes containing 25

cells.

The increase in FSD as the layer thickness increases carmplanexi as follows. Consider a
gridbox containing multiple layers, each of which containdoudy cells, covering a fraction of
the gridbox. Assume that the clouds are horizontally homegas and the water content in each
cloudy cell equalx. Thus the FSD in any layer equals zero. Now sum the water atnie the

vertical. If the same cells are cloudy in each layer (i.e. the clouds are exactyrlapped), then
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the integrated water content in each column will be the samelze FSD will be zero. However
if not, then the columns would contain different integrateater content and FSD will be non-
zero. That is, the integrated FSD would be larger than thaninlayer because the integrated
FSD is accounting for apparent in-cloud inhomogeneity ihat fact simply due to the vertical

resolution being insufficient to resolve cloud boundaries.

The dashed lines in Figure 3.8 show how the FSD changes wigh thickness for gridboxes
that contain one cloud whose layers are exactly overlapped the vertically integrated cloud
fraction is identical to the cloud fraction in each layer)rfhese gridboxes, the FSD does not
need to account for any unresolved cloud structure. Here&8D decreases as layer thickness
increases. This is the behaviour predicted by Sheinkl. (2010), who suggested that this is
because in-cloud water content decorrelates as the distateeen layers increases (e.g. Barker
and Raisanen, 2005; Hogan and lllingworth, 2003), whiahthe effect of smoothing the vertical

average.

The FSD for those gridboxes that contain exactly one clouth mo restriction on overlap
between cloud in different layers, is shown by the dotteddim Figure 3.8. Now the FSD has
to account for some unresolved cloud structure. As the lthjekness increases, the amount of
unresolved structure increases. The competing effectseofitresolved cloud structure and the
smoothing effect of decorrelating water content lead to 8D Ehat generally increases slightly

with layer thickness.

If no restrictions are placed on the gridboxes (other thanttmey contain some cloud), then
there may be multiple clouds in the gridbox and as the layiekniess increases, there may be a
great deal of unresolved cloud structure. This means teaE8D increases significantly as layer

thickness increases, as shown by the solid lines in Fig@ée 3.

Figure 3.8 suggests that FSD of ice water content is quitsitben to vertical resolution
and that it is worthwhile including a vertical resolutionpg@dence in any parametrization. For
simplicity, the parametrization is restricted to layerattare thinner than 2.4 km (i.e. contain less
than 10 CloudSat layers). Beyond this scale, the relatiprisétween FSD and layer thickness
cannot be accurately described with a simple equation. dMere the relevant layers in current

GCMs (i.e. the layers that contain clouds) are generallynigi than 2.4 km.
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The relevant part of Figure 3.8 is shown again in Figure 308gthat it is no longer in log-log
space). The broken lines show the relationship between F8Deger thickness, which appears
to be best described by a power law. The dark grey lines shewnttan FSD given by equation
3.6. Neither of the dark grey lines show any significant cleangh increasing thickness, which
implies that the thickness dependence is independent®ogthiation. Thus we assume that we
can predict the FSD for a single layer exactly and simply w@rshow the relationship between
this FSD and the multi-layer FSD changes with increasingrdlyickness. Lettind\z denote the

layer thickness (in km) and denote the FSD for a single layer, a least square error fisgive
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Figure 3.9 Mean fractional standard deviation of ice water content@IWSD) for vertical res-
olution between 240 m and 2.4 km. For gridboxes of length 3#Q(d#otted line) and 42.5 km
(dashed line). The dark grey lines show the mean FSD predistequation 3.6, which does not
include any dependence on layer thickness. The light gneglshow the FSD given by equation
3.7, where the value of A is chosen so that the equation gheobserved value of FSD for

individual CloudSat layers.
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3.7 PARAMETRIZATION

We have seen that the mean in-cloud FSD depends on the seale/loich it is calculated (both
horizontally and vertically) and cloud fraction. The rendgr of this chapter illustrates how these
relationships can be combined into a single parametrizaitd describes the results of testing

this parametrization.

The mean FSD for a gridbox of horizontal lengthkm and thicknes#\z km is obtained
by combining equations 3.5-3.7 to get equation 3.8, whkesghe cloud fraction. Note that is
again equal to the minimum resolved scale, and for the perpbsomparing this parametrization
to CloudSat observations is set to 1.7 km. However when #riarpetrization is implemented in

a GCM,x; should be set to zero.

3.7.1 (COMPARING OBSERVED FSD TO MODELLED FSD

The parametrization defined by equation 3.8 is tested orraleslays of CloudSat data from
Summer 2006. These data are independent of the CloudSathdataere used to develop the
parametrization. The data were divided into gridboxesz# 200, 100, 50 and 25 km (which cor-
responds to gridboxes containing 117, 59, 29 and 15 CloyutB#files respectively) and thickness
from 240 m to 2.4 km in 240 m increments (which correspondsttically averaging between 1
and 10 CloudSat layers). For each cloudy gridbox, the obsefED and parametrized FSD were
calculated. These were then used to calculate the paraateir bias (i.e. the mean difference
between the FSD predicted by the parametrization and thenadx$ FSD), shown in Figure 3.10

and the mean absolute error (the mean of the absolute valihe dfifference between the FSD

—-0.26
(0.29—0.05¢)+/(xc)2/3 — 1.41[(0.016(0)1'10 + 1] (AP ife< 1

FSD= (3.8)

—0.26
0.15y/x%/3 — 1.41[(0.016()“0 + 1] (ALY if c= 1.
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predicted by the parametrization and the observed FSD)gpdnametrization, shown in Figure
3.11. To put these values into context, the bias and mearuddsoror for a constant FSD equal
to 0.75 are also shown. This is the global mean FSD for allcctgpes estimated by Showmit al.

(2010) based on a review of the existing literature.
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Figure 3.10 Mean difference between the fractional standard devig&#&D) of ice water content
given by equation 3.8 and the observed FSD, for layers bet®46 m and 2.4 km in thickness
and gridbox sizes of 200 (solid), 100 (dotted), 50 (dashad)2b (dot-dashed) km.

The bias of the FSD predicted by the parametrization is sfoalll gridbox sizes and layer
thicknesses. The behaviour of this bias can be understoe@orsidering the individual compo-
nents of the parametrization. The relationship between Bi&®and layer thickness is similar for
all four gridbox sizes and is the same as that for the thickpesametrization shown in Figure
3.9. The relationship between FSD bias and gridbox sizensistent with that shown in Figure
3.7. The constant FSD is a good estimate of the mean FSD fdbayés that are 200 km in
length, but overestimates the observed FSD for smallebgxiels and has larger biases than the

parametrization for all gridbox sizes.
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Figure 3.11 Mean absolute difference between the fractional standar@tion (FSD) of ice water
content given by equation 3.8 and the observed FSD, exptessa percentage of the mean
observed FSD. Layers range from 240 m to 2.4 km in thicknedgedbox sizes are 200 (solid),
100 (dotted), 50 (dashed) and 25 (dot-dashed) km.

The mean absolute errors of the FSD predicted by the paraat&in are shown in Figure
3.11. These errors increase with gridbox thickness andherdne largest error is approximately
0.29 and corresponds to gridboxes that are 2.4 km thick afdkg0long. The mean absolute
errors for the parametrization are smaller than those mdédairom the single FSD value for
all gridbox sizes and thicknesses. Of particular note isirtifgrovement for the gridboxes that
are 200 km long and 1.0 km thick. Here the biases for both thanpetrization and 0.75 are
approximately zero. However, due to the cloud fraction dépeace in the parametrization, the

mean absolute error for the parametrization is signifigasttialler than that for FSD=0.75.

The information shown in these figures is summarised in Taldlewhich shows mean values
across all the horizontal and vertical scales included gufds 3.10 and 3.11. To add further

context we also include the statistics for the mean FSDutstled by averaging the mean FSD
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for each of the resolutions shown in Figures 3.10 and 3.11s iBhunbiased when all the data
is combined, but biased for any individual resolution. Theslrow shows the mean error of all
biases shown in Figure 3.10, which is zero by definition far thean. The mean absolute bias
row shows the mean of the absolute value of the the biasesnsimoigure 3.10 and the mean
absolute error shows the mean of the absolute errors shotigume 3.11. The parametrization

performs better than both the unbiased FSD value and theot&i&D.

Control (0.75) Mean (0.60) Param

Bias 0.15 0.00 -0.02
Mean absolute bias 0.16 0.11 0.03
Mean absolute error 0.33 0.28 0.24

Table 3.1 Mean statistics for all the data shown in Figures 3.10 andl.3The first column shows
the statistics for a constant value of 0.75, the second aoklows the statistics for the mean value
for the data, and the third column shows the statistics ferp@rametrization given in equation

3.8.

The mean absolute FSD error can be split into four componeddsne of the error is due
to the relationships that are included in the parametdmraltieing in error. This corresponds to
the errors that arose when fitting equations to the obseresdis. There is also a component
due to an FSD dependence on variables that are not includbe parametrization. For exam-
ple Hogan and lllingworth (2003) found a dependence on whehg which is not included in
this parametrization, due to a lack of reliable global wipded data to compare to the ice water
content observations. The third component of the mean ateseiror is the sampling error intro-
duced when the observed FSD is calculated. This decreasbe gadbox size increases. This
could be reduced by using higher resolution observatiohs.fihal component of the error is due
to unpredictable variability of FSD; Hogan and lllingworth003) observed that even within a

single cloud, the horizontal inhomogeneity varies sigatfiiity.

It should be noted that the ‘true’ parametrization erroms léeely to be larger than those
presented here; the CloudSat ice water content valuesicaTttars, which will lead in turn to
errors in the FSD derived from CloudSat data. CloudSat hasianum detectable reflectivity of

around -30 dBZ, which means that it may miss low ice wateraantalues, which would lead
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to an underestimate of the FSD. It would be useful to test #narpetrization on data from other
observation sources, to highlight the errors arising froemuse of CloudSat data. Another source
of error is that the parametrization gives the FSD for a 1B;IlBCMs require the FSD for the 2D
area represented by each gridbox. Full 3D cloud obsenstiomrequired to calculate the desired

quantities. These observations could be provided by sngrotoud radars.

3.8 SUMMARY

This chapter describes a study of ice water content vaitiahising combined CloudSat and
MODIS observations. Ice water content variability is colesed in terms of the fractional stan-
dard deviation (FSD); the standard deviation divided byrttean. Results show that FSD in-
creases as the horizontal scale over which it is calculatect@ases and when water content is
averaged over larger vertical scales. A nonlinear depargden cloud fraction was also identi-
fied; FSD was seen to increase with cloud fraction for smalidifractions, while the mean FSD
for overcast gridboxes was found to be significantly smahen that for gridboxes with large
cloud fractions. This decline in FSD was shown to be a reduttvercast gridboxes excluding
cloud edges. These relationships have been included iat@/ety simple parametrization of ice

water content, suitable for use in a GCM.

The performance of the new parametrization was tested kit taken from a different
period in time. For the horizontal and vertical resolutiammnsidered, the magnitude of the
parametrization bias was shown to be less than 0.07. Meaiudédsrrors were found to be
larger, but significantly smaller than those arising from tise of a single global FSD. The size
of these mean absolute errors suggests that the parartietrizauld be developed further, either
by using a function that better fits the relationships caergd in this chapter, or by including
the effect of other variables (e.g. wind shear) on the FS[2 gérametrization should also be
tested on other observational data, in order to expose aoisearising from the limitations of the

CloudSat dataset and get a better estimate of the ‘truer. erro

In future work, this parametrization will be implementedtlie UK Met Office Unified Model

(MetUM) and tested in both NWP and climate simulations. Resf these tests should indicate
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how much benefit there would be in further developing the patezation, for example by link-

ing FSD to meteorological regime.

In many GCMs ice particles are split into two or more categwiioften described as ice
and snow). However, there is no such split in either the Ckauidiata product or the MetUM.
Consequently, there is no such split in the parametrizadistribed in this chapter. When this
parametrization is included in other GCMs, care should Eertdo ensure that it is applied to
thetotal ice content. This may be more challenging for those GCMs whave a diagnostic ice

category.

The existing parametrization is for ice water content oriliquid water content variability
is equally important and it is not clear whether it is sigrfidy different. Using MODIS data,
Oreopoulos and Cahalan (2005) found similar variabilitycim and liquid clouds. On the other
hand, Shonk and Hogan (2008) found that ice clouds exhibiemater content variability than
liquid clouds. It would be informative to compare this pagdrization to observations of liquid

water content variability.
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CHAPTER 4:

CLOUD VERTICAL OVERLAP

4.1 INTRODUCTION

The cloud schemes in most general circulation models (G@¥jict a cloud fraction for each
layer in each column, but the total cloud cover for a colummoisdirectly predicted; instead it is
computed by combining the layer cloud fractions with asstiong about how the clouds in each
layer are vertically overlapped. These cloud vertical mgassumptions can have large impacts.
They directly affect the total cloud cover, which is the liegdorder variable for determining the
interaction of radiation and cloud and is also used to vedidamerical weather prediction (NWP)
models (e.g. Mittermaier, 2012). Changes to the overlapraggons have been shown to have
large impacts on the calculated radiative fluxes and headtes (e.g. Morcrette and Fouquart,
1986) and also on cloud microphysics calculations (Jakolkadgin, 1999), which lead in turn to

significant impacts in GCM simulations (e.g. Liang and Wek#§)7; Morcrette and Jakob, 2000).

From a radiation budget perspective, the most significdatedf changing the cloud overlap
assumptions is on the total cloud cover; as the degree ofapvex decreased, the cloud cover
is increased. This reduces the amount of shortwave (SWi) saaléation reflected to space (e.g.
Barker and Raisanen, 2005). The cloud overlap assumptsmatffects the cloud fraction that
is exposed to space in each layer, which is important for tmeputation of outgoing longwave
radiation (OLR) and the heating rate profile (e.g. Baikeal,, 1999). Furthermore it can change
the water path inhomogeneity; Hét al. (2012) found that water path inhomogeneity was smaller

when cloud edges overlapped exactly.

Until fairly recently, the radiative transfer schemes uisetiost GCMs applied the maximum-
random overlap assumption, where clouds in adjacent lagersmaximally overlapped and
cloudy layers separated by clear-sky are randomly ovegldpim many observational studies (e.g.

Hogan and lllingworth, 2000; Mace and Benson-Troth, 200an&nd Curry, 1989), this is in-
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terpreted as maximum overlap for non-adjacent cloudy &y&s long as the layers between them
are cloudy. However, in most GCMs, this is implemented foitay Geleyn and Hollingsworth

(1979); maximum overlap is applied for clouds in adjacegéta, but the overlap between con-
tiguous clouds in non-adjacent layers is not defined. Theslap is constrained somewhat by the

maximum overlap applied to the adjacent layers, but otrsernia random.

Exponential-random overlap, first suggested by Hogan dindworth (2000), has been con-
sistently found to fit observations better than maximundaan overlap. In this parametrization
the overlap between two cloudy layers is a linear combinatibmaximum and random over-
lap, with the proportion of maximum overlap decreasing iopgartion to the negative exponent
of the distance between the two layers. The rate of the deersacontrolled by the ‘decorre-
lation length’, which is a parameter that can be parametraretuned to give the correct cloud
cover. Further studies have confirmed that, for large detaiee exponential-random overlap
parametrization is a good predictor of the decrease in tleraeerlap parameter with increasing
vertical distance between layers (e.g. Mace and Bensati;12602; Naucet al., 2008). However
it is not clear how well this parametrization approximatedividual cases. Note that Hogan and
lllingworth (2000) applied this parametrization to vedally continuous clouds only; they found
that on average discontiguous clouds tend to be randomigtappeed. However, other studies
(e.g. Bergman and Rasch, 2002; Oreopoulos and Khairowtd2@®3; Oreopoulos and Norris,
2011) have applied this parametrization without discratiimg between contiguous and discon-
tiguous clouds, which has the advantage that the overlapnpletely independent of the model

vertical resolution.

In this chapter, we use combined CloudSat and Cloud-Aellddal and Infrared Pathfinder
Satellite Observation (CALIPSO) observations to studydloertical overlap. Although there
are many previous studies of cloud vertical overlap, someho¢h use CloudSat and CALIPSO
observations (e.g. Barker, 2008b; Katal., 2010; Shonlet al, 2010), these existing studies have
focused on the mean overlap. This analysis considers ngtloaimean, but also the distribution

of cloud overlap.

The observation sources and the manner in which they are inethlare described in the
following section. In section 4.3, we define a new overlapapseter, which is based on that

defined by Hogan and lllingworth (2000), but is more suitdbleconsidering the distribution of
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overlap. Section 4.4 shows how horizontal structure afféw distribution of overlap parameters
for randomly overlapped clouds. Section 4.5 considerslapédor vertically contiguous cloud

layers, while non-contiguous layers are considered ini@edt6. This analysis suggests some
modifications to the exponential-random parametrizatibolauds, which are tested in Section

4.7. The implications of this study are discussed in secti@n

4.2 OBSERVATIONAL DATA

This study of cloud overlap is based on an amalgam of Cloud®tr (Stephenst al, 2008)
and CALIPSO lidar data. These satellites are part of a chatste of satellites known as the
‘A-train’ and fly in sufficiently close proximity for their adervations to be combined. The Cloud-
Sat radar and the CALIPSO lidar each have complementarggihe the CloudSat radar can
probe optically thick clouds, while the CALIPSO lidar cartetd optically thin clouds. The radar
observations used in this study are from the GEOPROF clowgk mehile the lidar observations
are from the GEOPROF-LIDAR cloud fraction. Both these pidiare freely available from the
CloudSat data processing center website (http://wwwdsaticira.colostate.edu).

The 2B-GEOPROF cloud mask algorithm is described in deydilarchandet al. (2008). For
convenience we summarise the algorithm here. The first sté@iproduction of the cloud mask
is the calculation of the mean noise power (the mean powenrelue to background noise) and
its standard deviation using the measured return power finenstratosphere. A first guess cloud
mask is then derived by comparing the target power in eaditakrange bin to this noise. This
mask is not binary; larger values are used to denote moredemufe. Next, the observations in a
box centred on each point are considered. Assuming thatdilse is Gaussian and independent,
the probability of the observed cloud configuration aristhge to noise is calculated. This is
multiplied by the probability of the centre pixel being askldetection. The centre pixel may then
be changed to cloudy or clear if the probability is below oowaba certain threshold. This box
filter is applied several times. The number of times thisrfitig is applied, size of the box and
probability threshold are tunable parameters. Finalig, igrepeated with an along-track moving
average applied to the raw return power, to improve the tetecapability. The previous mask

and moving averaged mask are merged by taking the originakraad adding points that are
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cloudy in both the new mask and a reduced resolution verdidimegorevious mask. If cloud is
detected, the mask is given a value between 20 and 40, witkasing values representing more

confidence in the detection.

The 2B-GEOPROF-LIDAR cloud fraction product is describgdMiace et al. (2009). The
basis for this data product is the CALIPSO virtual featureskn@/FM) (Vaugharet al,, 2004).
‘Features’ are identified with each profile by comparing Isaelter measurements at 532 nm to
an adaptive threshold. These features are then classifiehas clouds or aerosols according
to the feature mean attenuated backscatter at 532 nm andatued mean total colour ratio (the
backscatter at 1064 nm divided by that at 532 nm). Below 8.2tkenVFM has a horizontal res-
olution of 330 x 330 m and a vertical resolution of 30 m, so ¢reme potentially 9-10 profiles per
CloudSat profile. Above 8.2 km the VFM resolution is 1 km aldragk, 330 m across track and
75 m in the vertical, so there are potentially 3-4 profiles @ErudSat profile. These CALIPSO
cloud detections are then mapped onto CloudSat space afcdkien of lidar volumes within

each radar volume is denoted the lidar ‘cloud fraction’.

Each of the 2B-GEOPROF and 2B-GEOPROF-LIDAR profiles messlir7 km along track
and 1.3 km across track and divides the atmosphere into I#Balecells each of which is 240
m thick. Cloud thresholds are chosen following Matel. (2009); a 2B-GEOPROF cell is con-
sidered cloudy if the cloud mask has a value greater thanualéqg 20, while a 2B-GEOPROF-
LIDAR cell is considered cloudy if the cloud fraction is gteathan or equal to 50%. When
combining the observations, a cell is considered cloudy i icloudy according taither of
the individual data products. Mac# al. (2009) found that this combination of CloudSat and
CALIPSO observations showed excellent agreement witloaidremote sensors. Nevertheless
not all clouds are detected. For example, Chan and Comidd jZhowed that some low level,
optically and geometrically thin clouds at high latitudee detected by neither CloudSat nor
CALIPSO. In this investigation, we use CloudSat and CALIR&Servations obtained between
22nd December 2007 and 10 January 2008. While there is n& lorélae availability of the 2B-
GEOPROF product between these dates, resulting in almasillin radar profiles, two of the
262 2B-GEOPROF-LIDAR ‘granules’ are missing. Where thalidbservations are unavailable,

we use the radar observations on their own.

For the purposes of calculating an estimate of the OLR in@eet.7 we use temperature
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profiles from another dataset available from the CloudS#isite: the CloudSat ECMWF-AUX
product. This dataset consists of pressure, temperatuardnamidity fields from the ECWMF
ERA-INTERIM reanalysis (Deet al,, 2011) interpolated onto the CloudSat observations space.
For each CloudSat profile, the four surrounding ERA-INTERJNtIboxes are found and linear
interpolation is used to attain a temperature for each afehygidboxes at the height of each of
the CloudSat layers. Bilinear interpolation is then apptethe 4 temperatures at each height to

produce a single temperature for each CloudSat cell.

4.3 OVERLAP PARAMETERS

Based on ground-based radar observations, Hogan andnditig (2000) suggested that the com-
bined cloud cover between two laye@,: could be approximated by a linear combination of the
combined cloud given by the maximum and random overlap assons CmaxandCiang respec-
tively).

Ctot = ACrmaxt (1~ 0)Crand- (4.1)

Hence the ‘overlap parameted, that gives the correct observed combined cloud cover engiv

by
q— Ciot — Crand

= . 4.2
Cmax— Crand ( )

a takes a value of one if the clouds are maximally overlappé&dhe combined cloud cover is
the same as the expected value for randomly overlapped<tbeda equals zero. Moreover
converges to an average value of zero when sampling froma sidomly overlapped clouds.
For minimum overlap, as has been observed for some pairswd€l(e.g. Hogan and Illingworth,
2000; Mace and Benson-Troth, 2002) the value takem gpends on the probability of minimum
overlap occurring when the clouds are located randomlyiwiglach layer. This means that for
minimum overlapx may take any value between zero and minus infinity, with theevdepending
on the cloud fraction in each layer. Consequeietlis not particularly useful for looking at the

distribution of cloud overlap.

In order to consider the distribution of cloud overlap wedndevised a new overlap parameter,
which takes a single value for minimally overlapped cloutisorder to allow us to exploit the

significant body of existing literature concerning theverlap parameter we have defined the new
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overlap parameter as similarly as possible. This new gugrdaameter, which we shall dendge
is given by
a if a >0;
B= (4.3)

Crand—Crot i
G, o<,

whereCnin is the combined cloud cover if the cloud in the two layers isimally overlapped.
This new overlap parameter takes a value of one if clouds arémally overlapped, minus one
if they are minimally overlapped and zero if the combinecudi@over is the expected value for
randomly overlapped clouds. Hence it is more useful for loglat the distribution of cloud
overlap. However, it does not necessarily converge to zaraverage for multiple randomly

overlapped clouds.

4.4 RANDOM OVERLAP AND HORIZONTAL CLOUD STRUCTURE

In overlap parametrizations that are incorporated diyeato radiative transfer solvers, such as
that described by Geleyn and Hollingsworth (1979), randeerlap is deterministic; the com-
bined cloud fraction for two randomly overlapped layersgea to the expected combined cloud
fraction if they are randomly overlapped. However, if ramdoverlap is applied stochastically
as is becoming more common as GCMs adopt stochastic clowatajers (e.g. Hilet al, 2011)
such as that described by Raisamral. (2004), a distribution of combined cloud fractions and
hence overlap parameters will arise. In this section wel sls@ randomly generated pairs of
cloudy layers to examine the distribution of overlap partrsethat arise from random overlap
for comparison to the observed distributions of overla@puaters that we shall show in sections

4.5 and 4.6.

Figures 4.1 and 4.2 show the distribution of overlap parameatalculated for gridboxes con-
taining 25 and 200 profiles (42.5 km and 340 km in length) reypaly. These distributions were
calculated based on a uniform distribution of cloud fratsidetween 0.04 and 0.96 (overlap is
not defined for cloud fractions of zero or one) with no cottiela between the cloud fraction in

each layer (i.e. cloud fractions in each pair of layers wéiesen so that every possible combina-

Page 72




Chapter 4: Cloud Vertical Overlap

tion occurred equally frequently). Note that cloud fraci@f one and zero are not includedfas

is not defined in either case.
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Figure 4.1 Distribution of the beta overlap parameter for randomlyrtagped clouds, for grid-
boxes containing 25 cells. The different coloured linesaterclouds with different horizontal
structure applied; the black line denotes clouds with nazobotal structure (the underlying ran-
dom numbers which determines which cells are cloudy is wivise), the red line denotes hor-
izontally contiguous clouds, while the blue line denotes ¢tase when the underlying random

numbers are red noise.

The black lines in Figures 4.1 and 4.2 show the distributiboverlap parameters that arise
when the cloudy cells in each layer are chosen at random. dctipe, this was achieved by
taking a random sample from a uniform distribution for eaehll i each layer and setting the
cell as cloudy if this random number was below a certain tiolek where the threshold is chosen
separately for each layer to ensure the required numbetlsficeach layer are cloudy. Thus the
underlying random numbers are white noise. This is theildigton of overlap parameters that
will arise when clouds are randomly overlapped in the cloedagator of Raisanegt al. (2004).

The distribution is symmetric and trimodal, with local maé at minus one, zero and one. The
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Figure 4.2 As Figure 4.1, but for gridboxes containing 200 cells.

relative magnitude of these modes depends on the numbeliotised in the calculation and are
quite different for 25 and 200 cells. The distribution of dap parameters also depends on the
distribution of cloud fractions. When the cloud fractionsooth layers are small, random overlap
is more likely to lead to apparent minimum overlap, as is thgedf the cloud fractions in both
layers are large. On the other hand, if the cloud fractioraigd in one layer and small in the

other, then random overlap is more likely to lead to appargstimum overlap.

The pale red lines in Figures 4.1 and 4.2 show the distribudiboverlap parameters when
the cloudy cells in each layer are horizontally contiguolisese distributions are bimodal, with
peaks at minus one and one, but no peak at zero. The blue linesthe distribution of overlap
parameters when red noise is used for the random numbertinaa, which means that cloudy
cells tend to be grouped together, but may be separateddnyoas. In practice the set of random
numbersy;, that determines which cells are cloudy was calculateddohédayer as follows

Xo=Yo
(4.4)

X1 =A%+ (1-A)y;
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wherey is a set of independent random numbers, Ard[0, 1] is a constant, which was set to 0.9
to produce the distributions shown in Figures 4.1 and 4.2sudurisingly, this distribution lies

somewhere between the horizontally contiguous and hddflgrindependent cases.

Figures 4.1 and 4.2 show that the expected distribution eflap parameters for randomly
overlapped clouds is highly dependent on the horizontatsire of the cloud in each layer. They
also highlight that both maximum and minimum overlap arelliko arise as a result of random

overlap, with the likelihood dependent on the horizontald structure in each layer.

4.5 OVERLAP FOR VERTICALLY CONTIGUOUS CLOUDS

As discussed in the introduction there are both advantaggsli@advantages to separating ver-
tically contiguous and discontiguous clouds when paramiety cloud overlap. As the mean
overlap is different for contiguous and discontiguous diuit is easier to both identify and ex-
plain any changes to the overlap when they are considereghémdiently. As a result, we have

chosen to separate them in this analysis.

In this section we shall use combined CloudSat and CALIPS€2mations to consider the
distribution of the new overlap paramef@irfor vertically contiguous clouds. To facilitate com-
parison with other studies, we also compute the mean valtleeaf overlap parameter. In this
analysis, we use the GCM definition of vertically contigudus. that there are no completely
clear layers between the cloud layers). Thus it is possdrlénfo cloud layers to be ‘contiguous’

even if there are no individual clouds that extend contirslobetween the two layers.

The overlap parameters discussed in the remainder of thjgehwere computed as follows.
First we split each layer of the data into continuous ‘grixs) each containing the same number
of observed profiles. We then searched for error indicatoresach gridbox and considered only
the layers above the highest layer containing an error.oWwatllg the conventions explained in
section 4.2 we determined whether each cell in each colunscleaidy or not and deduced a
cloud fraction for each layer by dividing the number of clgulls by the gridbox size. We then
calculated &3 overlap parameter for each pair of cloudy layers in the grdbOvercast layers

were not included in the calculations, as the overlap paemiundefined.
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Figure 4.3 shows the mean and distribution offftiererlap parameter as a function of distance
between layers for vertically contiguous clouds, for gories containing 25 cells (i.e 32.5km
long). The solid line shows the mean valug3of-or comparison, the dashed line shows the mean
value of thea overlap parameter, calculated as in Hogan and lllingw&@00Q) (i.e. equation 4.2
was applied to the mean observed maximum and random clociibfia). This estimate af is
similar to that for3 and, as in the existing literature (e.g. Hogan and Illinglvo2000; Mace and
Benson-Troth, 2002), it decreases from one to zero witladis between layers, similarly to an
inverse exponential function. The shading denotes thegptiop of the gridboxes separated by
the given distance for which the valuefdis within the given interval. Most clouds appear to obey
either maximum or minimum overlap and clouds only occadigrhibit overlap between these
extremes. Although the exponential-random overlap pattdzation of Hogan and lllingworth
(2000) does not explicitly allow for minimum overlap, we kaalready seen in Figures 4.1 and
4.2 that if the clouds are horizontally contiguous, apaiyiandom overlap stochastically can lead
to a large frequency of apparent minimum overlap. Thus foudllayers sufficiently far apart,
random overlap can perhaps be used to explain the obsers&ibdtion. However, the lack
of intermediate values @ (i.e. values between one and minus one) implies that in iicilal
columns the overlap changes more abruptly than the gradakase implied by exponential-

random overlap, which is only applicable to the mean ovepk@ameter.

Estimates of cloud overlap are rather sensitive to the poesef precipitation (e.g. Barker,
2008a). To examine how precipitation affects the calcoiatf the overlap parameter, gridboxes
containing columns with radar reflectivity (2) larger thari5 dBZe were removed from the
dataset. While this should completely remove the effectretipitation, it will also remove
many of the thicker clouds which produce precipitation. €xmuently, the true cloud overlap
parameter is likely to lie between the values calculatedh aitd without precipitation. Figure
4.4 is as Figure 4.3 except that precipitation is excludedessribed above. As expected, there
are fewer occurrences of maximum overlap and the mean pvpdeameter decreases much
more quickly. The results are also considerably noisienps because fewer gridboxes remain.
However, the general conclusions drawn for Figure 4.3 remalid. Figure 4.5 shows the mean
overlap parameter as a function of distance between lagerseiveral gridbox sizes with and
without precipitation. The difference between the mearrlapeparameters with and without

precipitation remains consistent across the gridbox siaasidered.
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Figure 4.3 Mean values op anda as a function of distance between layers (solid black angdot
black lines respectively), for contiguous clouds. The sidenotes the probability ¢ being

within the given bin for layers separated by the given distan

Figure 4.5 also illustrates that the gridbox size has lgffect on the mean overlap param-
eter (whether or not ‘precipitating’ clouds are includedhich is consistent with the findings
of Barker (2008a). This suggests that the apparent rekitiproetween overlap and horizontal
gridbox size found by Hogan and Illingworth (2000) may besgoldue to temporal changes in

the cloud.

These results suggest more maximally overlapped clouds@medspondingly larger decor-
relation lengths than Barker (2008a) found using combinkedidSat and CALIPSO data . This
is probably due to the different criteria used to identifgualy pixels. Barker (2008a) required
that the radar reflectivity was greater than or equal 80 dBZe and both the lidar and the radar
identified a pixel as cloudy. As the lidar cannot probe offfiicthick clouds, this means that
many maximally overlapped geometrically thick clouds apéincluded in Barker (2008a), but

are included here.
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Figure 4.4 Mean values op anda as a function of distance between layers (solid black angdot
black lines respectively), for contiguous clouds, wherecppitation is screened by removing
gridboxes containing columns with:Z-15 dBZe. The shading denotes the probabilityd dieing

within the given bin for layers separated by the given distan

The uncertainty in the decorrelation length due to preaifjgih means that a quantitative anal-
ysis of overlap is unlikely to be very helpful. The analysésdribed in the rest of this chapter was
applied to the observations both with and without preciiteand the general qualitative conclu-
sions are applicable to both datasets. However, for sure@ss, we shall focus on “precipitation-

free” data in the remainder of this chapter.

4.6 OVERLAP FOR CLOUDS SEPARATED BY CLEAR LAYERS

In numerous observational studies (e.g. Tian and Curry918®gan and lllingworth, 2000;
Willen et al., 2005; Nauckt al,, 2008), the overlap between clouds separated by clearslangse

been found to be approximately random, regardless of thecakdistance between them. This
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Figure 45 Mean values of th@ overlap parameter as a function of distance between theslaye
The dashed lines show the overlap when the data has beeeditteremove precipitating grid-
boxes, as explained in the text, while the solid lines shaotrerlap for the unfiltered data. The

correspond to gridboxes containing 25,50,100 and 200 awumspectively.

is thought to be because such clouds are essentially indeperin this section, we consider the

observed overlap for these vertically discontiguous ctoud

Overlap parameters for clouds separated by clear-skyyidibgxes containing 25 cells (32.5
km long), excluding ‘precipitating’ gridboxes, are shownHigure 4.6, which has the same for-
mat as Figure 4.4. The mean valuef3ainda are close to zero for all vertical separations, but
as in the vertically contiguous case, individual cloudgtembe either maximally or minimally
overlapped. Th@ parameter suggests that minimum overlap is slightly monenson than max-
imum, particularly for small vertical separations, whigadls to a mean value that is less than
zero. This is because the distribution of cloud fractionsosuniform. The alpha parameter does

not have this problem.

The solid lines in Figure 4.7 show the observed distribigiofhthe beta overlap parameter for
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Figure 4.6 Mean values op anda as a function of distance between layers (solid black angdot
black lines respectively), for discontiguous clouds, vehgrecipitation is screened by removing
gridboxes containing columns with:Z-15 dBZe. The shading denotes the probabilityd dieing

within the given bin for layers separated by the given distan

gridboxes containing 25 and 200 cells, for cloudy layers &na any vertical distance apart and
separated by clear layers. For the larger gridbox, theiloligion is skewed towards minimum
overlap. This is because small cloud fractions become nreguént and pairs of layers con-
taining small cloud fractions that are randomly overlappesl more likely to exhibit minimum
overlap. The frequency of intermediate valuef3dalso increases with increasing gridbox size,
in agreement with the difference between Figures 4.1 andot.Bon-horizontally contiguous
clouds. The dashed lines show the distributions of overtapmpeters that are obtained by taking
each pair of observed cloudy layers and randomly overlapgsiem whilst maintaining the ob-
served horizontal cloud structure. In practice this wasesgltl by moving each of the cells in the
bottom layer to the right by the same random number, with #tls ceappearing on the far left of
the row when they were moved to the right of last cell in the.rdWese distributions match the

observed distributions very well, which implies that if therizontal cloud structure is correct,
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it is possible to model the observed overlap distributiondiscontiguous clouds using random

overlap.
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Figure 4.7 Distribution of 8 for discontiguous clouds. Solid lines denote the obsenistlitoli-
tion. The dashed lines show the distribution obtained ifdleeids in each layer are randomly
overlapped, while the observed horizontal structure isntaaied. The different lines colours

correspond to different gridbox sizes as indicated by the ke

4.7 OVERLAP PARAMETRIZATIONS

The preceding sections have shown that individual cloudd te be either maximally or min-

imally overlapped and that this behaviour can arise frondoam overlap with the correct hor-
izontal cloud structure. In this section, we suggest andgesme modifications to the overlap
parametrization. The modified overlap parametrizatiomsimplemented in a stochastic cloud
generator and used to generate cloud fields which are cothpartne observed cloud fields.
First we compare these modified parametrizations to theredodens in terms of the mean and

distributions of beta. We then consider the effects on egémof the total cloud cover and OLR.
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To test changes to the overlap parametrization we used ian@rshe stochastic cloud gener-
ator described by Raisanenal.(2004). This generator can produce any number of sub-caumn
as the number of sub-columns is increased, the overlap batamy two layers converges to its
expected (i.e. input) value. To minimise differences duadise in the generated cloud fields,
the number of sub-columns was set to 4000. This is many mdareaiumns than the 100 or so
that are typically generated in GCMs (e.g. Waltetrsal., 2011), which will lead to narrower gen-
erated distributions of overlap parameters (Compare Efgdrl and 4.2). The cloud generator
was modified to allow it to produce cloud fields according ®dlrerlap parametrizations defined
below. An example of the cloud field resulting from each pagtination is shown in Figure 4.8.
Note the similarity between these examples, which highdighe quasi-deterministic nature of
the cloud generator when 4000 sub-columns are producedovidrap parametrizations are as

follows:

(a) Geleyn maximum-random overlap: The version of maximmandom overlap described by
Geleyn and Hollingsworth (1979), where maximum overlappisliad to adjacent cloud lay-
ers only and not to contiguous clouds. The overlap betweearadfacent contiguous clouds
that is not constrained to be maximum by the overlap betweemdjacent pairs of layers is

random. Cloud horizontal structure is random. We shall teetios max-rand.

(b) Exponential-random overlap: As introduced by Hogan Blimtyworth (2000); the overlap
between clouds in contiguously cloudy layers is a linear lmioation of maximum and ran-
dom overlap, becoming increasingly random as the distarteden the layers increases.
Clouds separated by clear layers are randomly overlappgdinAcloud horizontal structure

is random. We shall denote this exp-rand-A.

(c) Geleyn exponential-random overlap: As exponentiaticen overlap above, but only ad-
jacent layers are exponentially overlapped. As for Geleaximum-random overlap, the
overlap between clouds in non-adjacent contiguously gldagers is random when not con-
strained by the overlap assumptions between adjacentslayiéris results in slightly more
random overlap between contiguous non-adjacent layelishvidparticularly evident when
comparing the overlap between the fifth and seventh layeRgare 4.8 (b) and (c). This

parametrization is included because it is how exponerdiadtom overlap is realised when
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incorporated directly into a radiative transfer solver.féismax-rand and exp-rand-A, cloud

horizontal structure is random. We shall denote this exgHB.

(d) Horizontally-contiguous exponential-random overlag exp-rand-A, but the cloudy cells in
each layer are assumed to be horizontally contiguous (i #heecloudy cells in each layer are
adjacent) and the switch from maximum to random overlapdieghto whole layers: of the
time rather than to a fractiom of every pair of layers. We shall denote this exp-rand-C.eNot
that this parametrization preserves the stochastic eleoféhe generator as the number of

sub-columns is increased (i.e irrespective of the numbsubfcolumns, there are numerous

different possible cloud fields).

It should be noted here that the implementation of maximandom overlap is slightly dif-
ferent to that described by Raisansral. (2004). Raisaneat al. (2004) generates a new random
number if the cell above is cloudy, multiplying it by the alesky fraction to ensure it remains
clear if the cloud fraction does not change. Consequentlydyl layers separated by layers with
smaller cloud fractions are not maximally overlapped (gkls 5 and 7 in Figure 4.8 (a)), but
cloudy layer separated by layers with larger clouds frastare (incorrectly) maximally over-
lapped. We have fixed this by generating a new random numbbeitell above is cloudy,
scaling this random number to ensure that the cell will rencéoudy if the cloud fraction does
not change. Thus cloudy layers separated by layers witedatgud fractions are not maximally
overlapped (cf layers 1 and 3 in Figure 4.8 (a)). This meaasttie overlap between cloudy
layers that are contiguous but non-adjacent is exactly #eiseleyn and Hollingsworth (1979)
parametrization. The Geleyn-style parametrizations gsrttie overlap behaviour in a GCM that

incorporates the overlap assumptions into the radiatavester solver.

To test the various overlap parametrizations describedregbthe combined CloudSat-
CALIPSO cloud mask was again divided into gridboxes. Witdth gridbox the cloud fraction
for each layer was calculated and the profile of cloud frastivas passed to the cloud genera-
tor, which generated 4000 sub-columns for each gridbox doheverlap parametrization. The
decorrelation lengths passed to the generator were choseimimise the total cloud cover bias
for the exp-rand-A case. Beta overlap parameters were #ilenlated as described in Section 4.5

for the observations and each overlap parametrization.
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Figure 4.8 Example of the cloud field generated by each of the overlagrpetrizations. (a) shows
Geleyn maximum-random overlap, (b) shows exponentialoen overlap, (c) shows Geleyn-
exponential-random overlap and (d) shows horizontallytignious exponential-random overlap.
Each of these overlap parametrizations is defined in the @riuds are left justified, beginning

with the top layer. The input layer cloud fractions were fffrtop to bottom) 0.7, 0.4, 0.5, 0.0,

0.2,0.3and 0.1.
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4.7.1 GOMPARISON OF OBSERVED AND PARAMETRIZED [3

Figures 4.9 and 4.10 show the mean value of the beta overtappeer for gridboxes contain-
ing 25 and 200 observed profiles respectively. As for theouariexponential-random overlap
parametrizations, the Geleyn-maximum-random overlapmatrization decreases exponentially,
the main difference being that the decrease is offset byaye.I This is very different behaviour
to the version of maximum-random overlap where all contiguclouds are maximally over-
lapped. For exponential-random overlap, the differendevden applying overlap to contiguous
layers or just to adjacent layers (i.e the difference betveeg@-rand-A and exp-rand-B) is smaller
than for maximum-random overlap. Exp-rand-B and exp-r@ngive the best matches to the

mean overlap.
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Distance between layers (km)

Figure 4.9 Mean value off3 as a function of distance between the layers. The diffeliessl|

colours correspond to different overlap parametrizatiassndicated by the key.

Figure 4.11 shows the distribution Bffor adjacent cloudy layers for gridboxes containing 25
profiles. The observed distribution is shown by the black,lwhile maximum-random overlap

is shown in blue. The two versions of exponential-randonrlapethat assume there is no cor-
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Figure 4.10 As Figure 4.9, but for gridboxes containing 200 columns.

relation between the horizontal location of cloudy cellspwn by the pale red and green lines,
have narrow distributions with modes at the value of the lapgparameter given by the decorre-
lation length. As a comparison of Figures 4.1 and 4.2 ilatsts, the width of these distributions
is a function of the number of generated cells; the distidoutonverges to a delta function
as the number of cells approaches infinity. The purple lirmvshthe horizontally contiguous
parametrization, which matches the observed distribugiop very well; slight overestimates of
the frequency of maximum and minimum overlap corresponchtietestimates of the frequency
of intermediate values. This could probably be improved letier estimate of the horizontal

cloud structure.

As gridbox size is increased to 200 cells, as shown in Figut@,4the frequency of ob-
served intermediate values of the overlap parameter iseseavith corresponding decreases in
the frequency of maximum and minimum overlap. However, tiee of the distribution is quite
different to that for exp-rand-A and exp-rand-B, with thedquency increasing as the magnitude

of the overlap parameter is increased. Analysis of someorahdchosen cases where the overlap

Page 86




Chapter 4: Cloud Vertical Overlap

-1.00 A:AO,99 -0.5 0.0 0.5 0%9 1,00
TYvy=T T T T 1A AAd
— Observed
— Max—-rand
0.8
— Exp—rand—-B
0.2 — Exp—rand-C
0 0.6
C
(O]
J
(on
et
L 0.4
0.1
0.2
0,0 WL 1 1 PO OPT Vo PN Ajﬁk AW

-1.00 -0.99 -0.5 0.0 0.5 0.99 1.00
Overlap parameter

Figure 4.11 The distribution of the beta overlap parameter for adjackntdy layers for observed
gridboxes that contain 25 columns. Note that the axes areambinuous. The line colours denote

the various overlap parametrizations, as indicated by éye Rvercast layers are not included.

parameter takes a value between 0.9 and 1.0 suggests g tisiually due to the presence of
multiple clouds in the gridbox; each individual cloud obayaximum overlap, but the combined
overlap parameter is less than one due to the overlap betistinct clouds, which is minimum

by definition. However, we have not analysed the statistidh@whole data set to confirm this

theory.

The mearf overlap parameters for discontiguous clouds are showrngar€i4.13 as a func-
tion of distance between layers. The observed values, shgwhe black line tend to have a
mean value less than zero, particularly for small layer sdjmns. This is also evident (to a
smaller extent) in Figure 4.6 and is due to the distributiboloud fractions being non-uniform.
All three overlap parametrizations where clouds have ndazbotal structure (max-rand, exp-
rand-A, exp-rand-B) tend to overestimate the mean ovedaarpeter, with values much closer to

zero. However, when the clouds are horizontally contiguesig exp-rand-C, the mean overlap
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Figure 4.12 As Figure 4.11, but the observed gridboxes contain 200 aodum

parameter is much closer to the observed value.

Figure 4.14 shows the distributions of the overlap parantégg result in the mean values
shown in Figure 4.13. The observed distribution, again shbw the black line shows peaks
corresponding to maximum and minimum overlap, as was pusiycshown for various different
gridbox sizes in Figure 4.7. Intermediate values are redsgrcommon at this scale; while the
frequency of any individual intermediate value is smalbuard 30% of the cases are neither
maximum nor minimum. The three overlap parametrizationgrettlouds have no horizontal
structure have similar distributions, with modes arounazdhe exp-rand-C parametrization is
a better match to the observations, with peaks at maximunmmranidnum overlap. However, the

frequency of each of these is overestimated.

Clearly the best performing parametrization in terms ofljmting the mean and distribution
of the cloud overlap parameter is exp-rand-C. As we haveadyreoted, this parametrization
could probably be further improved by applying a horizomialud structure that better matches

the observed structure.
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Figure 4.13 Mean[3 overlap parameter as a function of distance between lagediscontiguous
clouds in gridboxes containing 200 columns. The line cdaarrespond to the different overlap

parametrizations, as indicated by the key.

4.7.2 BEFECT ON TOTAL CLOUD COVER AND OLR

While an analysis of the overlap parameters is informatverlap parameters are not relevant
in themselves. The introduction to this chapter containiseudsion of the variables that may be
influenced by the overlap parametrization; this sectiom$es on the effect it has on total cloud

cover (which strongly influences the SW surface irradiatace) OLR.

The total cloud cover for each parametrization is shown ioldd.1. Note that this is calcu-
lated for cloudy gridboxes only, which is why it decreasethincreasing gridbox size. As found
in previous studies (e.g. Willéet al., 2005), maximum-random overlap leads to a slight under-
estimate of the total cloud cover. Although the decorretatength was chosen to give correct
total cloud cover for the exp-rand-A case, all the expordmindom overlap parametrizations

give very good estimates of the total cloud cover, despigedifferences in the mean overlap
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Figure 4.14 Distribution of beta overlap parameter for discontiguolmuds in gridboxes con-
taining 200 columns. Note that in order to ensure the diffees at minus one and one are
clear, the horizontal axis is not continuous. The line cdatorrespond to the different overlap

parametrizations, as indicated by the key.

parameter shown in Figures 4.9 and 4.10.

Table 4.2 shows mean absolute total cloud cover errors. erhes generally quite small,
which is due in part to the inclusion of overcast layers in ¢hk&ulation. The max-rand, exp-
rand-A and exp-rand-B parametrizations perform similargll. The exp-rand-C parametrization
gives slightly larger errors. This is due to the occurrencat@rmediate overlap parameters in
the observations; if the observations were always eithesirmam or minimum overlap, the errors
would be the same for exp-rand-A and exp-rand-C. Howevenwihe intermediate values occur

the errors are smaller for exp-rand-A.

To estimate the effect of the various overlap parametonation OLR, we calculated the
OLR for each observed and generated gridbox using the foltpmwmethod. First, the temperature

of each layer in each profile was extracted from the ECMWF-Ad&taset. This was used to
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Overlap Profiles/gridbox (gridbox size (km))
Param. | 25(42.5) 50(85) 100(170) 200(340)
Observed 0.68 0.60 0.52 0.44
max-rand 0.67 0.57 0.48 0.40
exp-rand-A| 0.69 0.60 0.52 0.44
exp-rand-B| 0.69 0.60 0.52 0.44
exp-rand-C| 0.69 0.60 0.52 0.44

Table 4.1 Total cloud fraction for the observations and each of thelapeparametrizations. Note
that only cloudy gridboxes were included in the calculatihich is why the values decrease as

gridbox size increases.

Overlap Profiles/gridbox (gridbox size (km))
Param. | 25(42.5) 50(85) 100(170) 200(340)

max-rand 0.02 0.03 0.04 0.05
exp-rand-A| 0.03 0.03 0.04 0.04
exp-rand-B| 0.03 0.03 0.04 0.04
exp-rand-C| 0.03 0.04 0.05 0.06

Table 4.2 Total cloud fraction absolute error for each of the overlapgmetrizations.

calculate the mean temperature in each layer of the gridbiext, the highest cloudy layer in
each observed profile and generated sub-column was iddntifibe OLR for the profile/sub-
column was then calculated using the Stefan-Boltzmann ladvthe layer mean temperature,
under the assumption that the cloud in that layer is a black.b@/here the profile/sub-column
was cloud-free, the OLR was calculated using the surfacedesture. Finally, the OLR was
averaged across the profiles/sub-columns, resulting inghesestimate of the mean OLR in each

observed and generated gridbox.

The mean OLR estimates are shown in Table 4.3. The OLR inesegish gridbox size, due to
the decrease in total cloud fraction with gridbox size shawfable 4.1, with the observed mean
values ranging from 270 Wrhto 291 Wm?. These estimates are very simple and overestimate

the effect of clouds while ignoring all the greenhouse gageish reduce OLR. However, they
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allow us to at least make a qualitative comparison betweedifferent overlap parametrizations.

As a consequence of underestimating the mean total clougt,cas shown in Table 4.1, the
max-rand parametrization overestimates the mean OLR. ©athier hand, despite their accurate
predictions of the mean total cloud cover, each of the exp-parametrizations underestimates
the OLR by a larger margin. These underestimates imply tigatlbuds emitting the radiation are
too cold, which means that there is too much high cloud exptisspace. This could be corrected
by applying a smaller decorrelation length for high cloudghijch is consistent with the findings
of Barker (2008b). The differences in OLR between the maxt@nd exp-rand parametrizations
are similar in magnitude to those that can be inferred froenclbud-forcing values obtained by

Shonk and Hogan (2010).

Overlap Profiles/gridbox (gridbox size (km))
Param. | 25(42.5) 50(85) 100(170) 200(340)
Observed 270 281 287 291
max-rand 271 282 289 293
exp-rand-A| 269 279 284 287
exp-rand-B 268 278 284 287
exp-rand-C| 269 279 284 287

Table 4.3 Mean estimated OLR (W) for the observations and each of the overlap parametriza-
tions. OLR was estimated from the cloud profile and the teatpes of each layer, as explained

in the text.

The mean absolute OLR errors are shown in Table 4.4 and atkestiar maximum-random
overlap. This can be explained by considering Figure 4.d2afljacent cloudy layers, the max-
imum overlap assumption used in max-rand is correct 95% etithe. The exp-rand-A and
exp-rand-B parametrizations lead to smaller mean abs@lut errors than exp-rand-C. This is
because exp-rand-A and exp-rand-B lead to small amountsud e@xposed to space (and hence
contributing to OLR) in many layers, which can lead to a clatien of errors when contribu-
tions from clouds that are too high and cold and clouds treata low and warm are combined.
Exp-rand-C will tend to have larger cloud fractions exposedpace in fewer layers, which Fig-

ure 4.12 implies is similar to the observations. Howeveg, ldyers containing the cloud that is
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exposed to space will not be correct, resulting in larger @LiRrs.

Overlap Profiles/gridbox (gridbox size (km))
Param. | 25(42.5) 50(85) 100(170) 200(340)

max-rand 1.3 1.8 2.5 3.4
exp-rand-A 2.5 3.5 4.6 5.7
exp-rand-B 2.5 3.5 4.6 5.7
exp-rand-C 3.0 4.2 5.7 7.1

Table 4.4 Mean OLR absolute error (WR) for each of the overlap parametrizations, calculated

as described in the text.

The exp-rand-C parametrization, which performed bestrimseof predicting the mean and
distribution of B, is the worst performing parametrization in terms of OLR #&ad the largest
mean absolute total cloud fraction errors. A better reprieg®n of horizontal cloud structure
should improve these results. Alternatively, it may be fssto predict where the shift from

maximum to random overlap should occur.

As mentioned in the introduction, the overlap parametioratan also affect the vertical
heating rate profiles. However, we have not consideredrggadies in this study. There are two
reasons for this; firstly, heating rates are not as easy tma&st without performing computa-
tionally expensive radiative transfer calculations. Selyy heating rate errors are not relevant
themselves, but are important for their impacts on the nedeheteorology, which would re-
quire further experiments to estimate. We would expect bsensed heating rate profiles to have
relatively large heating rates where the overlap goes fraximum to minimum, which would
occur in exp-rand-C, but not necessarily in the correctriay€he other overlap parametrizations
are expected to have smoother heating rate profiles. Thetef these predicted heating rate

errors on the model meteorology are harder to predict.
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4.8 CONCLUSIONS

This chapter describes the use of combined CloudSat and E2(QIdata to study cloud overlap.
Previous articles on this topic have focused on the meardap/parameter. This study has also

considered théistribution of the overlap parameters, leading to the following insght

e For randomly overlapped clouds, the distribution of oyeparameters is dependent on the

cloud horizontal structure.

e Cloud overlap tends to be either maximum or minimum. Intefiate values as predicted

by decorrelation lengths occur infrequently.

e Given the correct horizontal cloud structure, random @gepredicts the observed bimodal

distribution of overlap parameters for discontiguous dku

A stochastic cloud generator based on Raisaasteal. (2004) was used to generate clouds
according to various different overlap parametrizatiorise different parametrizations were then
evaluated by comparing the generated clouds to the obselmeds. The overlap parametrization
that incorporated the above insights performed best indasfrthe mean and distribution of
the overlap parameter, but was one of the worst in terms af tddud fraction and estimated
OLR. This highlights the importance of considering theisti&s of the impacts in addition to the

statistics of the overlap parameters when studying cloedlap.

The main problem with the CloudSat and CALIPSO data usedisnstindy is the effect that
precipitation has on estimates of overlap. As it is diffidwitremove precipitation fairly, we
cannot draw quantitative conclusions about overlap. Thelosions that wéhavedrawn are
not sensitive to whether or not we include gridboxes coirtgipossible precipitation. Another
problem with using this data is noise in the lidar data dudiaglight periods, which has been
shown to lead to clouds artificially appearing more randoovgrliapped during the day (Barker,
2008a). Finally, given the effect of cloud horizontal stcuwe on overlap that has been highlighted
by this analysis, it would be useful to examine the cloud dig&ibution in the CloudSat data to

confirm that it is consistent with other observations and esd
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This work has shown that the gradual decrease in overlajcpeedy the exponential-random
parametrization occurs very infrequently. Consequeritliyre attempts to parametrize cloud
overlap in terms of meteorology should focus on estimatiggheteorological impacts on overlap
parameters or decorrelation lengths derived by consiggairs of cloudy layers rather than

decorrelation lengths derived by considering multipleetgyconcurrently (e.g. Barker, 2008a).

We have shown that cloud horizontal structure can havefgignt impacts on cloud overlap.
Cloud horizontal structure is also important for calcwas of cloud erosion (e.g. Morcrette,
2012). Future work will consider observations with the aifhrdeveloping a simple model of

cloud horizontal structure.
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CHAPTER 5:
THE IMPACT OF CHANGES TO

SUBGRID CLOUD STRUCTURE ON

CLIMATE SIMULATIONS

5.1 INTRODUCTION

In chapter 3, we described the development of a parametnizaf horizontal subgrid-scale ice
water content variability, that includes the effects ofibantal and vertical resolution, and cloud
fraction. In this chapter we consider the effects of charigake subgrid-scale cloud structure
(in particular the impact of adopting the fractional stawlddeviation (FSD) parametrization) on

10-year Met Office Unified model (MetUM) climate simulations

While several experiments have investigated the impacemfesenting the radiative effects
of subgrid-scale water content variability in general giation models (GCMs) (e.g. Get al,
2003; Shonlet al, 2012), they have generally used a constant global valugifowariability. As
far as we know, there is only one analysis of the sensitivityt cimate model to changes in the
distribution of subgrid-scale water content variabiliGu and Liou, 2006). They compared two
5 year simulations, each with a different scaling factoriagjto the water content in high clouds
before passing to the radiation scheme. Their control useahstant global scaling factor to rep-
resent the radiative impact of unresolved water contelalaity, while the other simulation used
a geographically varying annual mean scaling factor ddrivem International Satellite Cloud
Climatology Project (ISCCP) observations described bysBe<t al. (2002). Both simulations
applied a constant global scaling factor to mid-level and ébouds. As we shall discuss later
when comparing our experiment to their results, they founad their scaling factor changes led

to changes to the geographical distribution of cloud, wibogiated changes to the distributions
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of precipitation and top of atmosphere (TOA) radiative flaxe

In the following section, we describe the experiments ruex@mine the effect of the changes
to the subgrid-scale cloud structure. In section 5.3 wegmethe model FSD climatology that
results from the parametrization, explain some of the feattand compare it to the ISCCP based
climatology of Rossowet al. (2002). Section 5.4 shows the impact of subgrid cloud strect

changes on other model fields, with a focus on TOA fluxes. Gimhs are drawn in section 5.5.

5.2 MODEL CONFIGURATION

The simulations discussed in this chapter are based on the0Gdnfiguration of the MetUM
(Walters, 2012). The model has a regular latitude-longitgdd, with 192 columns and 145 rows,
corresponding to a resolution of around 150 x 150 km in miiddldes. There are 85 levels, which
decrease in thickness as altitude increases. Sea surfaperggures are prescribed, according to
the Operational Sea-surface Temperature and sea Ice AEDBSTIA) dataset, which limits the
scope of this analysis. In order to ensure that the reprasemtof subgrid cloud structure within
each simulation is consistent, the incremental time-stepgcheme (Manneset al., 2009), which

is designed to improved the temporal sampling of clouds asdraes maximum-random overlap

of homogeneous clouds is switched off.

We shall compare four different climate simulations eaahfar ten years and three months.
We shall consider annual and seasonal means of the final sas @é each simulation. The

simulations run were as follows.

e The first experiment uses the default GA4.0 representatisnlmrid clouds structure (but
without incremental time-stepping as explained above);R8D of water content is set to
0.75 globally and exponential-random overlap is used witle@orrelation pressure scale

of 100 hPa. We shall refer to this experiment as GA4.0.

e The second experiment uses the parametrization of chaptedizgnose an FSD of the
cloud water content in each cloudy gridbox. Otherwise identical to the first experiment.

This will be referred to as FSD param.
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e In the third experiment the area-weighted mean FSD of thergkexperiment, which

equals 0.85 is applied globally. This is denoted FSD=0.85

e The fourth experiment assumes that clouds are plane-plaeaitl horizontally homoge-
neous and uses the maximum-random overlap parametrizafius experiment does not

use the MclICA scheme. We shall refer to this as PP-MRO.

For the purposes of model development, the pertinent casguais between the default
GA4.0 and FSD param experiments. However, the other expetsrprovide more useful data
for analysing and understanding the effect of the FSD patrdaton, which is the focus of this
chapter. The FSD param and FSD=0.85 experiments will beidenmesl in most detail as the
difference between them shows the effect of using an FSDhtrization instead of a constant
global value. The PP-MRO experiment was run in order to peitatner experiments into some
context. Changes to the FSD and overlap parametrizatiom &akrect impact on the calculation
of radiative fluxes and heating rates, but do not affect gbhhecesses directly; changes to other

atmospheric properties are due to the radiative changes.

Although the FSD parametrization was derived for ice cloitds also applied in these exper-
iments to liquid clouds. Thus there is an assumption thav#hniability of ice and liquid clouds
behave identically. The validity of this assumption is nietac; Oreopoulos and Cahalan (2005)
found that ice and liquid cloud water optical depth vari@pivere similar, but Shonk and Hogan
(2008) found that water content of ice clouds was more viriéile had a larger mean FSD) than

liquid clouds.

The CloudSat data used to derive the FSD parametrizatiosisted of ice water content ob-
servations along &D line through each layer of the atmosphere. The model regjameestimate
of the FSD for the2D domain represented by each cloudy gridbox. To account fedifierence,
the FSD used in the model is multiplied by a facton&, a scaling derived by studying the FSD
of water content in cloud resolving models (CRMs). Thus tleelailed FSD is given by equation
5.1 (cf. equation 3.8), whereis the ‘length’ of the gridbox (calculated as the square aidhe

area)Azis the thickness of the layer, ands the cloud fraction in that layer of the gridbox.
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—0.26
(0.41—0.07c)(xc)/3 [(0.016(0)1'10 - 1} (02 ifc<1;

FSD= (5.1)

—0.26
0.21x%/3 [(0.01&)“0 - 1} (021 ifc=1,

5.3 MODELLED FSD CLIMATOLOGY

Figure 5.1 shows the modelled global distribution of anmaaén in-cloud FSD of water content
from the FSD param simulation. As mentioned in the previagtisn, the area-weighted global
mean FSD predicted by the parametrization is 0.85 and thiseis/alue used globally in the
FSD=0.85 experiment. To highlight the differences betwtwmse two experiments, the FSD
values shown are differences with respect to 0.85, so thstiye (red) values indicate that the
mean parametrized values are larger than 0.85 and neghliv® (/alues indicate that the mean

parametrized values are less than 0.85.

The annual mean values of FSD in the FSD param simulationnaadles at very high lati-
tudes. This is due to the regular longitude/latitude griedus the model; as the lines of longitude
converge at high latitudes, the gridbox area decreasedintg#o the decrease in FSD shown in

Figure 5.1.

There is significant geographical variation of the mean ah®R$D in the tropics and sub-
tropics. Much of this appears to coincide with the mean clooxkr, shown in Figure 5.2. This
suggests that this variability is due to the cloud fractiepehdence in the parametrization. How-
ever, it should be noted that the mean cloud cover and meandfShot directly linked; the
mean cloud cover depends on the cloud vertical overlap gssums and the cloud frequency of
occurrence in addition to the layer cloud fractions, while parametrization depends on layer

cloud fractions only.

Figure 5.3 shows the modelled FSD climatology binned into$@asons, December-January-
February (DJF) and June-July-August (JJA) and by cloudhieibhe thresholds for binning the
cloud by height coincide with those used in ISCCP: low cloexist between the surface and 3.2
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Mean FSD

Figure 5.1 10year mean time and height averaged modelled in-cloud F8B the FSD param

experiment) minus the mean value (0.85)

km, mid-level clouds exist between 3.2 and 6.5 km and highddeexist between 6.5 km and the

top of the model.

The mean modelled FSD increases significantly with heights i& because the parametriza-
tion predicts larger FSD for thicker layers and verticalofegon decreases with height in the
model. Inter-seasonal differences are small. Howeveretlsea definite land-sea divide for the

low and mid-level clouds, which is particularly evident fow clouds over South America.

Figure 5.4 shows the mean cloud cover for the same seasomoadcheights. Note that this
is the mean cloud cover for clouds wittoud topin the given height range. Many low and mid-
level cloudy layers that are below higher clouds are exaudem the low and mid-level cloud
cover distributions shown in Figure 5.4, but contributelte mean FSD values shown in Figure
5.3. The cloud cover and FSD are obviously correlated in s@gi®ns (e.g. for high clouds in
the tropics). However, on a global scale, the correlatiamveen cloud cover and FSD appears

to be smaller than for the all-levels annual mean valueschvts probably due to the different
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Figure 5.2 Mean modelled cloud cover

definitions of low and mid-level clouds that are used.

Rossowet al. (2002) describes a climatology of cloud optical thickneagability derived
from ISCCP data. A direct comparison between the modelled Elgnatology shown above
and the ISCCP derived climatology is not possible, due todifferent inhomogeneity param-
eters, cloud variables, and scales considered. Howeviar,pibssible to compare the relative
changes to the climatologies with height and location, whitay highlight weaknesses of the
FSD parametrization. The most obvious difference betweemtodelled and ISCCP climatolo-
gies (Rossovet al’s (2002) Figure 15) is that the ISCCP inhomogeneity paramiatreases at
high latitudes. However, the ISCCP value does not have tousmtdor increasing resolution and
ISCCP optical thickness retrievals are much less accuvatesnow and ice. The obvious land-sea
difference for low clouds shown in Figure 5.3 is not presentidw ISCCP cloud, but is for mid-
level ISCCP clouds. Other than this, the distributions @ itnd mid-level clouds are similar,
with both exhibiting variability distributions that appda be related to cloud cover. However, for

high clouds, the ISCCP climatology shows a decrease in inigemeity for mid-latitude clouds
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Figure 5.3 Mean modelled FSD minus 0.85, broken down into DJF (left mwiyand JJA (right
column), and low (lower than 3.2 km), mid-level (between&hd 6.5 km) and high clouds (above

6.5 km) (top, middle and bottom rows respectively).
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Figure 5.4 Mean modelled cloud fraction, broken down into DJF (lefturoh) and JJA (right
column), and low (lower than 3.2 km), mid-level (between ar#l 6.5 km) and high clouds

(above 6.5 km) (top, middle and bottom rows respectively).
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that is not evident in the model climatology.

The behaviour of the FSD predicted by the parametrizationbeasummarised as follows:

e The average FSD value equals 0.85, which is within the rah§SD estimates considered
by Shonket al. (2010), but larger than their estimate of the mean FSD (Qwhich is used
operationally in GA4.0.

e As aresult of the gridbox size dependence in the paramttnizahe parametrization pre-
dicts smaller FSD values at high latitudes. This compligdle comparison with other
observations, where the size of the gridbox used to cakdabgrid-scale variability is

independent of latitude.

e The layer thickness dependence in the parametrizatios teddrger FSD values for higher

clouds. Again, this complicates the comparison with othEseovations.

e Areas of small mean cloud fraction tend to correspond tolemaED values. The resulting
geographical distribution of FSD is a reasonable matche¢dSICCP based inhomogeneity

climatology described by Rossast al. (2002).

5.4 EFFECT OF FSD PARAMETRIZATION

5.4.1 G.oBAL MEAN EFFECTS

Table 5.1 shows global mean values for TOA and surface cladiative effects (CREs) and other
key model variables. The global mean total cloud cover,asertemperature and precipitation
are very similar in all four experiments. However, the gloimean CREs differ significantly.

The largest CRE differences are between the PP-MRO and F&npexperiments, where the

difference is as much as 10% of the CRE.

Table 5.2 shows changes in global mean CREs for noteworting phexperiments. These
changes are significant: the difference in net TOA CRE beatvike PP-MRO and FSD param
experiments (1.14 Wrf), is comparable to the difference (1.0 WAnbetween two completely

different cloud schemes (Wilsast al., 2008b). However, the changes are much smaller than the
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Experiment GA4.0 FSDparam FSD=0.85 PP-MRO
Total cloud cover 0.67 0.67 0.67 0.65
Precipitation (mmday) | 3.05 3.06 3.05 3.05
Surface temperature (K) 288.19 288.18 288.19 288.22
LW TOA CRE (Wn?) 25.10 23.61 24.69 26.49
SW TOA CRE (Wn¥) | —45.52  —43.37 —44.68 —47.40
Net TOA CRE (Wm?) | —20.42 —19.76  —19.99  —20.90
LW surface CRE (Wnf) | 24.64 23.63 24.16 25.77
SW surface CRE (Wm) | —48.20 —45.98 —47.30 —50.18
Net surface CRE (Wri) | —23.56  —22.35 —23.14 —24.41

Table 5.1 Global mean values for given variables for each of the 10-gk@ate simulations.

Experiment Aparam AFSD AGA4.0

LW TOACRE (Wnm?) | —-1.08 -0.41 -1.39
SW TOA CRE (Wm?) 1.31 0.84 1.88
Net TOA CRE (Wn®) 0.23 0.42 0.49
LW surface CRE (Wnf) | —0.53 —0.48 —1.14
SW surface CRE (W) 1.31 0.90 1.98
Net surface CRE (Wrl) | 0.78 0.42 0.85

Table 5.2 Change in global mean values of given variables. Bhgaram column shows the
difference between the FSD param and FSD=0.85 experimieatstije impact of allowing the
FSD to vary globally), thé& FSD column shows the difference between the FSD=0.85 and@GA4
experiments (i.e the effect of changing the FSD from 0.75.85)0and theA GA4.0 shows the
difference between the GA4.0 and PP-MRO experiments.
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inter-model spread of values (e.g. Wild and Roeckner (2886vs TOA SW CREs from-44
to —57 Wn? in the IPCC AR4 models). Moreover changes to global mean $laxe important
because GCMs are usually tuned to match the observed glazat MOA radiative fluxes. Re-
tuning after changing the representation of subgrid cldutttire may further affect the model

(though this is beyond the scope of this chapter).

The rightmost column of table 5.2 shows the difference betwthe PP-MRO experiment and
the GA4.0 experiment. This comparison is useful for putthgyothers into context. These differ-
ences are consistent with those found by Sheinél. (2012) using ‘Tripleclouds’ and an earlier
version of the MetUM. Shonlet al. (2012) showed that this arises from a partial cancellation
of increased CREs due to the overlap changes and decreadesidCB to the representation of

horizontal water content inhomogeneity.

The middle column shows the effect of increasing a globaidlystant FSD from 0.75 to 0.85.
This highlights that the global mean radiative fluxes ardeqsensitive to fairly small changes
in FSD. Assuming that the effect of larger changes to theallokean FSD can be estimated by
extrapolating linearly, this effect is much smaller thaattfound by Shonk and Hogan (2010),

but agrees very well with the sensitivity estimates of Bagked Raisanen (2005).

Now, consider theA param’ column, which shows the difference between the FS&npand
FSD=0.85 experiments, we see that both TOA and surface CREs@uced in the FSD param
experiment. In the SW this is thought to be due to a combinaifdhe cloud fraction dependence
in the parametrization and the fact that FSDs are largematdtitudes which contribute more to
the global mean CRE. In the LW, the increase in FSD with hegyhtso important and explains
the difference in LW CRE at the surface and TOA (cf. the other tolumns where the surface
and TOA LW CRE differences are much more closely matched@. miagnitude of both SW and

LW CRE changes are of the same order as the other two columns.

The fact that the global mean TOA and surface CREs differ éeiwthe FSD param and
FSD=0.85 experiments is probably the key result of this tdram@s it implies that a globally
varying FSD parametrization is necessary in order to ohtalriased TOA and surface radiative
fluxes; even a perfect estimate of the global mean FSD widl teaglobal mean radiative biases

if applied globally.
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5.4.2 IMPACT ON GEOGRAPHICAL DISTRIBUTIONS

Figure 5.5 shows the difference in TOA seasonal mean owd® and LW fluxes between the
FSD param and FSD=0.85 experiments. The model clear skysflgna shown) in the experi-
ments are practically identical, apart from over China arwhlyblia during DJF, where the model
has a long-standing bias and most changes to the model iresuiite large random differences.
All other changes in the all-sky fluxes are due to cloud radiagffect changes. In both seasons,
SW fluxes are generally reduced, while LW fluxes are genenadiyeased. In the LW, the largest
changes (both increases and decreases) occur in tropigahseof deep convection. There are
also large changes in the outgoing SW flux in these regions.didtribution of TOA flux changes
shown in Figure 5.5 cannot be explained by the FSD changesnsimoFigure 5.3, as there are
areas where the mean TOA flux changes are in the oppositdidir¢o those one would expect
from the mean FSD changes (e.g. over Russia in JJA). Thisstgythat the cloud fields have

been changed.

Figure 5.5 Time mean difference in TOA radiative fluxes between the F&am and FSD=0.85

experiments: outgoing SW (top) and LW (bottom) fluxes, foF@i&ft) and JJA (right).
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Figures 5.6 and 5.7 show the corresponding changes in DJBXndean cloud fractions
respectively. Note that the global mean cloud cover is umged in both DJF and JJA. These
cloud fraction changes correspond quite closely to the TQA ¢hanges shown in Figure 5.5.
The few remaining differences can be explained by the FShgd®m For example, the reduction
in both SW and LW cloud radiative effect over the north Paciéin be explained by the increase
in FSD over this region. This result is consistent with thedgtof Gu and Liou (2006), which also
found that the difference in the global distribution TOAi&dive fluxes between their experiments
appeared to be better correlated with cloud cover changeswvtith their scaling factor changes.
These changes are fairly small compared to those obtaiosdrfrodifications to the models cloud
scheme (e.g. Wilsoat al., 2008b). Moreover, they are much smaller than the diffexdratween
the model and observations; the area-weighted RMS (roohregaare) difference between the
simulations is around 0.02 in both seasons, while the RM8rdifice between the models and the

ISCCP climatology for both experiments is 0.19 in DJF and 0nlJJA.

In order to estimate the statistical significance of the geain total cloud cover, the pooled

standard erroiSE, of the annual mean values was calculated for each gridbox,

10 10
¢ (igl(n - @2+i§1(yi -y)?)/18
SE= NG

wherex denotes one experiment agdienotes the other, the,y; variables refer to the annual

(5.2)

mean cloud cover in the i-th year of each experiment ayddenote the 10-year mean values
for the two experiments. This pooled standard error is th@ohénator of the test statistic for a
conventional Student’s t-test (though such a test is ndicgipe due to the small sample sizes and
the correlation between the annual mean values). The hagtahiFigures 5.6 and 5.7 indicates
where the change in total cloud cover is greater than theegaibindard error for each point (thin
increasing lines) and twice the pooled standard error foin @aint (thicker decreasing lines). For
such a small number of samples, statistical significande ¢emerally have thresholds larger than
two, which means that they require the difference to be grdhan twice the standard error (e.g.
for the Student t-test the threshold for a 95% significansei$e2.101 while for the table lookup
test (Zwiers and von Storch, 1995), where the threshold riégpen the sample correlation, it is
at least 2.84). For a 95% significance test, approximatelyob%e points would give a false

rejection. For the cloud fraction changes shown in figurésahd 5.7 2.66% of the gridboxes
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are changed by more than twice the standard error in DJF &58edin JJA. Thus, using either

threshold, we would conclude that the experiments are gaotfsgiantly different.

The geographical distributions of precipitation and 1.5emperature (not shown) differ be-
tween the FSD param and FSD=0.85 experiments, with locahmleEnges as large as 6 mmday
and 2.75 K respectively. The temperature changes are sitoithose shown by Raisanen and
Jarvinen (2010) for changes to the cloud scheme and repati®m of subgrid cloud structure
in the the European Centre Hamburg Model 5 (ECHAMDb5) and asaRran and Jarvinen (2010)
found, the experiment differences are much smaller tharifferences with respect to obser-
vations. The precipitation changes are of a similar maggitio those detected by Gu and Liou
(2006), when they changed the inhomogeneity of cirrus dpbdwever the differences between
the experiments are again much smaller than the differelme®geen either experiment and ob-
servations. As for the cloud cover, comparison of the pitatipn and 1.5 m temperature changes

to interannual variability suggests that they are notsiatlly significant.

Figure 5.8 shows zonal mean differences between the FSihgard FSD=0.85 experiments,
with error bars showing the pooled sample error at eaclutiiffollowing equation 5.2, but using
zonal mean values). Zonal averages are useful becauseténanimual variability is reduced,
making it easier to identify significant differences. Difaces in the zonal mean TOA SW and
LW fluxes appear to be significant at some latitudes, notadtyween 50 South and the Equator in
DJF. However, for the other three variables consideredzdinal mean differences don’t appear

to be significant; the latitudes with largest differencesdlave largest uncertainty.

Comparing the FSD=0.85 experiment to the GA4.0 experimedtiae GA4.0 experiment to
the PP-MRO experiment, the zonal mean differences are ahidasimagnitude. As a result, it
is also not possible to detect statistically significantedénces between the cloud cover, precip-
itation and surface temperature in these pairs of expetsnérhis remains the case even when
comparing the two experiments with largest differencedab@ mean CREs (i.e. the FSD param

and PP-MRO experiments).

Although it is not possible to conclude that differences lmud cover, 1.5 m temperature
and precipitations are statistically significant basedhensimulations described here, it may be

possible to detect statistically significant changes uBinger experiments which have smaller
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Change in DJF total cloud cover

T

90N

Figure 5.6 Time mean difference in DJF total cloud cover between the p&2am and FSD=0.85
experiments. The thin increasing hatching indicates wileeedifference exceeds the pooled
standard error and the thicker decreasing hatching ireficahere the hatching exceeds twice the

pooled standard error.

sampling errors. For instance, Shoeikal. (2012) compares two 20-year experiments, with dif-
ferent treatments of the radiative effect of subgrid clowdcure, similar to the GA4.0 PP-MRO
comparison described here. They were able to detect stalligtsignificant changes to cloud
fraction and temperature, while the global mean radiative ¢hanges were similar to those ob-

served in this study.

Although the impacts of the changes to subgrid cloud strachue fairly small in these sim-
ulations of current climate, this does not preclude thermfi@ving larger impacts on climate
change experiments. For example, in simulations with ECEBAR&isanen and Jarvinen (2010)
found that using MclICA combined with subgrid cloud informoatfrom the cloud scheme made
little difference to the model performance for present elieq but led to marked differences in the

response to increased atmospheric carbon dioxide.

Page 110




Chapter 5: The impact of changes to subgrid cloud structui@imate simulations

Change in JJA total cloud cover
90N /y/l W";’zﬁ. //,’/ R EREp—"

Figure 5.7 As Figure 5.6, but for JJA.

5.5 CONCLUSIONS

This chapter has considered the impact of changing the septation of subgrid-scale cloud
structure in 10-year MetUM climate simulations. Four expents were run and compared in
order to analyse the impact of changes to the subgrid-skald structure: the GA4.0 experiment
used McICA with a global FSD of 0.75 and exponential-randorariap with a decorrelation

pressure scale of 100 hPa, in the FSD param experiment thepR&inetrization was applied,

the FSD=0.85 experiment used a global FSD of 0.85 (equaktartba-weighted mean in the FSD
param experiment), and the PP-MRO experiment treated slasitiorizontally homogeneous and

used maximum-random overlap.

Comparison of the FSD param and FSD=0.85 experiments shaysais expected from the
design of the parametrization, the FSD param experimentibaased inhomogeneity at very
high latitudes, increased inhomogeneity for higher clowsl more inhomogeneity in regions

where mean cloud fractions are larger. The FSD parametiizatas found to decrease global
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Figure 5.8 10-year zonal mean differences between FSD param and F8Degperiments. The

vertical error bars show the mean difference plus and mimeipooled standard error.
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mean SW and LW CRE by around 1 Whrelative to the FSD=0.85 experiment, due to the
parametrization predicting smaller FSD where FSD has Iésste(i.e. at high latitudes, for
smaller cloud fractions, and (for TOA LW effect) for low clds). This implies that a glob-
ally varying FSD is required in order to get unbiased TOA a#ide fluxes. Local differences in
mean cloud cover, precipitation and 1.5 m temperature ang farge in some areas, but are not

statistically significant.

Comparison of the GA4.0 and PP-MRO experiments was periim@ut the other exper-
iments in context. In terms of global mean CREs, fhparam,AFSD andAGA4.0 differences
are all of the same magnitude. This implies that allowingRB® to vary globally, ensuring that
the global mean FSD is correct and representing the comlgfiedt of horizontal and vertical

inhomogeneity are of roughly equal importance.

One of the advantages of the FSD parametrization is thahitbeaused at different model
resolutions. At the particular resolution at which thedmate simulations were run, the mean
FSD (0.85) turned out to be quite close to the default valuésj0used in GA4.0 for all reso-
lutions. This leads to small but significant differenceshe TOA fluxes (around 0.9 Wihin
the SW and 0.4 Wrd in the LW). However, at higher (lower) resolutions, we woekpect the
mean parametrized FSD to be smaller (larger). Consequémtylefault FSD value may be less

appropriate at other resolutions, which may have quitegelanpact on the TOA fluxes.

Although the FSD parametrization was derived for ice watertent only, it was applied to
both liquid and ice clouds. Moreover, to account for the ekge difference in variability between
a 2D domain and a 1D slice through that domain, the parareetsialue was multiplied by/2.

Future work will aim to verify and explain this 1D-2D diffatee.

The parametrization may also be adopted in global numesieather prediction (NWP) mod-
els, where the typical resolution (around 40 km), thougtméigis still low enough for unresolved
water content variability to have significant radiative swfs. We aim to test the performance of

the parametrization in some NWP case studies in the neaefutu
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CONCLUSIONS AND FUTURE WORK

This thesis examines the representation of subgrid cloudtste and its radiative effects in gen-
eral circulation models (GCMs). More specifically, the esg@ntation of subgrid-scale horizontal
water content variability and cloud vertical overlap isdééd with the aid of state-of-the-art satel-

lite observations.

6.1 SUMMARY AND CONCLUSIONS

While the radiative bias due to neglecting subgrid-scaleemveontent variability has long been
recognised as a problem (e.g. Cahaddral, 1994a), efficient and effective methods for rep-
resenting the radiative effects of variability (e.g. Piset al., 2005; Shonk and Hogan, 2008)
are a more recent development. Chapter 2 concerns one subbdnéhe Monte Carlo Inde-
pendent Column Approximation (McICA), which introducesnddional random errors. This
chapter describes evaluation, reduction and impacts ®hthise in the Met Office Unified Model
(MetUM). It includes a description of a new method for redigcthe random errors, which re-
duces mean absolute flux and heating rate errors due to noeséabtor of two, while increasing
the number of monochromatic calculations required by atdf9%. Tests with global numerical
weather prediction (NWP) simulations show that once na@seduced sufficiently, McICA can
lead to improved surface temperature forecasts, compai@dimulation using the plane-parallel

maximum-random overlap (PP-MRO) representation to catewtloud radiative effects.

The main reason for adopting MclICA for representing theathgk effects of subgrid cloud
structure is the flexibility that it allows. This is illusted by chapter 4; the overlap parametriza-
tion changes would be much more complicated if the overlapraptions were embedded in the
radiative transfer solver. Another advantage is that theysd cloud structure used by the ra-

diative transfer scheme is more explicit, so it is easiers® consistent subgrid cloud structure
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in other physical processes. In terms of future model dgvetmt, one disadvantage involves
the representation of 3D radiative transfer effects; Mci@ay be incompatible with schemes for

accounting for 3D effects (e.g. Hogan and Shonk, 2012)

Irrespective of the method used to represent the radidfisets of subgrid-scale water content
inhomogeneity, the magnitude of the radiative impacts dépen the magnitude of the variability
(e.g. Barker and Raisanen, 2005; Shonk and Hogan, 201®edwer, the amount of unresolved
water content variability remains poorly characterisethisTproblem is addressed in chapter 3,
where water content variability is studied using a Cloudfaa product that combines CloudSat
radar and Moderate-Resolution Imaging Spectroradionfst@DIS) visible optical depth obser-
vations to retrieve water content. Due to issues with thece®f drizzle on the retrieved liquid
water content, the study is restricted to ice water contahyt @ his chapter resolves some of the
apparently contradictory results in the existing literat(e.g. concerning the effect of cloud frac-
tion on variability) and explains how resolution affectsesolved variability. A parametrization
of the fractional standard deviation (FSD) of ice water eohts derived, that accounts for the

effects of horizontal and vertical resolution, and clouatfion.

In many GCMs (e.g. Morcrettet al., 2008), including the MetUM, the subgrid cloud structure
required for McICA is produced by a stochastic cloud gemer@Raisanert al., 2004). The com-
bination of McICA and a stochastic cloud generator permitsenilexibility in the representation
of vertical cloud overlap, which is considered in chaptelndhis chapter a combination of Cloud-
Sat radar and Cloud-Aerosol Lidar and Infrared Pathfindezli8a Observation (CALIPSO) lidar
observations are used to examine the distribution of opeRaecipitation is found to have a large
impact on the overlap; as the effect of precipitation carb®tremoved cleanly, the chapter is
restricted to a qualitative analysis. We show that the ibistion of overlap (but not the mean)
is sensitive to assumptions concerning the horizontaldckitucture. Neither the deterministic
overlap required when the overlap assumptions are incatgainto the radiative transfer solver,
nor the original version of the Raisanenal. (2004) cloud generator can capture the observed
overlap distribution. It is shown that the observed distiitm of overlap can be modelled by a
new version of exponential-random overlap combined wighdbrrect horizontal cloud structure.
However, while OLR and cloud cover biases for the new ovepl@ametrization and the default

exponential-random overlap parametrization are simifegan absolute errors are increased by
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around 25% by the new parametrization.

Chapter 5 describes the effect of changes to the reprementdtsub-grid scale cloud on a
10-year MetUM climate simulation, with an emphasis on thpaut of the FSD parametrization
of chapter 3. Including the FSD parametrization in the madlelvs us to examine the mean ge-
ographical distribution of subgrid-scale variability gieted by the parametrization. Comparing
two 10-year climate simulations, one with parametrized 80 the other with constant FSD,
but both with the same mean FSD, we find that global mean topgnodsphere (TOA) fluxes
in the simulation with parametrized FSD are 1-2 Wismaller in both the shortwave (SW) and
longwave (LW). This implies that a ‘perfect’ unbiased estimof the global mean FSD will lead
to biases in the model’s radiative fluxes and a globally vay#SD is necessary to calculate un-
biased radiative fluxes. Small changes to global mean TOA&$laxe important because models
are usually tuned to match the observed mean net TOA flux. g&sato the subgrid-scale cloud
structure have no impact on the global mean cloud coveraseifemperature or precipitation
rate, but do change the geographical distribution of eadhege variables. However these lo-
cal changes are not found to be statistically significanh@relatively short climate simulations

performed and they are much smaller than the differencdsresipect to observations.

6.2 FUTURE WORK

There are still many aspects of small scale cloud structudata representation in GCMs that are
uncertain. As a result, there are many interesting areassefrch in this area, some of which are

detailed below.

The stochastic cloud generator of Raisaeeral. (2004) has been adopted in many GCMs
(e.g. Coleet al,, 2011; Raisanen and Jarvinen, 2010) including the Meti\brder to produce
the subgrid cloud fields used for McICA radiative transfecekations. Subgrid cloud structure
is also important for other processes; precipitation dimreand evaporation depend on overlap
(Jakob and Klein, 1999) while autoconversion rates depensubgrid horizontal water content
variability (Larsonet al,, 2001). The generated cloud field, or at the very least camiassump-
tions, should be used throughout the model, whenever asmma@bout subgrid cloud structure

are required.
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The FSD parametrization described in chapter 3 appliestwater content only. Variability
of liquid water content is equally important. Although sostedies have shown that the variabil-
ity of ice and liquid water is significantly different (e.gh&k and Hogan, 2008), others have
drawn the opposite conclusion (e.g. Oreopoulos and Cah2a0f)5). To conduct a fair compar-
ison of ice and liquid water content variability, a datasetttcontains equally good estimates of

both ice and liquid water content is required.

Studies of water content variability have found that it iated to meteorological regime (e.qg.
Barkeret al,, 1996; Pincust al, 1999). Moreover, our study found a relationship with lat#
(not shown in this thesis), which could not be explained gyfthal parametrization, suggesting
that there is a meteorological regime dependence in thedSkuobservations. Analysis of the
climatology of the modelled FSD in chapter 5 showed that FStdled to be smaller in areas of
frequent cumulus cloud, whereas Barletral. (1996) and Pincust al. (1999) both found that
cumulus was more variable than other cloud types. The laglegime dependence may also
account for some of the differences between the modelleddfi§iatology and the ISCCP based

climatology of Rossovet al. (2002).

The CloudSat data on which the FSD parametrization is basewists of 1D observations
of water content along a straight line within each layer. therclimate simulation described in
chapter 5, we required an estimate of the FSD within a 2D bordch layer. Based on a brief
analysis of a limited amount of cloud resolving model data aecount for the difference by mul-
tiplying the parametrized FSD by a factor ¢R. Ideally this difference should be analysed using
3D cloud observations. Ground-based scanning cloud radkaysgprovide a suitable source of ob-
servations for such a study. It would also be prudent to lestdabustness of FSD parametrization
using other data sets, for example aircraft observatiawsingl based radar observations, or cloud

resolving model (CRM) simulations.

GCM cloud schemes must make assumptions about the subgtitbaliion of cloud water
content in order to predict gridbox mean cloud variablesally, the cloud scheme and cloud
generator should use the same distribution (or at least m@ahksistent assumptions). However,
the distributions assumed by the prognostic cloud progmesindensate (PC2) cloud scheme
(Morcretteet al., 2008) are not explicit, so cannot be easily compared to émemted distribu-

tions. The benefits of an explicit subgrid water contentritiistion should be considered when

Page 117




Chapter 6: Conclusions and future work

future cloud schemes are developed.

We have documented the impact of the new FSD parametrizatioa climate simulation.
As GCMs are usually tuned so that the net mean TOA flux matchesraations, further re-
tuned experiments should be run. Longer (20 year) simulsticould be informative because the
increased sampling of interannual variability means thetissical significance tests have more
power. Coupling to an ocean model would allow the oceansdpared to atmospheric changes
and provide further insight. NWP models are generally rua higher resolution than climate
simulations, so the magnitude of unresolved water contenahility is smaller. Nevertheless,
radiative biases arising from unresolved water conterialidity are certainly significant at the
typical scale (40 km) of global NWP models. The parametioraivas designed to be applicable
across a broad range of resolutions and should be tested iR M@dels, which may provide

more insight into the behaviour of the parametrization.

We showed that the distribution of overlap is strongly dejeerm on horizontal cloud structure
(i.e. whether a gridbox contains one contiguous clouds dtiphelbroken clouds). In reality, the
distribution of cloud sizes follows a power law, with an erpat around -1.66 (Wood and Field,
2011). It would be sensible to test how well the combined @&at and CALIPSO data captures
this behaviour. Moreover, as for the FSD parametrizatitwe, robustness of the conclusions

should be tested using other data sources such as grourdldizssvations or CRM simulations.

In chapter 4, we showed that, in terms of mean absolute mgdongwave radiation (OLR)
and total cloud cover errors, it is better to model the oyetlaing the mean of the distribution
rather than trying to capture the distribution itself. Tiriay not be the case for radiative heating
rates. Moreover, one would expect use of the mean overlagstdtrin heating rate profiles that
are much smoother than observed, which may have feedbamitsefh a GCM. Finally, while
instantaneous OLR and cloud cover errors are important irPNWodels, this is not the case
for climate simulations. Clearly, there is more work to dddoe final conclusions about the

importance of capturing the distribution of overlap may beden

Two aspects of subgrid cloud structure that have not beesidered in this thesis are the
vertical correlation of the water content distribution iffetent layers of a cloud and the subgrid

variability of liquid droplet and ice crystal sizes. The iat/e impact of changing the vertical
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correlation of the water content distribution is very snfal. Barker and Raisanen, 2005). The
radiative impact of neglecting subgrid variability of dieffcrystal sizes, though smaller than that
of neglecting water content variability (e.g. Barker angidahen, 2004) is more significant and

probably requires more immediate attention.
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