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ABSTRACT

The existence of inertial steady currents that separate from a coast and meander afterward is investigated.

By integrating the zonal momentum equation over a suitable area, it is shown that retroflecting currents

cannot be steady in a reduced gravity or in a barotropic model of the ocean. Even friction cannot negate

this conclusion. Previous literature on this subject, notably the discrepancy between several articles by Nof

and Pichevin on the unsteadiness of retroflecting currents and steady solutions presented in other papers,

is critically discussed. For more general separating current systems, a local analysis of the zonal momentum

balance shows that given a coastal current with a specific zonal momentum structure, an inertial, steady,

separating current is unlikely, and the only analytical solution provided in the literature is shown to be

inconsistent. In a basin-wide view of these separating current systems, a scaling analysis reveals that steady

separation is impossible when the interior flow is nondissipative (e.g., linear Sverdrup-like). These findings

point to the possibility that a large part of the variability in the world’s oceans is due to the separation

process rather than to instability of a free jet.

1. Introduction

In the World Ocean several places exist where large-

scale ocean currents retroflect (i.e., make an anticy-

clonic turn of more than 908) after separation. Ex-

amples are the Agulhas Current, the North Brazil Cur-

rent, the Brazil Current, and the East Australian

Current. A common observed feature of all these sys-

tems is that they are unsteady and shed rings. In a series

of papers (e.g., Nof and Pichevin 1996, hereafter NP)

state that under a rather restricting set of conditions,

this is a necessity arising from a momentum imbalance

for a steady frictionless retroflecting current (NP;

Pichevin and Nof 1996, 1997; Nof and Pichevin 1999;

Pichevin et al. 1999; see also Nof et al. 2004 for an

interesting review). By integrating the zonal momen-

tum equation over an area that contains a steady ret-

roflecting current and making some assumptions on

the in- and outflow, they derive a momentum imbal-

ance. The imbalance itself is a remarkable result be-

cause the details of the retroflecting current do not

matter.

Direct numerical simulations of retroflecting currents

show that they are unsteady (e.g., T. Pichevin 2001,

personal communication). However, such studies can-

not be used to prove that steady retroflections cannot

exist because forward integrations can never probe the

state space in enough detail: the regions of attraction of

possible steady states might be rather small. In fact, the

steady state might be unstable, as Dijkstra and de

Ruijter (2001) showed by using a continuation tech-

nique that follows steady states in parameter space. By

forward numerical integration, such unstable steady

states are impossible to find. On the other hand, Moore

and Niiler (1974) and, in a more idealized setting, Ou

and de Ruijter (1986) present steady solutions for ret-

roflecting currents. So, although the idea of NP is ap-

pealing, it seems to be contradicted by other studies.

In the present paper (section 2), it is shown that a

momentum imbalance theorem can be formulated for

retroflecting flows. We show that the derivation as pro-

posed by NP is valid only for currents that satisfy very

specific outflow conditions, as detailed in the appendix.

The difference with NP is that we treat all possible

configurations that retroflecting currents can have and

that we extend the theorem to currents with friction.

Following this, we extend the present analysis to non-

retroflecting separating and meandering currents, like

the Gulf Stream, in section 3. It is shown that by inte-
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grating the steady zonal momentum equation over a

zonal line crossing the separating current system, a re-

lation between the inertial coastal current and mean-

dering current exists that does not depend on the de-

tails of the separation. On the other hand, several stud-

ies show that the meandering current momentum flux

does depend on the details of separation, leading to an

‘‘information paradox.’’ To investigate this further, the

analytical solution provided by Moore and Niiler (1974)

is studied and is shown to suffer from a momentum

imbalance. From a basin-wide point of view, a steady

state is only possible when the vorticity input by the

wind in the basin interior on a streamline is dissipated

on the same streamline. So each streamline has to move

through a dissipative region (see e.g., Pedlosky 1996,

and references therein). By simple scale arguments, it is

shown that these dissipative regions have to be of basin

size for realistic dissipation coefficients.

We thus conclude in section 4 that inertial, steady,

separating currents connected to a nondissipative (e.g.,

linear Sverdrup) interior flow are impossible.

2. Retroflecting currents

Consider a steady current with a poleward momen-

tum flux that flows along a north–south-oriented wall

that curves westward. The current follows the coast un-

til it separates and retroflects into the ocean interior. By

retroflection we mean that the just-separated current

makes an anticyclonic loop of more than 908. To be

more precise, we restrict retroflecting currents to cur-

rents where the cross-current-integrated momentum

transport makes an anticyclonic loop of more than 908.

Assume a reduced gravity, or 1.5-layer, configura-

tion, with density difference Dr and layer depth h. The

results can be generalized by assuming that the upper

layer has a finite depth h0 outside the current, or to a

barotropic description of the fluid. We assume the flow

to be steady and show that this leads to a contradiction,

by integrating the steady zonal momentum equation

over a well-chosen area.

a. The frictionless current

Multiplying the steady zonal momentum equation by

h and integrating over a region inside some contour f

gives

ð ð

huux 1 hyuy � fhy1 g9hhx
� �

dx dy5 0; ð1Þ

in which g9 is the reduced gravitational acceleration

given by g9 5 gDr=r: (For a reduced-gravity model in

which the layer depth outside the current is h0, the

equation remains the same when h 5 h0 1 h. For a

barotropic model g9 is replaced by g, and h denotes the

sea surface elevation.) The steady continuity equation

reads

ðhuÞx 1 ðhyÞy 5 0; ð2Þ

so a streamfunction c can be defined by

cx 5 hy cy 5 �hu: ð3Þ

Using continuity in Eq. (1) gives

ð ð
�

ðhu2Þx 1 ðhyuÞy � fcx 1
1

2
g9ðh2Þx

1 g9h0hx

�

dx dy5 0: ð4Þ

When the active layer outcrops in the reduced gravity

model, h0 5 0. Stokes’s theorem can be used to find

ð

f

huy dx�

ð

f

hu2 � fc1
1

2
g9h2

1 g9h0h

� �

dy5 0:

ð5Þ

Note that by this choice of signs in front of the integrals,

we study the zonal momentum flux into the region of

integration. This equation was also derived by NP for

the case h0 5 0, that is, when the upper-layer outcrops.

The new Eq. (5) also applies when the upper-layer

thickness is h0 outside the current and for the barotro-

pic case with g9 replaced by g. NP derive a contradiction

from this equation, leading to their momentum imbal-

ance paradox. To derive that contradiction, NP assume

a special condition on the fluid flow out of the integra-

tion area. This condition provides a strong limitation on

the generality of their results, as is discussed in the

appendix.

One might expect that the occurrence of such a con-

tradiction depends on the direction of the momentum

flux out of the area, because that direction determines

the sign of the zonal momentum flux out of the area in

the momentum budget. In Fig. 1 three directions for the

momentum flux out of the area are indicated, which

cover all possible configurations. The outward momen-

tum flux can be eastward, southeastward, southward, or

southwestward, but the analysis is the same for south-

ward and southeastward momentum flux. In Figs. 2–4

three possible realizations of the momentum flux direc-

tions corresponding to the three situations in Fig. 1 are

given, together with three contours f that define the

areas over which the momentum equation is integrated.

(Note that we do not have to assume that mass and

momentum transport are in the same direction.) In the

following, these three cases are treated separately. For
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clarity, we treat the frictionless case first in the next

section and discuss the role of friction later. Also, we

put h0 5 0, but, as the reader can easily verify, the

analysis below holds also when h0 6¼ 0 and for the baro-

tropic case.

1) SOUTHWARD AND SOUTHEASTWARD OUTFLOW

We first deal with currents that make a strong turn

southeastward and meander relatively mildly further

on, as depicted in Fig. 2. Or rather, the cross-cur-

rent-integrated momentum flow has this configuration

as explained earlier. The integration contour f runs

straight east through the current, bends northward, and

closes back on itself near the separation point.

For this configuration we find from (5), choosing h 5

0 and c 5 0 north of the current,

ð

f

huy dx5 0: ð6Þ

For both the zonally integrated inward momentum flux

in the northwestward direction and the zonally inte-

grated outward momentum flux in the southeastward

direction, the term on the left-hand side is negative and

a contradiction arises. The meaning of the contradic-

tion is that the chosen steady flow configuration cannot

occur in reality. This does not come as a surprise, be-

cause the integral over the northward flow denotes the

meridional advection of westward zonal momentum

into the domain. The integral over the return flow de-

notes the meridional advection of eastward zonal mo-

mentum out of the domain. This situation can only per-

sist when a source of eastward momentum is present in

the domain, but that is not the case. This example il-

lustrates the essence of the idea of NP that is also used

here: integrate the zonal momentum equation for a

steady reflecting current and derive a contradiction.

Before we enter into the consequences of this contra-

diction, we study the other two cases.

2) EASTWARD OUTFLOW

We now discuss the case in which the current (or

rather, the cross-current-integrated momentum trans-

FIG. 1. The three possible configurations for the current after

retroflection: eastward momentum transport, southeastward mo-

mentum transport, and southwestward momentum transport.

FIG. 2. Integration area for the zonal momentum balance for a

southeastward momentum transport of the current after retro-

flection. The thick line denotes the integration area and the thin

lines denote possible inner and outer streamlines of the flow.

FIG. 3. Integration area for the zonal momentum balance for an

eastward momentum transport of the current after retroflection.

The thick line denotes the integration area and the thin lines

denote possible inner and outer streamlines of the flow.
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port) does not meander after retroflection. The integra-

tion contour runs northeastward through the current

and closes back on itself via a northward loop. The

situation depicted in Fig. 3 can easily be evaluated by

rotating the coordinate system over an angle u such that

the first situation arises again, with 0 , u ,p /2. Define

an s coordinate northeastward, with velocity compo-

nent p, and a t coordinate perpendicular to s in the

northwest direction, with velocity component q. We

use�fcs 5 � ðfcÞs 1cf s 5 � ðfcÞs 1cb sinu; in which

b is the meridional derivative of the Coriolis parameter,

as usual. Integrating the resulting momentum equation

in the s direction leads to

ð

f

hpqds�

ð

f

hp2 � fc1
1

2
g9h2

� �

dt

�

ð ð

cb sinuds dt5 0: ð7Þ

The second term is zero because that part of the con-

tour runs outside the flow. Also, here we see that the

first term is negative as is a new third term, leading

again to a contradiction. The meaning of this contra-

diction is that this flow configuration cannot exist in

steady state.

This result can easily be understood by realizing that

the advective terms act the same as in the previous case.

The b term is related to the tilted coordinate system.

The mass transport in the positive t direction leads to a

Coriolis force directed to positive s (in the Northern

Hemisphere). The mass transport in the negative t di-

rection induces a Coriolis force in the negative s direc-

tion. Now, from continuity, these two mass transports

are equal, but due to the meridional variation of the

Coriolis parameter (b effect), the latter force is larger.

The resulting force thus implies a momentum flux in

the negative s direction. Clearly, also this term needs to

be compensated by a source of momentum in the posi-

tive s direction (‘‘eastward’’), but such a source is ab-

sent. So, the contradiction is also present in this case.

This result does not contradict the steady numerical

solution obtained by Arruda et al. (2004), because these

authors treat the case in which the momentum trans-

port makes a turn of only 908, such that the zonal mo-

mentum balance connects to the coast.

3) SOUTHWESTWARD OUTFLOW

Now we treat the case shown in Fig. 4. For this case

the imbalance is related to the connection of the flow to

the coast. We choose the contour to run southward

along the coast from the separation point, cross the

current twice running eastward, and close the loop via

a northward curve outside the current.

Let us first consider the case in which the momentum

of the inflow is purely meridional. The integrated zonal

momentum balance now reads

ð

fI

huy dx1

ð

fII

huy dx1

ð

fcoast

huy dx

�

ð

fcoast

hu2 � fc1
1

2
g9h2

� �

dy; ð8Þ

in which fI and fII are contours across the inflowing

and outflowing parts of the flow (see Fig. 4). The first

term in (8) is zero by our condition of purely meridional

inflow. The second term is zero, too: we can always shift

the contour in the meridional direction such that this

term is zero, because north of this line the momentum

flux is southwestward by definition, while south of it

the momentum flux has to turn southeastward. Because

the coast is a streamline, the two advective terms and

the streamfunction term vanish there, and only the

pressure term remains. So, the momentum balance re-

duces to

�

ð

fcoast

1

2
g9h2 dy5 0: ð9Þ

This condition cannot be met by any flow. The physical

explanation is that no zonal momentum enters the do-

main with the current, but the coast puts eastward mo-

mentum into the domain, without compensation. This

FIG. 4. Integration area for the zonal momentum balance for a

southwestward momentum transport of the current after retro-

flection. The thick line denotes the integration area and the thin

lines denote possible inner and outer streamlines of the flow.
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result again means that at least one of our assumptions

regarding the flow characteristics has to be relaxed.

Now we relax the condition of pure meridional mo-

mentum inflow and rotate our coordinate system anti-

clockwise over angle u to align it with the southeastern

boundary of the fluid domain. The coordinates are cho-

sen similar to the previous case of eastward momentum

outflow. The integrated momentum balance in the s

direction now becomes

ð

fI

hpq ds1

ð

fII

hpqds1

ð

fcoast

hpqds

�

ð

fcoast

�

hp2 � fc1
1

2
g9h2

�

dt

�

ð ð

cb sinuds dt5 0; ð10Þ

in which fI and fII are contours as before (see Fig. 4,

but now rotated over an angle u). We now choose the

coordinate system such that

ð

fI

hpq ds1

ð

fII

hpqds’ 0: ð11Þ

This can always be done because the first integral is

relatively small as the flow will tend to follow the coast,

while the sign and magnitude of the second integral can

be changed by a slight meridional displacement of the

integration contour. Again, the advection terms along

the coast cancel, and the streamfunction term is zero

there, too. So, we are left with

�

ð

fcoast

1

2
g9h2 dt �

ð ð

cb sinu ds dt5 0: ð12Þ

The first term is positive because the integration is per-

formed in the negative t direction, and the second term

is negative. To study a possible momentum imbalance

we determine the order of magnitude of the different

terms. For the pressure term, we approximate the av-

erage layer depth on the integration path along the

coast asH/3. [This corresponds with the value of Moore

and Niiler (1974), some 200 km from the separation

point.] For the b term, geostrophic velocities are used

as first-order estimates. The order of magnitude of the

two terms then becomes

g9H2Lt

18

g9H2bLtM sinu

8f 0
; ð13Þ

in which Lt is the stretch of coast from inflow to sepa-

ration, and M is the width of the first meander. The

meander takes up about half of the rectangle Lt 3 M,

and the maximum streamfunction is about 1=2g9H2=f 0;

adding an extra factor 1/4 in the last term. The order of

magnitude of the b term to the pressure term is

2Mb sinu

f 0
: ð14Þ

Due to geometric constraints u cannot be much larger

than 208 to prevent self crossing of the meandering flow

(see Ou and de Ruijter 1986). Let us use sinu # 0.3.

Using as typical midlatitude values M 5 400 km, b 5 2

10211 m21 s21, and f0 5 1024 s21, we find that this ratio

is about 0.05, so that again an imbalance exists.

Hence, this flow configuration cannot be steady. A

possible way out might be to impose a recirculation cell

within the first meander. This would have two direct

effects: the maximum value of c would increase, but the

average value of c over the integration area would

grow much less because the area over which c is maxi-

mal decreases. A second effect is that the width of the

meander M increases. However, even a factor of 2 in-

crease in transport in the recirculation cell and a factor

2 increase in the width of the meander cannot negate

our conclusion that the flow configuration cannot be

steady.

A flow closer to the equator needs extra attention

because the ratio between the two integrals becomes

one when f0 ’Mb, so at a distance of about 0.6M’ 250

km from the equator (using the equatorial b plane). At

this distance from the equator, however, the separated

current would reach the equator in a southward mean-

der, which is unrealistic. Thus the imbalance remains.

b. The role of friction in retroflecting separating

currents

The foregoing discussion of all three cases can be

summarized as follows: a steady retroflecting current in

which the cross-current-integrated momentum flux

turns anticyclonically more than 908 in a frictionless

reduced gravity (or barotropic) context cannot exist.

Friction does not resolve the momentum imbalance be-

cause the momentum fluxes now comprise both advec-

tive and diffusive terms, and the reasoning used above

can be used on these total fluxes, too. This can be un-

derstood by realizing that we do not solve the equations

of motion including friction but impose a (quite gen-

eral) geometry on the flow and then derive a contra-

diction. Friction can change the direction of the out-

flow, but all possible outflow directions have been

treated in the three cases above. Friction might prevent

the current from retroflecting, but that falls outside the

scope of this section.
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As an example, we treat the southward and south-

eastward outflow case here. Frictional terms appear at

the southern boundary of the integration domain as

depicted in Fig. 2. The zonal momentum balance now

becomes

ð

f

huy1Ahuy dx5 0: ð15Þ

The paradox lies in the fact that by definition in this

case the total zonal momentum of the influx is north-

westward, giving a negative contribution to the integral,

and the total zonal momentum of the outflow is south-

ward or southeastward, giving again a negative contri-

bution. Total zonal momentum fluxes that do not fulfill

this case belong either to the eastward or to the south-

westward outflow case, and all cases are treated.

Southwestward outflow needs a bit more attention,

related to the fact that the imbalance was derived from

an order of magnitude argument. In this case, the inte-

grated momentum balance reads

ð

fI

hpqds1

ð

fII

hpq ds�

ð

fcoast

1

2
g9h2 dt

�

ð ð

cb sinuds dt �

ð

fI 1fII

Ahqt ds

�

ð

fcoast

Ahqt ds1

ð

fcoast

Ahqs dt 5 0: ð16Þ

The order of magnitude of these three new terms is

AHR2
df 0

Lt

AHR2
df 0

Lt

AHf 0Lt; ð17Þ

of which the latter term is the largest. Its ratio to the

coastal pressure term is 18A=ðR2
df 0Þ: For a typical value

of A 5 100 m2 s21, and a Rossby deformation radius

Rd 5 30 km, we find 0.01 for this ratio. We conclude

that diffusion cannot balance the pressure term, and the

momentum imbalance remains.

3. Nonretroflecting separating currents

In the following discussion of the steadiness of non-

retroflecting inertial separating currents, two view-

points are discussed. In the first, the zonal momentum

equation is integrated over a zonal line connecting

coastal current and separated current, and a relation is

found between the zonal momentum fluxes in these two

currents (see Fig. 5):

hu2ð0Þ1
1

2
g9h2ð0Þ �

ð

fI

ðhuyÞy dx�

ð

fII

ðhuyÞy dx5 0:

ð18Þ

The first three terms are related to the coastal current,

and the other term is related to the separated mean-

dering current and possible recirculations inside the

first poleward meander that cross the line of integra-

tion. This equation sets a relation between the zonal

momentum flux in the meander and the zonal momen-

tum flux in the coastal current, which does not depend

on details of the separation process. But the momen-

tum structure of the meandering jet does depend on, for

example, the angle of separation, which in turn depends

on the coastal current structure and the curvature of the

coastline, as shown by Ou and de Ruijter (1986). So

given a steady coastal current, no a priori reason exists

why the momentum flux in the separated meandering

current is such that (18) is fulfilled. Obviously, this is

related to the hyperbolic nature of the momentum

equations.

This argument is based on a local view of the sepa-

ration process, and in a basin-wide view one can argue

that the flow is forced to fulfill the steady zonal mo-

mentum balance, and we cannot choose the momentum

structure of the coastal current at will. We present a

discussion of the local viewpoint first, and then add a

short discussion on this basin-wide viewpoint.

a. The local viewpoint

To illustrate the local viewpoint, we consider the situ-

ation in which the meandering jet is approximated by a

thin jet. In the thin-jet approximation, variations along

the jet axis are assumed small in comparison with varia-

tions normal to the jet axis. It has been used extensively

to study the stability and evolution of meandering cur-

FIG. 5. Line of integration for a separating and meandering

current. The thick line denotes the line of integration and the thin

lines denote possible inner and outer streamlines of the flow.
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rents because it decouples the along-track and the

cross-track problems (e.g., Warren 1963; Robinson and

Niiler 1967; Robinson et al. 1975; Flierl and Robinson

1984; Pratt 1988; Cushman-Roisin et al. 1993).

To find an analytical expression for the last term in

(18), we introduce the stream-following coordinates s

and r, in which s increases along the streamline and r is

perpendicular to it pointing to the right, with r 5 0 at

the free streamline. These are related to our x, y frame

as dx 5 sinu dr 1 cosu ds and dy 5 2 cosu dr 1 sinu ds

in which p is the streamwise velocity in the s direction.

In the thin-jet approximation, both u and du/ds are

functions of y only (see below). In that case, all gonio-

metric terms can be taken out of the integrals, and we

can use that along the x axis dy 5 0, so that sin uds 5

cos udr, and hence

dx5 sin udr1
cos2 u

sin u
dr 5

dr

sin u
; ð21Þ

leading to

ð

fII

ðhuyÞy dx5 cos 2u
du

ds

ð

fII

hp2 dr � cos2 u hp2
� 	r50

interior

5 cos 2u
du

ds

ð

fII

hp2 dr; ð22Þ

in which we used h(r 5 0) 5 0 and pinterior 5 0. The

curvature of the flow is defined as the inverse of the

radius of curvature, so

k5 �
du

ds
5 �

du

dy
sin u5

d cos u

dy
; ð23Þ

in which the second equality follows from dr5 0. In the

thin-jet approximation, k is found as

k5 � aðy� ycÞ; ð24Þ

in which a is a constant dependent on details of the flow

field and yc is the central latitude of the jet. This ex-

pression is related to the fact that eastward advection

by the jet is balanced by westward motion due to rela-

tive vorticity advection and the b effect (see, e.g., Rob-

inson and Niiler 1967; Moore and Niiler 1974; Ou and

de Ruijter 1986). This latter equation allows us to

evaluate the y dependence of cos u, as

cos u5

ðy

yc

k dy1 cos uc 5 �
a

2
ðy� ycÞ

2
1 cos uc; ð25Þ

in which uc is the angle of the jet axis at the central

latitude. As shown by Ou and de Ruijter (1986), uc is

the angle of the flow at the separation point. When uc 5

908 the jet is pointing meridionally at its midaxis, and

when uc 5 08 the jet points along the x axis and no

meanders are present. The zonally integrated momen-

tum balance (18) becomes the following for a thin jet:

hu2ð0Þ1
1

2
g9h2ð0Þ �

ð

fI

ðhuyÞy dx

1 k cos 2u

ð

fII

hp2 dr5 0; ð26Þ

with expressions for k and cos u given in (24) and (25).

Moore and Niiler (1974) obtain an analytical solution

for the complete circulation in an ocean basin, includ-

ing the separation process. They assume that the sepa-

rating current can be approximated by a thin jet, as

used above. For their northward coastal current, we

find

1

2
g9h2ð0Þ5

g9f 0b

2P2
0

ðyc � yÞ; ð27Þ

ð

fII

ðhuyÞy dx5

ð

fII

sin uðhuyÞs � cos uðhuyÞr dx;

5

ð

fII

ðhp2 sin u cos uÞs sin u� ðhp2 sin u cos uÞr cos udx;

5

ð

fII

hp2 cos 2u
du

ds
sin u� ðhp2Þr sin u cos

2 u dx; ð20Þ

in which u is the angle between the direction of the jet

axis and the zonal direction (see, e.g., Robinson and

Niiler 1967, p. 272). The y derivative becomes

›

›y

� �

x

5
›s

›y

� �

x

›

›s
1

›r

›y

� �

x

›

›r
5 sinu

›

›s
� cos

›

›r
;

ð19Þ

such that
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in which P0 is the potential vorticity of the flow, as-

sumed uniform. Because the zonal velocity is zero in

the coastal current to first order, the first three terms in

(26) reduce to the expression above. Very close to the

separation point h Y 0, the zonal velocity becomes im-

portant, so that the third term takes over. But we stay

away from that point.

In the thin jet, they find

p5

ffiffiffiffiffiffiffiffiffi

g9f c
P0

s

exp �
f cP0

g9
r

� �

h5
f c
P0

1� exp �
f cP0

g9
r

� �� �

: ð28Þ

In the Moore and Niiler (1974) solution, the factor a in

the curvature k is given by

a5 3b

ffiffiffiffiffiffiffiffiffi

P0

g9f 0

s

: ð29Þ

We then find from (26)

ð

fII

ðhuyÞy dx5 �
kg9f c

6P2
0

cos 2u

ffiffiffiffiffiffiffiffiffi

g9f c
P0

s

: ð30Þ

Using the relation between k and y and cosu and y from

(24) and (25), we find for their solution

ð

fII

ðhuyÞy dx5
g9f cb

2P2
0

ðyc � yÞ 1�
9b2P0

2g9f c
ðyc � yÞ4

� �

:

ð31Þ

(Note that uc 5 908 in their case.) When y ’ yc the

momentum balance over the line of integration is ful-

filled because both (27) and (31) vanish. However,

away from yc, so along a latitude line farther south, the

two equations do not add up to zero, also not approxi-

mately because the last term in the square brackets in

(31) is not small but of order one as it arises from the

cos2u term. We thus find that the solution of Moore and

Niiler (1974) does not fulfill the zonally integrated

zonal momentum balance. The reason for this is that

the very complicated flow at separation (see Moore and

Niiler 1974) is not matched to the thin-jet solution. The

solutions for the separating current and their thin-jet

solution are presented independently by Moore and

Niiler, and no connection is made between these two

solutions. Arruda et al. (2004) show a steady numerical

solution of a jet separating at 908. However, the flow is

highly viscous with a horizontal viscosity of 1500 m2 s21.

Such a high viscosity can only come about as effective

viscosity due to eddies, but these are not present in a

steady state. Consistent with what we find here, when

the authors lower the viscosity to more realistic values,

the solution becomes unsteady.

This suggests that a steady flow in this configuration

is perhaps impossible. To illustrate this further, we keep

the inertial coastal current at the line of integration the

same as Moore and Niiler (1974), but we change the

stretch of coast between the line of integration and the

separation point such that uc 6¼ 908. This leads to either

a retroflecting current or a meandering flow similar to

the Gulf Stream. Over the line of integration, the con-

tribution from the coastal current does not change, but

the first meander contribution becomes

ð

fII

ðhuyÞy dx5
g9f cb

2P2
0

ðyc � yÞ

"

1� 2

 

cos uc

�
3b

2

ffiffiffiffiffiffiffiffiffi

P0

g9f c

s

ðyc � yÞ2
!2#

; ð32Þ

which again does lead to a momentum imbalance in

(26). This illustrates even more emphatically that the

zonal momentum flux term of the separated current

depends on the coastline position and curvature just

before the separation point (see also Ou and de Ruijter

1986). The point is that given a coastal current, a steady

separation is unlikely because the first meander has a

momentum structure related to details of the separa-

tion process, while at the same time that momentum

structure is prescribed by the coastal current before the

actual separation through the zonally integrated zonal

momentum balance. This situation could be termed the

information paradox.

b. The basin-wide view

One can take the stance that the arguments pre-

sented above are open for discussion because when a

steady flow is imposed on a separating current, the mo-

mentum structure in the coastal current and meanders

have to adjust such that the zonal momentum balance is

fulfilled. Numerical simulations of (statistical) steady

circulations suggest that a steady separation can be

achieved by either a strong recirculation cell in the

northwest corner of the domain or by an overshoot of

the current, forming a long loop current in which both

inertia and dissipation are of order one (see, e.g., Cessi

et al. 1990; Pedlosky 1996, and references therein). The

analysis of both situations has been done mostly using

Stewart’s constraint, which says that vorticity input on a

latitude circle by the wind over the interior of the basin

has to be balanced by vorticity dissipation at the same

latitude (Stewart 1964). This constraint rests on the as-

sumption that the relative vorticity in the western

boundary current can be approximated by the zonal
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derivative of the meridional flow (i.e., z ’ yx). How-

ever, in an inertial recirculation cell, this is question-

able, and we will not use this constraint below.

In the following scaling analysis we show that a

steady solution to the separation problem is not pos-

sible when a linear Sverdrup-like interior flow exists

over the majority of the basin and inertia dominates in

the western boundary current. [Numerical steady solu-

tions show that the interior circulation becomes non-

linear, too, in the inertial case (Sheremet et al. 1997; V.

Palastanga et al. 2007, personal communication), but

that seems to contradict current observations.]

The vorticity input by the wind on each streamline

that runs through the interior has to be dissipated in the

separation area, where the excess relative vorticity of

the flow has to be dissipated to allow a transition to the

Sverdrup interior:

ð

separation

ADz ds’�

ð

Interior

t
ðxÞ
y

r0H
ds; ð33Þ

in which the integral runs over a streamline. Locally, in

the separation region, dissipation is balanced by advec-

tion of total vorticity:

ADz’ yzy 1by: ð34Þ

The scaling argument given below is based on these two

relations. The order of magnitude of the length of the

separation area including the recirculation cell and/or

an overshooting loop is given by ls, and the width of the

area in which the vorticity is dissipated in the separa-

tion area by ld. We assume that the majority of the

transport runs through this dissipative region in the

separation area, so that in the order of magnitude of the

streamfunction there is the interior Sverdrup value cI.

The first relation (33) then leads to

lsA
cI

l4d
’bcI or ls ’

bl4d
A

: ð35Þ

To evaluate the second condition, we first notice that

the planetary advection term is at most as large as the

relative vorticity advection, because their ratio is

by

yzy
’

bl2dls

cI

: ð36Þ

To evaluate this further we can introduce the inertial

length scale based on the Sverdrup transport: dI 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cI=bL
p

; in which L is the length scale of the meridi-

onal size of the basin. The ratio becomes

by

yzy
’

bl2dls

bd2IL
’

ld

dI

� �2
ls

L
: ð37Þ

When the western boundary current is mainly inertial,

the frictional length scale ld will be at most as large as

the inertial length scale. Furthermore, ls � L for a re-

circulation cell, and ls # L for the overshooting loop.

Hence, the planetary vorticity advection will be at most

of the order of magnitude of the relative vorticity ad-

vection, and the local vorticity balance in the dissipative

region of the separation area relates vorticity dissipa-

tion to relative vorticity advection, leading to

A
cI

l4d
’

c2
I

l3dls
or ls ’

cI

A
ld: ð38Þ

Combining this with the estimate found from the dissi-

pation of the vorticity input of the wind, we find, again

using the inertial length scale defined above,

ls ’
dI

dd

� �3
L

dI

� �1=3

L; ð39Þ

in which we introduced a dissipative length scale (from

a balance between by and local dissipation) dd 5 (A/

b)1/3. When dd , dI the length scale of the separation

area is much larger than the meridional size of the ba-

sin, which is inconsistent with our assumption that the

interior flow is Sverdrupian. This would be the case if

we consider A to be the result of small-scale turbulent

processes leading to a Munk-like dissipative layer, in

which dd is the Munk scale. If, on the other hand, A

contains contributions from the mesoscale eddies in the

separation area, it can be much larger locally in the

separation area. In that case, dd can be much larger than

dI, and the length scale of the separation area ls can be

much smaller than that of the basin L. Hence, a Sver-

drup interior flow with a strong steady inertial jet at the

western boundary cannot balance the vorticity input by

the wind, and eddies have to be present to induce extra

dissipation.

We have to conclude, then, that even from a basin-

wide viewpoint, steady separation is unlikely because it

seems to be impossible to close the global vorticity bal-

ance in steady state, while keeping both a realistic in-

ertial western boundary current and a realistic interior

circulation.

4. Conclusions and discussion

In this paper we have confirmed that a steady sepa-

rating and retroflecting current in a reduced gravity or

a barotropic model suffers from a momentum imbal-

ance paradox. It can be proven directly that such a

current cannot fulfill the zonal momentum equation in-

tegrated over a suitably chosen area. We have shown

that even friction cannot prevent this momentum im-
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balance. The apparent contradiction between previous

work on separating currents, and the more recent work

by NP is solved.

We also showed that nonretroflecting separating cur-

rents are likely to suffer from a similar momentum im-

balance because the zonal momentum flux in the

coastal flow is directly related to that in the meandering

jet, while the former is not dependent on the details of

the separation process, but the latter is to a great ex-

tend. This information paradox can give rise to a mo-

mentum imbalance in that given a coastal current, the

separation process is unlikely to be steady. This point

was illustrated by studying the case in which the free

meandering jet is approximated by a so-called thin jet.

Moore and Niiler (1974) use this approximation in their

analytical solution for a subtropic gyre. We found that

a momentum imbalance is present in their solution, re-

lated to the matching of the just-separated flow with the

free meandering thin jet.

This local viewpoint of the separation process is

complemented with a basin-wide view, in which a scal-

ing argument is used to show that the size of the area of

vorticity dissipation has to be larger than the whole

basin, which is inconsistent with observations that do

show a Sverdrup-like interior flow.

These points lead to the important conjecture that a

considerable part of the variability in the World Ocean

might be due to the impossibility of a steady separation,

not to an instability of a free jet.

A point in favor of the analysis presented here on

retroflecting currents is the work by Dijkstra and de

Ruijter (2001) and W. M. Schouten (2003, personal

communication), who use continuation techniques to

follow steady states of the Agulhas through parameter

space. By decreasing the friction parameter by continu-

ation, they find that the current at some point over-

shoots the African continent and flows all the way to

South America, retroflects there, and connects back to

the wind-driven gyre in the Indian Ocean: the flow

never fully retroflects in the open ocean, in accordance

with our conclusions.

NP point to the possibility of ring shedding to solve

the momentum imbalance, but one could also imagine

that the retroflection itself starts moving westward, to

absorb the excess westward momentum. This is the

only solution in a linear model. The Agulhas Current,

for instance, does show these westward intrusions into

the South Atlantic Ocean (see, e.g., Lutjeharms and

Van Ballegooyen 1988; Schouten et al. 2002).

In a multilayer ocean, the excess momentum in the

retroflecting layer(s) may be transported to deeper lay-

ers. A countercurrent in deeper layers might solve the

imbalance via the pressure-gradient term. Boudra and

de Ruijter (1986) reported in their simulations a mo-

mentum transfer from the upper to lower layer, but

their flow field is time varying. From a local point of

view, there seems to be no direct reason for the coun-

tercurrent to balance the momentum exactly. The ba-

sin-wide argument is based on vorticity dissipation ar-

guments, which do not depend directly on lower layers,

again pointing to the impossibility of steady, separating,

inertial currents in ocean basins with a Sverdrup inte-

rior.
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APPENDIX

The Momentum Imbalance Theorem of Nof and

Pichevin

The analysis presented here is the same for the two

basic cases treated by NP, in which the retroflected

current does or does not flow along a zonal coast. NP

take one of the contours on the integration area along

a meridian and assume that the outflowing current is

purely zonal there, so y 5 0 at that meridional section

(see Fig. A1). Looking at their equations, they also

assume yx 5 0, because their y-momentum equation at

the section reads

�fu5 �g9hy; ðA1Þ

so purely geostrophic. This assumption of NP leads to

(in our notation)

�

ð

f

huy dx1

ð

f

hu2 1

ðL

y

bc dy9

 !

dy5 0; ðA2Þ

in which L is the northern edge of the return flow. All

terms are positive, so a contradiction arises, generating

their momentum imbalance paradox.

The assumption in the NP imbalance of the geo-

strophic balance (A1) for the outflowing current has

serious consequences. If that flow were only approxi-

mately geostrophic, their imbalance would not arise.

When it is exactly geostrophic, either the flow has to

fulfill u2 5 g9h at outflow or all zonal derivatives of h,

u, and y vanish. This is shown as follows: continuity

reads

ðhuÞx 1 ðhyÞy 5 0; ðA3Þ
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which can be written as

uhx 5 �hux � ðhyÞy: ðA4Þ

Note that when y (y)5 0 for all y, then so is yy 5 0, and,

in fact, all meridional derivatives of y vanish. From the

momentum equation in the zonal direction, we find,

using continuity,

ðu2 � g9hÞux 5 �yuuy 1 fuy1 gðhyÞy: ðA5Þ

The meridional momentum equation gives, after differ-

entiation to x,

uyxx 5 � uxyx �ðyyyÞx � fux � g9hxy: ðA6Þ

Given these three functional relations, it is easy to in-

vestigate the consequences of the assumptions put by

NP on the outgoing flow. The y(y) 5 0 (and so all

meridional derivatives of y) and yx 5 0 (from the as-

sumption of geostrophy) lead with (A5) to either u2 5

g9h or yx 5 0: Pursuing the last condition, we find from

(A4) that hx 5 0, while (A6) gives yxx 5 0. Taking now

the x derivatives of (A4), (A5), and (A6) shows that

uxx 5 0, hxx 5 0, and yxxx 5 0. This process can be

repeated ad infinitum, and the consequences given

above are proven.

When all zonal derivatives of u, y, and h are zero, a

Taylor series expansion of each of these variables from

any point in the domain with respect to the outflow

position where y 5 0 and yx 5 0 shows that all variables

are independent of the x coordinate, which is inconsis-

tent with a retroflecting current and any downstream

meander of the current.

Hence, the outflow condition as used by NP leads to

u2 5 g9h at outflow. Combining this condition with geo-

strophy leads to a relative vorticity of z 5 ½f every-

where along the meridional and to unrealistically high

velocities for reasonable current widths L. For ex-

ample, L 5 100 km gives u 5 5 m s21 at midlatitudes.

Such a current might be possible when the retroflected

current flows parallel to a wall. Nof (1978) found solu-

tions of this shape but assumes small Froude numbers,

so u2 1 y2 � g9h: Garvine (1987) treated the super-

critical case by integrating the solution along the char-

acteristics. He found the formation of fronts and a cur-

rent that has a variable thickness along the wall, violat-

ing the assumptions in the derivation by NP.

We conclude that the seemingly weak condition of

geostrophy at outflow results in a rather extreme con-

dition on the outflow structure, so the proof by NP is

not complete.
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