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ABSTRACT

The propagation velocity and propagation mechanism for vortices on a � plane are determined for a

reduced-gravity model by integrating the momentum equations over the � plane. Isolated vortices, vortices

in a background current, and initial vortex propagation from rest are studied. The propagation mechanism

for isolated anticyclones as well as cyclones, which has been lacking up to now, is presented. It is shown that,

to first order, the vortex moves to generate a Coriolis force on the mass anomaly of the vortex to com-

pensate for the force on the vortex due to the variation of the Coriolis parameter. Only the mass anomaly

of the vortex is of importance, because the Coriolis force due to the motion of the bulk of the layer moving

with the vortex is almost fully compensated by the Coriolis force on the motion of the exterior flow. Because

the mass anomaly of a cyclone is negative the force and acceleration have opposite sign. The role of dipolar

structures in steadily moving vortices is discussed, and it is shown that their overall structure is fixed by the

steady westward motion of the mass anomaly. Furthermore, it is shown that reduced-gravity vortices are not

advected with a background flow. The reason for this behavior is that the background flow changes the

ambient vorticity gradient such that the vortex obtains an extra self-propagation term that exactly cancels

the advection by the background flow. Last, it is shown that a vortex initially at rest will accelerate

equatorward first, after which a westward motion is generated. This result is independent of the sign of the

vortex.

1. Introduction

Several expressions have been derived for the propa-

gation speed of oceanic monopoles in the literature.

Even multilayer vortices with noncircular shapes have

been addressed. Flierl et al. (1983) and Dewar (1988)

mention that the propagation of an anticyclone in

steady motion is needed to compensate for the net Co-

riolis force on the swirling motion in the vortex. As is

shown below, their explanation is correct for lenses, but

a subtle point has to be added when the active layer

depth does not vanish at infinity. Nof (1983) considers

inner and outer regions for vortices, and finds a pres-

sure force exerted on the vortex by the exterior flow.

This pressure force is coined the planetary lift, in ac-

cordance with the lift force of a solid body with non-

zero circulation. The origin of this lift force is not clear.

Larichev (1984) shows that in a quasigeostrophic baro-

tropic ocean, expressions for the motion of the center of

mass of the vortex obtained from the momentum equa-

tion can also be derived directly from the quasigeo-

strophic potential vorticity equation. Cushman-Roisin

et al. (1990) give a more complete explanation for the

results they derive, but their arguments are incorrect, as

shown below. Nycander (1996) shows that the motion

of an anticyclone of constant shape, described as a spin-

ning disk, can be understood in an inertial frame of

reference by the conservation of angular momentum as

precession, but he mentions that an explanation for the

westward motion of cyclones is still lacking. In addition,

McDonald (1998) shows that inertial oscillations of a

rotating disk can be understood in terms of nutation.

The propagation of an anticyclonic in a reduced-gravity

context on a sphere is presented by Van der Toorn

(1997) by considering the total angular momentum of

the rotating earth with a spinning vortex. He shows that

a mass anomaly has to make a precession motion

around the rotation axis of the earth, related to the

torque from the gravity.

In this paper we show that the motion of both anti-

cyclones and cyclones in a coordinate system attached
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to the rotating earth is fully understandable as well.

This might not come as surprise given the work of Van

der Toorn (1997), but the derivation is much simpler

and closer to the description used in physical oceanog-

raphy. The rationale for concentrating on a reduced-

gravity description is that we consider surface intensi-

fied vortices, so that the body of water that moves with

the vortex, which is most important from a thermoha-

line point of view, is mainly concentrated in the upper

layers. The idea used here is to study the motion of the

center of mass of the vortex by integrating the momen-

tum equations over the entire domain. This leads to

much simpler and easier to understand expressions

for the vortex propagation than studies that also try to

unravel the details of the vortex structure (e.g., Flierl

1987; Flierl et al. 1980; Sutyrin et al. 1994; Sutyrin and

Dewar 1992; Reznik and Dewar 1994; Benilov 1996;

Stern and Radko 1998; Reznik and Grimshaw 2001).

Also, it adds new insight because it stresses the role of

the fluid that is not propagating with the vortex. In

several papers the motion of a vortex is explained in

terms of secondary dipolar circulations (e.g., Sutyrin

and Dewar 1992; Reznik and Dewar 1994; Benilov

1996; Stern and Radko 1998; Reznik and Grimshaw

2001). The idea is that the propagating vortex pushes

surrounding water north- and southward, creating a di-

polar structure that advects the vortex westward. How-

ever, the advection of the dipolar mass anomalies by

the monopole is neglected, while it can be shown to be

of similar magnitude to the advection of the monopole

by the dipole (see section 2b). Furthermore, Nycander

and Sutyrin (1992) have shown that these dipolar fields

can have such orientation that they tend to decrease the

westward motion of the vortex. An explanation of vor-

tex motion by secondary dipolar circulations is thus in-

complete. In this paper the influence of dipolar fields

on vortex propagation is investigated, and it is ex-

plained why dipoles only enter the expression for the

propagation speed via their mass anomaly, and not by

advective terms.

By examining the influence of a geostrophic current

on vortex propagation in a reduced-gravity model, it

becomes clear that vortices are not just advected by

such a current. On the contrary, to first order the back-

ground current has no influence on the propagation

speed at all. So advection of Gulf Stream vortices by the

gyre circulation, or of Agulhas rings by the Benguela

Current has to be reconsidered.

Last, we investigate the initial motion of a vortex on

in the � plane is investigated. In a barotropic quasi-

geostrophic model Adem (1956) has shown that a cy-

clone moves westward first, after which a poleward

motion develops. By considering the motion of the

center of mass of the vortex, it is shown here that all

vortices first move equatorward, after which a west-

ward velocity component develops. This result is true

for vortices of both signs. The discrepancy between

these two results is resolved, and it is shown that the

vortex by Adem (1956) is not at rest initially. The same

initial motion of the vortex is present in articles by

Reznik and Dewar (1994), Benilov (2000, when he dis-

cusses the compensated vortex), and Reznik and Grim-

shaw (2001). The deeper reason for this nonzero initial

motion is that the initial vortex is assumed to have a

radial pressure distribution, leading to asymmetric ini-

tial water parcel velocities, as will be explained in sec-

tion 4.

In the next section a simple derivation of the motion

of a vortex on the � plane is given. Previous explana-

tions for vortex motion are critically discussed and the

counterintuitive role of dipolar fields in the vortex is

emphasized. Then the influence of a background flow is

determined, followed by an investigation of the initial

motion of a vortex. The paper is completed by a con-

cluding section and an appendix.

2. The propagation of a vortex on the � plane

The momentum equations for the reduced-gravity

model on the � plane read

du

dt
� f� � �g��x and �1�

d�

dt
� fu � �g��y, �2�

in which u, �, g�, and f are conventional, and 	 is the

interface displacement measured positive downward.

Mass conservation is expressed by volume conserva-

tion as

dh

dt
� h�ux � �y� � 0, �3�

where the layer thickness h � H � 
 � 	, 
 is the

surface elevation, and H is the depth of the undisturbed

first layer. From now on, we neglect the surface eleva-

tion 
 relative to 	.

We assume that the center of mass of the first layer is

a good description of the position of the vortex. The

center of mass of the active layer is given by
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X �

�x� dA

�� dA

�
1

V
� x� dA and �4�

Y �

�y� dA

�� dA

�
1

V
� y� dA, �5�

in which V is the anomalous volume of the first layer.

The integration is performed over the entire � plane.

Although the emphasis of this paper is on monopolar

vortices, the results are in fact more general as will

become clear from the derivations given below.

The center-of-mass translation is not a good descrip-

tion of the motion of a vortex if the vortex emits a

relatively large amount of mass (e.g., by filamentation).

One might argue that the maximum surface elevation

of the vortex gives a better measure of the position of

the vortex. However, Nycander and Sutyrin (1992) and

Cushman-Roisin et al. (1990) mention that in their nu-

merical experiments the center of mass and the maxi-

mum surface elevation of the vortex followed the same

trajectory. Furthermore, for a steadily translating vor-

tex the center of mass and the maximum surface eleva-

tion have to move with the same speed. In the appendix

it is shown that the center of potential vorticity follows

the center of mass to dominant order. Furthermore,

numerical experiments are discussed in that appendix,

which show that the difference between the center of

mass and the maximum interface elevation is very

small.

When the center of mass is accepted as the position

of the vortex, the translation velocity of the vortex is

the time derivative of the center of mass:

V
dX

dt
� �x�t dA � ��x��hu�x � �h��y� dA

� �hu dA and �6�

V
dY

dt
� �y�t dA � ��y��hu�x � �h��y� dA

� �h� dA. �7�

Here we used that V is time independent in a volume-

conserving system. The idea now is to study the area-

integrated force balance on the vortex. Because the

Coriolis force on a moving vortex is linearly related to

the velocity of the vortex, an expression for the latter is

obtained. So, to proceed we differentiate the expression

for the velocity of the vortex to the following time:

V
d2X

dt2
� ��hu�t dA

� ����hu2�x � �hu��y � fh� � g�h�x� dA and

�8�

V
d2Y

dt2
� ��h��t dA

� ����hu��x � �h�2�y � fhu � g�h�y� dA, �9�

from which we find

V
d2X

dt2
� �fh� dA and �10�

V
d2Y

dt2
� ��fhu dA. �11�

These equations show that zonal and meridional accel-

erations of the center of mass of the vortex arise when

the net Coriolis force on the vortex is nonzero.

The Coriolis force at the right-hand side of these

expressions still contain the propagation speed of the

vortex. When we bring that part to the left-hand side we

obtain, also using also f � f0 � �y, the following:

V
d2X

dt2
� V

dY

dt
�f0 � �Y� � ��h� � �

dY

dt
� �y dA and

�12�

V
d2Y

dt2
� �V

dX

dt
� f0 � �Y� � ��hu � �

dX

dt
� �y dA.

�13�

These are the basic equations for vortex propagation on

the � plane. To obtain an order of magnitude of the

flow field we assume the mass flow apart from the

propagation of the vortex, to be in geostrophic balance.

Furthermore, by a suitable choice of the initial condi-

tions (and consistent with the �-plane approximation)

we have �Y K f0. This leads to

d2X

dt2
� f0

dY

dt
and �14�

d2Y

dt2
� �f0

dX

dt
� f0�Rd

2�1 �
1

V
�1

2

�2

H
dA�, �15�

in which Rd � (g�H)1/2/f0 is the Rossby radius of defor-

mation. These are the equations we will use in the fol-

lowing sections.
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Another approximation would be to assume cyclo-

geostrophic balance for the swirling motion:

f0U � g��r �
U2

r
, �16�

in which r is the radial coordinate originating in the

center of the vortex, and U is the swirl velocity, which

is positive for cyclonic motion and negative for anticy-

clonic motion. We then find

��h� � �
dY

dt
� �y dA � ��h�U cos�� r sin�r dr d� � 0 and �17�

���hu � �
dX

dt
� �y dA � ���h��U sin�� r sin�r dr d� � ��hUr sin2�r dr d�

� ��hr�g��r

f0

�
U2

rf0
� sin2�r dr d�. �18�

Partial integration of the latter equation gives in (12)

and (13), again assuming �Y K f0,

d2X

dt2
� f0

dY

dt
and �19�

d2Y

dt2
� �

dX

dt
f0 � f0�Rd

2


 �1 �
1

Vg�H
� �1

2
g��2 �

1

2
hU2� dA�, �20�

in which we recognize the sum of kinetic and available

potential energy in the latter two terms. We will come

back to this later.

a. Small vortex accelerations

To understand the contribution of the different terms

we consider vortices with negligible acceleration. From

a formal-scale analysis one can argue that the accelera-

tion terms are smaller than the other terms (Cushman-

Roisin et al., 1990), leading to

V
dX

dt
� f0 � �Y� � ���hu � �

dX

dt
��y dA and �21�

V
dY

dt
� f0 � �Y� � ���h� � �

dY

dt
��y dA. �22�

For a steadily translating vortex these equations are

exact. Note that because the motion is steady any res-

ervations one can have with taking the center-of-mass

velocity as the propagation speed of the vortex vanishes

because all measures for this speed, like the interface-

anomaly maximum, or the relative vorticity maximum,

are the same. The equations tell us that the Coriolis

force on the mass anomaly balances the �-induced

force. The first question that comes to mind is why only

the mass anomaly is involved, and not the mass of the

vortex as a whole. The answer is that water surrounding

the vortex has to move in the direction opposite to that

of the vortex, leading to a Coriolis force on that part of

the layer that is pointing in the opposite direction. The

net effect is a Coriolis force on the mass anomaly:

� f0 � �Y�
dX

dt
�

area

� dA � � f0 � �Y�
dX

dt
�

area

h dA

� � f0 � �Y�
dX

dt
�

area

H dA,

�23�

in which the integral is taken over a finite area, much

larger than the vortex diameter. For the meridional di-

rection a similar expression can be formulated. Note

that the mass anomaly is negative for cyclones; this will

be discussed later.

We first notice that the propagation velocity in the

meridional direction is zero, because, as Killworth

(1983) mentions, a vortex translating steadily in the me-

ridional direction implies relative vorticity or thickness

changes from potential vorticity conservation, violating

the assumption of steadiness. This also follows directly

from our (22) since the northward mass transport in the

vortex excluding the motion of the vortex as a whole

has to be equal to the southward mass transport in the

vortex excluding the meridional motion of the vortex as

a whole. This follows directly from continuity. Hence

the right-hand side of (22) is zero. This allows us fur-

thermore to choose Y � 0, so that

V
dX

dt
f0 � ���hu � �

dX

dt
��y dA and �24�

dY

dt
f0 � 0. �25�
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The right-hand side of (24) is negative for an anticy-

clone and positive for a cyclone (on the Northern

Hemisphere). Because the mass anomaly of an anticy-

clone is positive and that of a cyclone is negative, both

kind of vortices have to move westward. (An exception

is an anomalous low that will be discussed in the con-

cluding section of this paper.) This is independent of

the exact shape of the vortex. For instance, even a small

net mass anomaly in a dipolar field has to move west-

ward. This is not a new result, but the following expla-

nation is new.

The physical explanation of steady vortex motion is

that the �-induced force on the layer is balanced by the

Coriolis force on the mass anomaly. This is the reason

why the vortex moves. In Fig. 1 the force balance for an

anticyclone on the Northern Hemisphere is depicted.

Because the Coriolis force on the mass transported

eastward in the northern part of the vortex is larger

than that on the equal amount of mass transported

westward in the southern part of the vortex (the � ef-

fect), a net force on the vortex comes into play. For the

anticyclone it is directed southward. If the acceleration

of the vortex in the meridional direction is zero, as is

the case here, a northward-directed force has to exist.

This force is due to translation of the vortex as a whole.

The water that moves with the vortex westward expe-

riences a northward Coriolis force. The water that re-

places the westward-moving water moves eastward, ex-

periencing a southward Coriolis force. Because the

mass inside the vortex is larger than the mass of the

replacing water a northward Coriolis force remains.

This force balances the force due to the variation of the

Coriolis parameter.

For a cyclone on the Northern Hemisphere the swirl-

ing motion in the vortex is in the opposite direction,

leading to a �-induced force pointing northward. So, for

a cyclonic vortex that experiences no meridional accel-

eration, a southward-directed counterforce has to exist.

A westward motion of the vortex as a whole leads to a

northward Coriolis force on the vortex water. The wa-

ter mass that has to replace the vortex water moves

eastward and experiences a southward Coriolis force.

Because the mass inside the vortex is smaller that of the

replacing water, the net Coriolis force due to vortex

motion is southward. This is exactly what is needed to

balance the force due to �.

While the motion of the anticyclone can be consid-

ered as that of a positive mass anomaly, the motion of

a cyclone can be viewed as the motion of a hole in the

active upper layer (see Fig. 2). Indeed, the mass trans-

port in a cyclone is eastward, while the vortex moves

westward. Or, in other words, since the mass anomaly

of a cyclone is negative, force and acceleration have

opposite signs.

One of the reviewers mentioned that cyclones cannot

move steadily westward because of direct coupling with

Rossby waves. The appendix shows that the decay of

simulated cyclones is typically a few percent of the vor-

tex interface elevation amplitude during one rotation

period within the cyclone, showing that the momentum

balance discussed above can hold to a very good ap-

proximation.

On the Southern Hemisphere the rotation directions

of the vortices change sign, and so do the �-induced

forces. However, because the Coriolis force on a mov-

ing water column changes sign too, the balances only

change sign and the westward motion remains.

The above explanation is the one of the main results

of this paper. It is stressed that the formation of dipolar

structures plays no role in this argument. Before an

explanation of this latter fact is given, we discuss the

literature in view of the above explanation.

FIG. 1. Force balance on an anticyclone in the Northern Hemi-

sphere. The extra Coriolis force on the plane due to the westward

motion of the vortex is needed to resolve the force imbalance due

to �.

FIG. 2. The cyclone can be viewed as a hole in the active layer.

Its mass anomaly is negative.
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The expressions by Nof (1981), Killworth (1983),

Flierl (1984), and Dewar (1988) are true for lenses. The

propagation mechanism is that the net Coriolis force on

the swirling mass is compensated by the Coriolis force

due to the bulk vortex translation. Indeed, the mass

anomaly in their cases is the whole active layer, so the

whole vortex. In our case the �-related Coriolis force is

balanced by the Coriolis force due to the mass anomaly

of the vortex only. The expression that the above au-

thors find for the translation speed for cyclogeostrophic

swirling motion is

dX

dt
� �

�

Vf 0
2 � �1

2
g��2 �

1

2
hU2� dA, �26�

which is the sum of available potential energy and ki-

netic energy of the lens divided by the mass of the lens.

This expression differs from the steady form of our

expression (20) by a term ��R2
d. This term is of domi-

nant order and is related to the �-related Coriolis force

on the swirling motion of the vortex with layer thick-

ness H. Because such a water mass will be present in

realistic ocean vortices, the propagation speed of lenses

(typically 2/3�R2
d; see, e.g., Nof 1981) is expected to be

a factor of about 2 smaller than that encountered in real

vortices.

To discuss the paper by Cushman-Roisin et al. (1990)

we note that the first-order balance of the moving water

columns is geostrophy, leading to [see Cushman-Roisin

et al. (1990) and our equations in (14) and (15) in the

steady limit]:

dX

dt
� ��Rd

2�1 �
1

V
�1

2

�2

H
dA� and �27�

dY

dt
� 0. �28�

These equations show that both anticyclones and cy-

clones move westward, but the interpretation and ex-

planation of these equations given by Cushman-Roisin

et al. (1990) is unsatisfactorily. They argue that the

westward motion of the vortex is due to two effects.

The first is a net Coriolis force on the vortex. They

argue that this force leads to westward motion for an-

ticyclones and eastward motion for cyclones. Also, they

argue that this effect is responsible for the second term

in (27). However, as seen above, this is not true. The

effect of the Coriolis force is given by the first term in

(27), and it leads to westward motion for both anticy-

clones and cyclones.

They proceed by arguing that because of this initial

motion a dipole appears in the surrounding waters that

pushes the vortex westward, overruling the initial mo-

tion. The dipole comes into existence because of north-

and southward displacement of water surrounding the

vortex. According to them, this is the first term in (27).

So, in fact they argue that a secondary effect, the for-

mation of a dipole by the displacement of surrounding

water, leads to a first-order adaptation of the initial

vortex motion. This is not too satisfactory either be-

cause it is unclear where the boundary between vortex

and surrounding water lies. Furthermore, the explana-

tion needs a specific structure of vortex and surround-

ing water that is not in the equations above, which were

integrated over the whole � plane. The explanation

given the present paper does not have these drawbacks.

In fact, the second term in (27) is due to the fact that the

mass anomaly also plays a role in the �-induced force,

increasing it in the case of anticyclones and decreasing

it for cyclones.

Nof (1983) derives an expression for the motion of a

vortex by considering an inner domain that translates

with the vortex with velocity C, and an exterior domain.

He considers the equations in a coordinate system

moving with the vortex and defines a streamfunction in

this system. The vortex edge is taken as a streamline of

the exterior field. By integrating the meridional mo-

mentum equation over the vortex area he finds, in our

notation,

�
vortex

� f0 � �y�Ch dA � ���
vortex

� dA �
g�

2 �h2 dS,

�29�

in which the integrals are over the inner domain and its

boundary, respectively. Here � is a streamfunction, de-

fined by hu � ��y and h� � �x, which is chosen to be

zero along the boundary. The advection terms vanish

because of the choice of the vortex edge as being a

streamline. In this equation, apart from the �-induced

force, a pressure force over the boundary of the vortex

arises. This pressure force is due to the exterior flow,

and depends on the size of the inner domain and the

exterior velocities at the boundary. Vortex motion is

now due to a balance between the Coriolis force on the

water columns moving with the vortex, the �-induced

force due to rotation inside the vortex and this pressure

force at the boundary. This latter force is coined plan-

etary drift by Nof (1983). Equation (29) is interesting

because it uses the natural division between inner and

outer vortex areas. The dividing streamline is the so-
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called separatrix (see, e.g., De Steur et al. 2004), which

is the closed streamline that connects to infinity. The

separatrix has a singular point where it crosses itself,

and is not circular, but that does not invalidate the

above expression for the propagation speed to first or-

der.

The expression by Nof (1983) has a few drawbacks.

First, the speed of the vortex seems to be related to the

size of the vortex, while our expression shows that it

does not. Second, to find meaningful expressions for

the speed of cyclones and anticyclones more compli-

cated perturbation expansions are needed (see Nof

1983).

To understand the relation with our expression in

(24) we first evaluate the pressure term. Because the

pressure is continuous over the edge of the vortex, the

last integral is equal to the integral of the layer thick-

ness squared of the exterior field. The momentum

equation integrated over the exterior field can then be

used to help our interpretation:

g�

2 �h2 dS �
g�

2 �hex
2 dS � ��

ex

� f0 � �y��C � u�h dA.

�30�

Again the advection terms cancel because of the choice

of the vortex edge. We thus find that the “planetary

drift” term is just the Coriolis force on the exterior

field. In order for the terms on the right-hand side to be

finite, u should become equal to �C far from the vortex

center, where h � H. This just means that the water

does not move in the coordinate system attached to the

rotating earth. If we combine the last two equations we

arrive at

�
vortex

� f0 � �y�Ch dA � ���
vortex

� dA

� �
ex

� f0 � �y��C � u�h dA.

�31�

Now we see that vortex motion is due to a balance

between the Coriolis force on the water columns mov-

ing with the vortex, the �-induced force due to the

circulation in the vortex, and the Coriolis force on the

exterior flow. This latter flow is needed to compensate

for the westward motion of the body of the vortex.

The connection with the explanation given above is

found when the boundary is extended to infinity. First

the �-related term that contains the streamfunction is

rewritten in terms of hu because the streamfunction

definition is connected to the vortex edge. We then find

that

�
vortex

� f0 � �y�Ch dA � ��
vortex

� f0 � �y�uh dA

� �
ex

� f0 � �y��C � u�h dA,

�32�

in which “vortex” now means integration over the

whole � plane. The exterior contribution vanishes be-

cause C � u becomes zero far from the vortex center.

Furthermore, if the coordinate system to the system

fixed to the earth is changed, ufixed � C � u, then (24)

is recovered. Now that we have found the connection

with previous expressions and explanations it is time to

turn to the question of what the influence of dipolar

motions is on the propagation of vortices.

b. Dipolar vortices in steady vortex motion

One may wonder what the contribution of a dipolar

field is to the motion of the compensated vortex. No

doubt, dipolar fields are present on a � plane (see, e.g.,

Nof 1981), but the question is what their role is in the

propagation of a vortex. At first glance, one would ex-

pect a contribution due to the advection of the center of

the vortex in the direction of the dipole’s main axis, but

such a term is not present in the explanation given

above. Furthermore, the paper by Nycander and Su-

tyrin (1992) contains examples in which the dipole is

oriented such that it decreases the westward motion of

the vortex, while the general idea is that dipoles en-

hance the westward migration of monopoles. In the

following two points of view are explored to obtain

more insight in these matters.

We start from (6) and splits the velocity field in a part

ud that is symmetric with regard to y � y0 and a part um

that is antisymmetric with regard to y � y0. (Note that

y0 � 0 because it is not equal to the center of mass in

the meridional direction, which is shifted meridionally

because of the dipolar field.) Clearly, the monopolar

field is contained in um, while a dipolar contribution

resides in ud. Equation (6) now becomes

V
dX

dt
� �udh dA � �umh dA. �33�

From symmetry arguments we obtain

V
dX

dt
� �udhnond dA � �umhnonm dA, �34�
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in which hnond is the mass field that is not exactly dipo-

lar, and hnonm is the mass field that is not exactly mono-

polar. Because of the nonlinearity of the flow field,

“nond” does not automatically mean m. The first term

describes the advection of the nondipolar mass field by

the dipolar velocity field. This term is referred to when

the influence of dipoles on vortex motion is discussed.

The second term describes the advection of the non-

monopolar mass field by the monopolar velocity field.

This second term, often overlooked, is also important.

An anticyclone with a zonally oriented dipole on the

Northern Hemisphere is depicted (see Fig. 3). The di-

pole consists of an anticyclone north of the center of the

vortex and a cyclone to the south. Clearly, the mass

anomaly of the monopole is advected westward by the

dipolar velocity field. This leads to a westward motion

of the mass anomaly. On the other hand, the mass

anomaly of the northern anticyclone of the dipole is

advected eastward by the monopolar velocity field,

while the mass anomaly of the southern cyclone of the

dipole is advected westward. The net result of this is an

eastward motion of the center of mass of the dipole (see

Fig. 3). So, the mass advection by the monopolar ve-

locity field counteracts that by the dipolar velocity field.

If the dipole is rotated 180° the dipole advects the mass

anomaly of the monopole eastward, while the mono-

pole advects the dipolar mass anomaly westward. Ny-

cander and Sutyrin (1992) show an example of this con-

figuration. It is difficult to determine from the above

analysis which effect is dominant. It is easy to see that

both terms must be of the same order of magnitude,

because the first-order velocity fields will be geo-

strophic, leading to an exact cancellation. So, in short,

the action of the monopole on the dipole should not be

neglected.

Second, we turn to the expression given by Nof

(1983):

�
vortex

�f0 � �y�Ch dA � ���
vortex

� dA �
g�

2 �h2 dS.

�35�

The action of the dipole is present in the pressure term

integrated over the vortex edge. We first notice that this

action is not of an advective nature because the edge is

a streamline. Furthermore, we have seen that this term

is in fact equal to the Coriolis force on the mass flow

outside the vortex. So, the dipole field is fully deter-

mined by the return flow outside the vortex, which is

only a function of the size and shape of the monopole.

It is not the dipole field that determines the velocity of

a vortex, the dipole field strength is fully determined by

the monopole. Expressions like “the vortex is advected

by the dipole field” interchange course and effect.

Last, it is stressed that the above only holds for

steadily moving vortices. When an arbitrary dipole field

is added to the velocity field of a steadily moving vortex

the momentum advection through the vortex boundary

and the pressure over that boundary cannot simply be

written as the Coriolis force on the exterior flow, and an

acceleration of the vortex will occur.

3. Advection by a background flow

In this section we study the influence of a steady

background current on vortex propagation, in a re-

duced-gravity model. We assume that the flow has hori-

zontal dimensions far greater than that of the vortex,

such that we can neglect its spatial variations in the

neighborhood of the vortex. With this assumption this

current is in geostrophic balance:

�f � � �g�hx and

f u � �g�hy, �36�

FIG. 3. Schematic view of the interaction between the anticy-

clone and the dipole. The dipole tends to advect the monopole

westward (dashed arrows). The monopole advects the anticy-

clonic part of the dipole eastward and its cyclonic part westward

(solid arrows), leading to a cumulative eastward mass transport.

The total mass transport is small and westward.
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in which f � f0 � �y. Because of the � plane the large-

scale pressure gradient is not constant in space, while

the current is constant. Because of the nonlinear equa-

tions of motion, it is impossible to separate the back-

ground current from the vortex motion when the latter

is vigorous. A simple way to circumvent this difficulty is

to define the background flow as being in geostrophic

balance with the large-scale pressure gradient every-

where. As we will see in the following, this will not

influence our final result, but it clarifies the derivation.

We define the mass (or rather volume) anomaly of the

vortex as

V � �� dA, �37�

in which 	 � h � h is the mass anomaly related to the

vortex. (However, see the discussion above.) Since no

exchange of mass is allowed with the lower layer, the

mass anomaly is conserved as before. For convenience

we define a perturbation velocity related to the swirling

vortex motion and its propagation as u� � u � u and

�� � � � �. As before, the vortex position is defined as

X �
1

V
� x� dA and

Y �
1

V
� y� dA, �38�

from which we derive the propagation speed of the

vortex as

V
dX

dt
� �x

��

�t
dA � Vu � �hu� dA and �39�

V
dY

dt
� �y

��

�t
dA � V� � �h�� dA, �40�

where we used the full continuity equation first, then

that of the mean flow uhx � �hy � 0, followed by

partial integrations. From this expression one might get

the impression that the background current can just be

added to the propagation speed of the vortex without

background flow. However, that is incorrect because

the background flow is still present in the integrals via

the layer thickness. To evaluate this further, we take

the time derivative of (39) and (40), and use the mo-

mentum equations to find for the balance in the zonal

direction:

V
d2X

dt2
� � �

�t
�hu�� dA � ���huu��x � �h�u��y dA � f0�h�� dA � ��yh�� dA � g��h�x dA. �41�

Because the background current is geostrophic the Co-

riolis and pressure gradient terms related to this flow

are cancelled.

The first integral at the right-hand side of this expres-

sion is zero because u� and �� are zero far from the

vortex center. The second integral is related to the me-

ridional propagation speed of the vortex as found

above. A partial integration of the last term leads to

�g��h�x dA � g��hx� dA , �42�

so that

V
d2X

dt2
� f0V

dY

dt
� f0V� � g��hx � dA � ��yh�� dA.

�43�

For the meridional direction we similarly find

V
d2Y

dt2
� �f0V

dX

dt
� f0Vu � g��hy� dA � ��yhu� dA.

�44�

To complete the solution we have to evaluate the �-re-

lated term. Because of the nonlinearity of the full ve-

locity near the vortex, it is impossible to separate the

contribution of the background current. However, a

very good order-of-magnitude estimate can be obtained

when we assume that the velocities are geostrophic in

these � terms. With that assumption, we can make a

distinction between background and vortex motion as

follows:

��yh�� dA �
g��

f0
� yh�x dA �

g��

f0
� y��x dA

� �
�

f0

g��y�hx dA

� ��Y�V, �45�

where we neglected terms proportional to �2. For the

other direction we find

���yhu� dA �
g��

f0
� yh�y dA �

g��

f0
� y��y dA

� ��YuV � V
�g�H

f0

�
�g�

2f0
� �2 dA,

�46�
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in which we again neglected terms proportional to �2

and in which we defined the still-water depth at the

position of the vortex as

H �
1

V
�h� dA. �47�

Combining this with the momentum equations we fi-

nally obtain

V
d2X

dt2
� f0V

dY

dt
� � f0 � �Y�V� � g��hx� dA, �48�

which simplifies to

V
d2X

dt2
� f0V

dY

dt
. �49�

For the meridional direction we similarly find

V
d2Y

dt2
� �f0V

dX

dt
� �f0 � �Y�Vu � g��hy� dA

� V
�g�H

f0

�
�g�

2f0
� �2 dA, �50�

which reduces to

V
d2Y

dt2
� �f0V

dX

dt
� V�

g�H

f0

�
�g�

2f0
���2 dA. �51�

These expressions for the propagation speed of the vor-

tex are identical to expressions obtained without back-

ground flow. Hence, a background flow does not advect

an ocean vortex in a reduced-gravity model, at least not

to first order. This is another main result of this paper.

The reason for this counterintuitive result is readily

obtained form the derivation given above. With the

integration over the � plane all terms related to the

advection of the vortex by the background current van-

ish because the vortex-related motion is negligible far

from the vortex core. In this description of the vortex

motion momentum, advection cannot play a role. The

background flow can only influence the vortex motion

by a Coriolis force on the mass anomaly by advection

with the background flow, and by a pressure gradient

on the mass anomaly. However, because the back-

ground flow is in geostrophic balance far from the vor-

tex core, these two terms cancel to first order, leaving

us with a vortex motion similar to that without the

background flow.

Another explanation can be obtained from (50). We

take this equation in its steady-motion form for clarity.

We then have, after division by f0V and neglecting the

	2 and the �hy term,

dX

dt
� ��

g�H

f 0
2

� u �
g�

f0

hy, �52�

which can be rewritten as

dX

dt
� ��Rd

2 �
f0

H
hyRd

2 � u. �53�

The reasoning is now as follows. The geostrophic back-

ground flow is accompanied by a background layer

thickness gradient. This gradient acts as a background

potential vorticity gradient for the vortex, and has a

similar effect as � in modifying the propagation speed

of the vortex. (It reminds us of topographic Rossby

waves.) Hence the advection of the mass anomaly by

the geostrophic background current is cancelled by the

vortex speed change due to the change in ambient po-

tential vorticity. This mechanism is depicted in Fig. 4. It

is similar to that of a background flow on long Rossby

waves in a reduced-gravity model, whose speed is also

not changed (see, e.g., Killworth et al. 1997).

4. Vortex propagation starting from rest

In this section, we study the initial propagation of a

vortex when it starts from rest. The governing equa-

tions for the motion of the center of mass of the vortex

in a reduced-gravity model read as follows:

V
d2X

dt2
� V

dY

dt
� f0 � �Y� � ��h� � �

dY

dt
� �y dA and

�54�

V
d2Y

dt2
� �V

dX

dt
� f0 � �Y� � ��hu � �

dX

dt
� �y dA.

�55�

FIG. 4. Vertical north–south section of the trough of the active

layer when a background current (open circles) is present. The

current is eastward, but the sloping interface induces a topo-

graphic � effect and hence a westward-propagation speed of the

vortex. The advection and the topographic � effect cancel each

other to first order.
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Assuming geostrophic flow for the swirl velocities,

�Y K f0, and 	 � H, as first approximation, we obtain

d2X

dt2
� f0

dY

dt
and �56�

d2Y

dt2
� �f0

dX

dt
� f0�Rd

2. �57�

With an initial propagation speed of zero, we find that

the vortex will accelerate equatorward first, to turn

westward later. This result is independent of the sign of

the vortex (i.e., both anticyclones and cyclones move

this way initially). The reason for this behavior is that

the Coriolis force on the poleward side of the vortex is

larger than that on the equatorward part. (Note that the

total westward mass transport is equal to the total east-

ward mass transport by definition of zero center-of-

mass velocity.) This imbalance of the Coriolis force on

the vortex leads to an acceleration in the equatorward

direction. For instance, an anticyclone on the Northern

Hemisphere has eastward flow in the northern half and

westward flow in its southern half. The Coriolis force

on the northern part is directed southward, while that

on the southern half is directed northward. Since the

former is larger, a southward net force, and hence an

acceleration results.

We also discuss a cyclone in the Northern Hemi-

sphere because the general idea is that it tends to move

poleward. This has to do with the fact that a northward

motion tends to reduce the potential vorticity anomaly

with respect to the surroundings. A similar reasoning as

for the anticyclone gives rise to a net northward-di-

rected net Coriolis force on the vortex. However, since

the mass anomaly in the cyclone is negative, the accel-

eration is also southward.

The formal solution of (56) and (57) is found as

dX

dt
� ��Rd

2 �1 � cos f0t� and

dY

dt
� ��Rd

2 sin f0t, �58�

that is, a sinusoidal inertial oscillation on top of a west-

ward translation. When we calculate the trajectory of

the ring, assuming X(0) � 0 and Y(0) � 0 we find

X � ��Rd
2 t �

�Rd
2

f0

sin f0t and

Y �
�Rd

2

f0

�cos f0 t � 1�, �59�

from which we see that the amplitude of the oscilla-

tional motion is �R2
d/f0 � 200 m. This is negligible for

ocean rings: hard to detect in situ and difficult to model.

These results seems to be in contradiction with the

findings of Adem (1956), Reznik and Dewar (1994),

Benilov (2000), and Reznik and Grimshaw (2001),

among others. We will discuss this discrepancy in light

of the work of Adem (1956), and then generalize the

results to the other papers. Using a initially circular

symmetric cyclone in a barotropic quasigeostrophic

model, Adem found that the barotropic cyclone first

moves westward, and develops a poleward component

afterward. The difference with our description lies in

the initial condition, and the barotropic assumption.

Adem (1956) uses a Taylor series expansion in time to

obtain the following expression for the streamfunction

evolution:

��r, �, t� � ��r� � � cos��F1t �
1

3!
F3t3 � · · ·�

� � sin�� 1

2!
F2t2 �

1

4!
F4t4 � · · ·�, �60�

in which Fi are functions of r, dependent on the shape

of the initial circular streamfunction �(r). The center of

mass is found as

X �
1

V
� x� dA �

�x� dA

�� dA

� �

� cos2� d� ��F1t �
1

3!
F3t3 � · · ·�r2 dr

�� dA

�
1

2
�

��F1t �
1

3!
F3t3 � · · ·�r2 dr

�� dA

�61�

and, similar,

Y �
1

V
� y� dA � · · · �

1

2
�

�� 1

2!
F2t2 �

1

4!
F4t4 � · · ·�r2 dr

�� dA

. �62�
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When we calculate the velocity of the center of mass we

find

dX

dt
�

1

2
�

��F1 �
1

2!
F3t2 � · · ·�r2 dr

�� dA

and

dY

dt
�

1

2
�

��F2t �
1

3!
F4t3 � · · ·�r2 dr

�� dA

. �63�

We thus see that the center of mass of the initial vortex

is moving westward at initial time in the solution of

Adem (1956) because (note the misprint in Adem’s pa-

per):

F1 � �
1

r
�

0

r

��r�r dr 	 0, �64�

and the denominator is smaller than zero, so his initial

condition is different from ours. The above result is

independent of the exact shape of the vortex, as long as

it is circular symmetric. The deeper reason is that

Adem (1956) assumes a circular pressure field at initial

time. On a � plane this gives rise to a noncircular ve-

locity field, with larger velocities in the northern half of

the cyclone. Since the velocities in the northern half of

the cyclone are directed westward, a westward motion

of the cyclone results. So, in this case the total westward

mass transport is not equal to the total eastward mass

transport at initial time. Also Reznik and Dewar

(1994), Benilov (2000), and Reznik and Grimshaw

(2001) start with a radially symmetric initial pressure

field, and the explanation given above holds also for

these and similar papers.

The exact correspondence with the force balance on

a barotropic vortex is difficult to obtain. The reason is

the extremely large external Rossby radius for oceano-

graphic applications, about 2 
 106 m, leading to an

enormous southward acceleration in (56). Furthermore,

a steady-state solution would have an enormous west-

ward-propagation speed of ��R2
d, which is about 80 m

s�1. Clearly, this is highly unrealistic. In fact, a steady-

state solution in a barotropic quasigeostrophic context

is only consistent with a zero mass anomaly of the vor-

tex, as found by Stern (1975). Numerical model results

indicate that a barotropic vortex in a barotropic flow

experiences strong filamentation and Rossby wave

emission as found by L. De Steur (2005, personal com-

munication). It seems that the mass anomaly is smeared

out over a large area, but the exact evolution of the

system is unclear because of interaction with the

boundaries of the domain in the numerical simulations.

5. Conclusions and discussion

This paper discusses the motion of monopolar vorti-

ces in a reduced-gravity model. Expressions for the cen-

ter-of-mass propagation for vortices on a � plane have

been derived. A consistent physical explanation is given

for the steady westward motion of vortices, both anti-

cyclonic and cyclonic. This motion is needed to gener-

ate a Coriolis force on the center of mass of the vortex

that compensates for the imbalance of the integrated

Coriolis force over the swirling motion of the vortex,

which is due to the � effect. Essential for cyclones is

that their mass anomaly is negative, so that force and

acceleration have opposite signs. The relation to other

explanations presented in literature is discussed. It is

argued that lens models tend to underestimate the

propagation speed of vortices by about a factor of 2

because these ignore the swirling motion of the water

mass that is not connected with the mass anomaly of the

vortex. Dipolar fields can accelerate vortices in general,

but it is shown that they must have a very specific struc-

ture for a steadily propagating vortex, and their net

effect on the propagation speed is small. It has been put

forward that steady westward-moving cyclones do not

exist because of Rossby wave coupling (see, e.g., Ny-

cander 1994; Benilov 1996). Numerical experiments de-

scribed briefly in the appendix support this claim. How-

ever, the interface decay during one rotation around

the vortex core is typically a few meters (i.e., a few

percent) showing that the first-order momentum bal-

ance is as described here.

The potential advection of vortices by a geostrophic

background flow is also discussed. It is shown that the

propagation speed of a vortex does not change with the

inclusion of such a flow in a reduced-gravity model. The

reason for this counterintuitive effect is that the advec-

tion by the flow is counteracted by the change in the

background potential vorticity field in which the vortex

moves because of the sloping background interface.

Last, we showed that vortices in a reduced-gravity

model move equatorward first when starting from rest,

after which a westward motion develops. This result

also holds for cyclones. The discrepancy with the results

of Adem (1956) and others are discussed and shown to

be related to the different initial conditions: in Adem

(1956), as well as in the other papers the center of mass

of the cyclone already moves westward at the initial

time.

All results have been based on the assumption that

the center-of-mass velocity is a good representation of
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the actual motion of the vortex (e.g., the motion of the

interface maximum). It is shown in the appendix that

the center of potential vorticity moves with the same

speed, a result that has been derived by Larichev (1984)

in the quasigeostrophic model. Furthermore, numerical

experiments show that the deviation between the cen-

ter of mass and the interface maximum is typically

smaller than the vortex diameter after 500 days of in-

tegration, both for anticyclones and for cyclones. These

results let us to the conclusion that the center-of-mass

description is a useful one for vortex propagation.

We are interested in what happens when the restric-

tion to reduced gravity is relaxed. If a vortex is not

compensated a new driving mechanism appears that

can have a substantial effect on the motion of the vor-

tex. The mechanism is due to the fact that the pressure

terms do not integrate out, so that a pressure gradient

force is entering the force balance. If the sea surface

elevation is given by 
, these terms are g�	
y� and

g�	
x�. Because the terms are not proportional to � they

can be very effective in changing the magnitude and

even the direction of the vortex relative to the compen-

sated case (see, e.g., Cushman-Roisin et al. 1990; Chas-

signet and Cushman-Roisin 1991). This argument

clearly illustrates that the deeper layers can be of vital

importance in our understanding of vortex motion.

The above pressure terms might give rise to an erro-

neous interpretation of their physical effect in the fol-

lowing way. They can be rewritten as �	(g
y � g�	y)�,

which is equal to �	p2y
/�0�, in which p2 is the pressure at

the interface that drives motions in the second layer. If


 and 	 are displaced in the meridional direction, p2 will

have a dipole structure. This dipole structure will lead

to a dipolar velocity field in the second layer through

geostrophy. It is sometimes argued (see, e.g., Herbette

et al. 2003) that this velocity field will push the interface

bowl into the direction of that field. The flaw in this line

of reasoning is that since friction at the interface is

neglected, the velocity field in the second layer is of no

direct influence to that in the upper layer. It is similar to

the d’Alambert paradox, which shows that an object in

a flowing fluid experiences no net force when friction is

neglected.

One can argue that the �-plane equations are not

suitable to study vortex motion because it is unclear if

westward motion means along parallels or along a great

circle (see Van der Toorn 1997). Graef (1998) studied

the influence of several extensions of the � plane to

include curvature terms in a lens model. He found no

change in the equations for the steady propagation

speed of the center of mass of the lens. Nycander (1994)

and McDonald (1998) discuss the motion of a solid

spinning disk on a rotating planet, and find similar

equations for the propagation speed. In our next paper

the motion of a vortex on the sphere will be investi-

gated in a coordinate system attached to the rotating

earth in which the active layer does not vanish at infin-

ity.
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APPENDIX

The Center-of-Mass Velocity as Vortex

Propagation Speed

One can argue that the center of mass is not a good

measure of the propagation speed of the vortex because

of, for example, Rossby wave radiation, vortex fila-

ments, and the creation of smaller satellite vortices. In-

deed, as direct oceanographic observations and numeri-

cal experiments show, these processes appear, and

might disturb the picture of a propagating monopole.

The problem is that all integrated measures like the

center of mass cannot distinguish between vortex mo-

tion and all other features. On the other hand, evolu-

tion equations for local measures like the maximum

interface elevation or the maximum of the relative ve-

locity show strong dependence on the detailed vortex

structure, which is difficult to obtain from reality. The

strength of the integrated measures is that they inte-

grate out all these details and try to concentrate on the

picture at large.

In this appendix two arguments are put forward as to

why the center-of-mass velocity is a reasonable mea-

sure for the propagation of the main vortex. In the first

an expression for an approximation of the area-

integrated potential vorticity evolution is derived. It is

shown that this expression is equal to the one from the

center of mass. In the second argument numerical ex-

periments are presented that show that the center-of-

mass velocity and the maximum of the interface eleva-

tion velocity are the same to first order.
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Let us concentrate on the evolution of the area-

integrated anomalous potential vorticity, given by


 �
� � f

h
�

f

H
, �A1�

which is just the potential vorticity minus the back-

ground planetary contribution. This other measure of

the vortex position will give more insight into the ro-

bustness of the center-of-mass description.

We define the zonal position of the vortex as

X� �

�x
h dA

�
h dA

�A2�

and a similar equation for the meridional position. The

vertical integration, which leads to the factor h, ensures

that we use the potential vorticity anomaly of the whole

column. To find the rate of change of this position we

first concentrate on the denominator. We have

d

dt
� 
h dA � �d


dt
h dA � ����

h

H
dA, �A3�

where we know that d(hdA)/dt � 0 in a Lagrangian

interpretation of the integral. This expression shows

that the denominator in (A2) does not depend on time

to the first order, which is geostrophic. The denomina-

tor itself can be evaluated as

�
h dA � ��� � f �
h

H
f� dA � �

1

H
� � f dA.

�A4�

For the numerator we find

d

dt
� x
h dA � �u
h � x

d


dt
h dA

� ��u�x dA �
1

H
� u� f dA

� �x��
h

H
dA. �A5�

An order of magnitude of these expressions can be ob-

tained by assuming geostrophy. The first term on the

right-hand side of the equation above integrates to zero

after two integrations by parts. For the other terms we

find

d

dt
� x
h dA � �

g��

2f0H
��2 dA �

�g�

f0
�� dA

�
�g�

2f0H
� �2 dA �

�g�

f0
�� dA. �A6�

Combining the numerator with the denominator in

(A2) we find

dX�

dt
� � �Rd

2, �A7�

in which we neglected the �y term with respect to f0.

This expression is identical to the first-order expression

for a vortex obtained from the center-of-mass velocity.

It is clear that the details in the two measures for vortex

propagation speed will differ at a higher order, but the

fact that the two expressions are identical to leading

order gives credit to the center-of-mass expressions.

Larichev (1984) shows the same result by using the

barotropic quasigeostrophic potential vorticity, which is

now generalized to the full shallow-water potential vor-

ticity. This is backed up further by numerical experi-

ments.

Several numerical experiments have been performed

with a reduced-gravity ocean model with grid spacing of

10 km, a domain size of 200 
 200 grid points, and an

undisturbed layer depth of 500 m. The central latitude

ranged from 20° to 50°N, ring diameters ranged from 2

to 4 times the Rossby radius of deformation, and inter-

face elevation maxima ranged from 0.1 to 0.9 times the

undisturbed water depth. The experiments were carried

out both for anticyclones as well as for cyclones, with

Gaussian radial interface profiles, and profiles with a

solid-body rotation at the core:

h � A�r0
2 �

4

3
r2� for r � rm

� A�r0
2 �

4

3
r2� exp��

2

3 �
r3

r0
3

�
rm

3

r0
3 �� for r 	 rm

.

�A8�

In some experiments dipolar moments of the follow-

ing form have been added:

� � A�1 � 0.3
�y � y0�

r0
� exp��

r2

2r0
2�. �A9�

It turns out that the profiles tested have little influence

on the propagation speed and direction of the vortex,

and on its decay. All anticyclones had a zonal velocity

a bit faster than �R2
d, and all cyclones moved a bit

slower. Typically, the difference in position of the el-

evation maximum (or minimum) and the center of mass

was always smaller than one ring diameter after 500

days, showing that the center-of-mass approximation of

the propagation speed for an oceanic vortex is very

good.

All vortices showed an elevation maximum decay

due to Rossby wave radiation. This lead to equator-
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ward motion of anticyclones, and to poleward motion

of cyclones. As mentioned above, these meridional mo-

tions are relatively mild in comparison with the size of

the vortices. Anticyclones tended to a state of zero de-

cay after 500 days, approaching pure zonal motion,

while cyclones kept decaying slowly at a rate of about

10 m (100 days)�1 and moving poleward at a rate of

about 15 km (100 days)�1. These findings are in line

with Nycander (1994) and Benilov (1996), who argue

that cyclones cannot move steadily because their zonal

propagation speed is smaller than that of Rossby waves,

leading to strong coupling and thus decay by wave ra-

diation. However, the numerical results show that the

cyclones do move with constant speed, and that the

decay is mild. Assuming a swirl velocity of 20 cm s�1

and a radius of 90 km for a cyclone, a water parcel will

need about 1 month to make one loop, in which the

elevation minimum reduces by a few meters. This con-

servative estimate shows that the decay can be ne-

glected to first order, and a nearly steady motion of a

cyclone in a reduced-gravity model is a reasonable as-

sumption.
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