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ABSTRACT

A smoother introduced earlier by van Leeuwen and Evensen is applied to a problem in which real observations
are used in an area with strongly nonlinear dynamics. The derivation is new, but it resembles an earlier derivation
by van Leeuwen and Evensen. Again a Bayesian view is taken in which the prior probability density of the
model and the probability density of the observations are combined to form a posterior density. The mean and
the covariance of this density give the variance-minimizing model evolution and its errors. The assumption is
made that the prior probability density is a Gaussian, leading to a linear update equation. Critical evaluation
shows when the assumption is justified. This also sheds light on why Kalman filters, in which the same ap-
proximation is made, work for nonlinear models. By reference to the derivation, the impact of model and
observational biases on the equations is discussed, and it is shown that Bayes’s formulation can still be used.
A practical advantage of the ensemble smoother is that no adjoint equations have to be integrated and that error
estimates are easily obtained. The present application shows that for process studies a smoother will give superior
results compared to a filter, not only owing to the smooth transitions at observation points, but also because the
origin of features can be followed back in time. Also its preference over a strong-constraint method is highlighted.
Furthermore, it is argued that the proposed smoother is more efficient than gradient descent methods or than
the representer method when error estimates are taken into account.

1. Introduction

When one wants to study the dynamics in an area
where numerical models have serious shortcomings, a
possible step forward is to use data assimilation. Since
the emphasis has mostly been on forecasting model
fields, much more effort has been devoted to filters than
to smoothers. Indeed, it is a simple exercise to show
that an optimal filter will give identical results to a
smoother at the end of the assimilation interval for linear
model dynamics. Recently, Evensen and van Leeuwen
(2000) showed that this is even true for nonlinear mod-
els, by using a probabilistic description of the data as-
similation problem.

Deriving filters for nonlinear problems is not trivial.
Extensions of the Kalman filter, which is optimal for
linear problems, to nonlinear dynamics has led to a wide
variety of suboptimal methods. For weakly nonlinear
problems the extended Kalman filter can be used, but
this filter often fails for strongly nonlinear systems (see,
e.g., Evensen 1992; Miller et al. 1994a,b; 1999). An-
other problem is the fact that the central forecast or
control (defined here as a pure forward model integra-
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tion of the initial optimal state) is taken as the optimal
solution.

To understand the importance of the central forecast
problem a more general viewpoint on data assimilation
is useful. The formulation of the nonlinear inverse prob-
lem is done most naturally in terms of probability den-
sities (see, e.g., Jazwinski 1970; van Leeuwen and Ev-
ensen 1996). Intuitively it is clear that the probability
density of the model and the probability density of the
observations contain all information needed to calculate
the inverse estimate. Using Bayesian statistics one can
consider the probability density of the model forecast
as prior information, which is ‘‘updated’’ by the obser-
vations. This results in a new probability density of the
model, given the observations.

For the problem with the central forecast one has to
realize that we always lack knowledge on certain model
parameters and/or forcing fields. Clearly, different pa-
rameter settings or forcing fields give rise to a different
model evolution. Because the model is nonlinear the
most probable (or optimal) choices for parameters and
forcing will not lead to the most probable model evo-
lution. To get a grip on what a nonlinear model does
we have to have some information of the probability
density of the model evolution. Of course, one cannot
calculate the probability density function of the model
for realistic oceanographic or atmospheric problems.
But that is not what one can handle either, so the use
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of suboptimal methods seems to be justified. A variety
of methods is presently in use, all having their own
strong and weak points [see, e.g., Todling and Cohn
(1994) and van Leeuwen and Evensen (1996) for a dis-
cussion].

A method that uses the probability density idea is the
ensemble Kalman filter (Evensen 1994b; see also Bur-
gers et al. 1998). In that method, an ensemble of model
states is generated from a randomly perturbed initial
state. This might not be too efficient, but Evensen
(1994b) and Evensen and van Leeuwen (1996) have
shown that that ensemble sizes of 100–500 are enough
to describe the model evolution accurately for their two-
layer quasigeostrophic models. The method has no prob-
lems with nonlinear dynamics and the mean of the en-
semble is used as the best model evolution instead of
the central forecast. Other methods, like the SEEK filter
(Pham et al. 1998; Brasseur et al. 1999) and the
RRSQRT filter (Verlaan and Heemink, 1995; see also
Lermusiaux and Robinson 1999) use more sophisticated
methods to derive an ensemble. Indeed, they report en-
sembles of much smaller size, but the price that has to
be paid is that the optimal solution is given by the central
forecast. It can be expected that this is in error for
strongly nonlinear systems, as these authors mention.
Another problem is that by concentrating only on the
singular vectors of the covariance matrix, certain po-
tentially important parts of state space are not probed.
This means that the error covariance is always approx-
imated from below, which potentially leads to filter di-
vergence (Todling and Cohn 1995). At least partially
random probing seems to be necessary to solve this
problem (A. W. Heemink 1999, personal communica-
tion). Of interest is the paper by Houtekamer and Mitch-
ell (1998), in which a double ensemble is used to avoid
inbreeding during the analysis step. This inbreeding is
due to the fact that the same ensemble is used for the
covariances as for the Kalman gain in an ensemble Kal-
man filter. In a comment on this paper van Leeuwen
(1999b) showed that inbreeding can also be due to the
nonlinearity of the gain itself but, more importantly, that
this inbreeding effect is only apparent for relative small
ensemble sizes (typically ;100) (see also the reply by
Houtekamer and Mitchell 1999). It must be mentioned
that Lermusiaux and Robinson (1999) and Brasseur et
al. (1999) also discuss variants of their method in which
a random component is included.

A serious drawback of filters in general is that they
lack propagation of information back in time. It not only
causes discontinuities at measurement times, but it can
also hamper process studies, especially in data-void ar-
eas. This is the main reason why a smoother is consid-
ered in this paper.

For a linear model it has been shown by Bennett
(1992; see also Jazwinski 1970; Gelb 1974) that the
optimal solution can be written as a linear combination
of a first-guess field and a weighted sum of correction
fields that represent the influence of the observations.

Each observation gives rise to one correction field, or
representer, as function of space and time. He showed
that each representer can be obtained by performing the
corresponding measurement on the model covariance.
So, although the representer contains information on the
characteristics of the corresponding measurement, it is
independent of the specific value of that measurement.
That information is contained in weighting factors,
called the representer coefficients. These are the un-
knowns in the estimation problem. The search for the
optimal solution does not have to be performed in the
model space, but in the space with the dimension of the
number of observations. Bennett (1992) shows that any
correction to the first guess that is orthogonal to the
space spanned by the representers is unobservable by
the observation array. Because these corrections in-
crease the total error of the optimal state, they should
be discarded.

Several ways of solving the weak-constraint linear
problem have been provoked, among which are fast im-
plementations of the representer method mentioned
above (Bennett 1992; Egbert et al. 1994), the gradient
descent method, and the Kalman smoother. Not all meth-
ods are able to give proper error estimates. The repre-
senter method does not provide error estimates on the
model fields themselves, although it does provide them
for the initial condition, the model dynamics, and the
observations. To obtain errors for the model fields one
has to turn to ensemble calculations (see, e.g., Bennett
1992). For a linear problem, errors can be obtained in
the gradient descent method from the inverse of the
Hessian, but the Hessian is a huge matrix in general.
The Kalman smoother propagates the error covariance
matrix forward and backward in time.

For nonlinear problems the situation is not that clear.
In general, the optimal solution cannot be written as a
first guess and a sum of correction fields that are directly
related to the observations. In the representer method
this problem is addressed iteratively by solving a set of
linear inverse problems. Again no error estimate for the
optimal state is available. Gradient descent methods can
easily be extended to nonlinear problems. Used most
frequently are so-called strong-constraint methods,
which are, misleadingly, also called adjoint methods
(both the representer method and the Kalman smoother
use adjoint equations). The Hessian is not a good mea-
sure of the errors of the optimal solution because it
describes the local curvature of the cost function at the
optimal solution, which is not equal to the inverse of
the error covariance. So these methods are also lacking
an error estimate. One can define an iterative Kalman
smoother for nonlinear problems, but that is prohibi-
tively expensive for the size of the problems at hand in
meteorology and oceanography.

Recently, van Leeuwen and Evensen (1996) intro-
duced the ensemble smoother, based on a probabilistic
description. A practical advantage of the method is that
no adjoint equations have to be formulated, because all
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knowledge on how information is propagating forward
and backward in time is present in the ensemble.

The main points of this paper are as follows. It is
shown that the ensemble smoother is able to handle
these strongly nonlinear processes, that information is
transported effectively backward in time without the
need for adjoint equations, and that neither filters nor
strong-constraint methods are able to describe the ring
shedding process this accurately. Another point is that
in deriving the ensemble smoother equations, it is shown
that data assimilation does not require either model or
observations to be unbiased. In the present paper the
ensemble smoother is applied to a strongly nonlinear
region in the world ocean, the Agulhas retroflection re-
gion. This region couples the Indian to the Atlantic
Ocean. The exchange between the two oceans is mainly
brought about by large Agulhas rings, which are shed
from the retroflecting Agulhas Current. De Ruijter et al.
(1999a) give a review of our physical knowledge of the
system.

The next section gives a short introduction to the
ensemble smoother, discusses the assumptions made in
connection with the Kalman filter, and discusses the bias
problem. Section 3 describes the data assimilation ex-
periment, and section 4 deals with the results. Finally,
conclusions and a discussion of the results are given in
section 5.

2. The ensemble smoother

In this section the ensemble smoother is derived using
Bayes’s theorem. For details the reader is deferred to
van Leeuwen and Evensen (1996), which the present
derivation greatly resembles. It is shown here explicitly
to illustrate that no reference has to be made to an un-
known truth, so a bias will not prevent us from using
the results.

a. Bayesian statistics

At the heart of nonlinear data assimilation lies the
notion of combining probability densities of model and
observations. By expressing the problem in terms of
probability density functions a Bayesian estimation
problem can be formulated. In Bayesian statistics the
unknown model evolution c is viewed as the value of
a random variable c. The density f (c) of c is obtained
from the model somehow and is called the prior prob-
ability density. Using the definition of a conditional
probability density we can derive the new, or posterior,
probability density of c given the observations d:

f (d | c) f (c)
f (c | d) 5 . (1)

f (d)

The first factor in the numerator, the density f (d | c), is
the probability of the observations given that the model
random variable c 5 c. The second factor is the a priori
model density f (c). The denominator is the probability

density of the observations. Unfortunately, we have no
way to determine it because we only have one reali-
zation d 5 d. A way to circumvent this problem is to
realize that f (d) can be considered as the marginal den-
sity of the joint probability density of model and ob-
servations:

f (d) 5 f (d, c) dc 5 f (d | c) f (c) dc. (2)E E
The term on the right-hand side is well understood, as
mentioned above. To use this concept in practice, the
probability density of the observations f (d | c) has to
be determined. Usually it is assumed to be known, for
instance, a Gaussian. Because the model variable c is
given, the mean of the Gaussian density will be the
measurement of the optimal model state, while its var-
iance is the measurement error.

The prior probability density f (c) of the model evo-
lution is more difficult to obtain. In principle the Kol-
mogorov equation describes its evolution. However, be-
cause the probability density for the model state has a
huge amount of variables, it is computationally not fea-
sible for real oceanographic or meteorological appli-
cations to determine its evolution. The evolution of the
density could be determined from ensemble integra-
tions. In simulated annealing and related methods this
probability density is generated approximately. How-
ever, these methods need a huge amount of storage and
iterations due to the random nature of the probing. On
the other hand, knowledge of the complete density is
too much information. One is interested only in its first
few moments, for example, a best estimator of the truth
and its error variance. In that case ensemble or Monte
Carlo experiments can be extremely useful. The most-
used estimator is the minimum-variance estimator, in
which only integrated properties of the density are need-
ed. The ensemble smoother is an example of an ap-
proximate variance-minimizing estimator.

Before we continue it is important to realize what
these probability densities exactly mean. The idea is that
the true system (the world) evolves according to a set
of stochastic differential equations. (One could argue
that the true system evolves deterministically, at least
at the scales we are looking at. In that case the stochastic
terms describe the unknown physics in a stochastic way.
The idea is that the statistics of the stochastic process
are known.) Because we do not know the random forc-
ing that describes the evolution of the true system, we
describe our knowledge in terms of a probability density
function. Also, we are unaware of the exact initial con-
dition of the true system, leading again to a probability
density function describing our knowledge. If we could
know the stochastic differential equation exactly we
could determine the evolution of the probability density
function in time by means of the Kolmogorov equation.
An approximate way of solving this equation is by
means of ensemble integrations. If the probability den-
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sity of the observations is known too, we can increase
our knowledge of the true system evolution by using
Bayes’s formula, leading of a narrowing of the proba-
bility density of the model evolution (at least in general).
Because both the probability density of the model evo-
lution and that of the data is unbiased, the conditional
probability density of the model given the observations
will be unbiased too (e.g., Jazwinski 1970).

The fact is, however, that we do not know the exact
stochastic differential equations, so the probability den-
sity that we derive from the Kolmogorov equation is
biased. (No doubt our probabilistic description of the
initial condition is biased too.) This means that not only
the mean, or the mode, or other statistical estimates of
the true evolution of the system, are biased, but also the
covariances and the higher-order moments. If the prob-
ability density of the observations is not biased, we
could estimate the biases in all moments as wanted. Dee
and da Silva (1998) concentrate on the bias in an optimal
estimate of the true evolution and neglect the other bi-
ases.

If one wants to reduce the bias in the whole proba-
bility density (the ultimate goal), the Bayes formula
gives us the key to do that. What it tells us is how we
should combine two sources of information on the sys-
tem. Clearly, the best estimate of the information that
comes from the model is given by our best estimate of
the probability density of the model evolution. It might
(or in fact will) be biased, but it is the best estimate we
have. The same is true for the observations. Our prob-
abilistic description of the errors in them is very often
biased too, especially in oceanography. Bayes just tells
us that the optimal way to handle the (all) information
we have is by combining the probability densities ac-
cording to his formula. If the observations are much
less biased than the model, we end up with exactly what
we want: a less biased estimate of the probability den-
sity. When we have that we can calculate less biased
estimates of whatever moment we want. This is the
reason why I argue that the Kalman filter equations are
still giving us a optimal estimate of the true system even
when the model and/or the observations are biased. Note
that if the observations are much less biased than the
model, the covariances will be less biased too. This is
only true indirectly (i.e., via a better mean) in the meth-
od proposed by Dee and da Silva (1998).

b. Minimum-variance estimator

With the above discussion in mind, we derive the
smoother equations. The variance-minimizing estimator
is the variable such that the varianceĉ

2 2e(ĉ) 5 E[(c 2 ĉ) ] 5 (c 2 ĉ) f (c | d) dc (3)E
is minimal. Note that the integration variable is c, so
it is a complete model evolution in space and time. The

minimum can be obtained from the calculus of varia-
tions and the notion that is independent of c asĉ

ĉ 5 c f (c | d) dc, (4)E
which can be rewritten, using (1) and (2), as

c f (d | c) f (c) dcE
ĉ 5 . (5)

f (d | c) f (c) dcE
This equation shows that to find the first moment of

the posterior density, all moments of the prior density
are needed. As explained above, these cannot be deter-
mined for the problem size we have in mind. An ap-
proximation used in the Kalman filter is to assume that
the prior density is Gaussian distributed in state space
at the time of the observation. (This assumption does
not have to be made in the case of a linear model, but
it is the probabilistic interpretation for a nonlinear mod-
el.) In that case, only two moments describe the com-
plete density. In the ensemble smoother we do the same,
with this difference: we make this assumption for the
prior probability density function at all times. In the
following an expression for the ensemble smoother es-
timator is given, together with an expression for the
error that is made this way.

For nonlinear dynamics the probability density can
be separated in a Gaussian part (G), with the mean and
covariance of the whole density, and a non-Gaussian
part (N), describing the deviation from a Gaussian den-
sity. Thus, the prior model density becomes

f (c) 5 f G(c) f N(c), (6)

in which the Gaussian part is given by

1
f (c) 5 A exp 2 (c 2 c ) • W • (c 2 c ) . (7)G G F cc F[ ]2

In this equation AG is a normalization factor, cF is the
mean of the distribution, and Wcc is the inverse of the
model covariance Qcc, found to fulfill

Qcc(x1, t1, x3, t3) • Wcc(x3, t3, x2, t2)

5 d(x1 2 x2)d(t1 2 t2). (8)

The • denotes integration over space and time. Also the
boundary and initial errors are included in (7). For fur-
ther reference it is noted that this density might be bi-
ased. The above equation just expresses all knowledge
we have of the system.

Assume the probability density of the observations
to be Gaussian too with error covariance matrix w21.
The posterior density then becomes
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1
f (c | d) 5 Af (c) exp 2 (c 2 c ) • W • (c 2 c )N F cc F5 2

1
T2 [d 2 L(c)] w[d 2 L(c)] .62

(9)

in which L( · ) is the measurement operator, assumed to
be linear, and A a normalization factor. Now take the
variational derivative of this equation and multiply with
Qcc to find

d f (c)
T2Q • 5 {c 2 c 2 L (Q )w[d 2 L(c)]} f (c | d)cc F cc

dc

d f (c)N
2 AQ • f (c) f (d | c).cc G

dc
(10)

Integrate this equation over the c domain, integrate over
space and time, and use (4) to find

Tĉ 5 c 1 L (Q )w[d 2 L(ĉ)]F cc

d f (c)N
1 Q • A f (c) f (d | c) dc. (11)cc E G

dc

To proceed, this equation is measured and subtracted
from the measurements d to find

21 21 21d 2 L(ĉ) 5 w (R 1 w ) [d 2 L(c )]F

21 21 212 w (R 1 w ) L(Q )cc

d f (c)N
• A f (c) f (d | c) dc, (12)E G

dc

in which the representer matrix R is the measurement
operator covariance,

R 5 E[L(c 2 cF)LT(c 2 cF)] 5 L[LT(Qcc)].

(13)

Here E( · ) is the expectation operator. Using this result
in (11) we find

T T 21 21ĉ 5 c 1 r b 1 [Q 2 r (R 1 w ) r]F cc

d f (c)N
• A f (d | c) f (c) dc, (14)E G

dc

in which b are the well-known representer coefficients,
which can be determined from

(R 1 w21)b 5 d 2 L[cF], (15)

and we introduced the representers r, which are the
model field measurement operator covariances, as

r 5 E[(c 2 cF)L(c 2 cF)] 5 L(Qcc) (16)

The representers are crucial in the data-assimilation
problem. A representer describes how the information
of the corresponding measurement influences the so-
lution at all space–time points. Bennett (1992) gives an

excellent treatment of the meaning of representers. The
representer coefficients determine how strong each rep-
resenter should be counted in the final solution. They
depend on the model–observation misfit and on their
error covariances. Clearly, an important ingredient in
the success of the inversion procedure is the condition-
ing of the sum of the representer matrix and the error
covariance of the observations, as given in (15).

The error covariance of the optimal estimate is given
by

5 Qcc 2 rT(R 1 w21)21r 1 b,Qĉĉ (17)

in which b a complicated term related to the non-Gauss-
ian part of the prior density, as shown in the appendix.

If the model were linear and the first-guess field was
distributed Gaussian initially, the first-guess evolution
would stay Gaussian distributed. In that case the term
with f N(c) would vanish and the well-known repre-
senter expression appears in (14).

To find the nonlinear smoother one has to specify f N,
which is nontrivial. Furthermore, even for simple forms
of f N complicated expressions for arise. In the en-ĉ
semble smoother the nonlinear contribution is neglected
altogether. This is legitimate in a few cases. First, if the
non-Gaussian density contains only even moments cen-
tered on the contribution of this term vanishes. Aĉ,
second possibility is found by close inspection of (14).
It shows that the effect of the nonlinear term is pro-
portional to Qcc 2 rT(R 1 w21)21r. For the ensemble
smoother this is the error covariance of the optimal state
after assimilation, . So the smaller this error, theQĉĉ

better the ensemble smoother performs. Note that this
will be one of the reasons that data assimilation methods
that use the Kalman filter update equation work at all
in (strongly) nonlinear situations: as long as the filter
does not diverge the optimal estimate will be relatively
close to the minimum-variance estimate. Finally, one
can simply look at higher moments of the prior density;
if the third moment stays small compared to the second
we are relatively safe. (Note the word ‘‘relatively’’; it
is extremely difficult to quantify these matters for a real-
sized problem.) Details for efficient construction of the
smoother solution using ensemble statistics can be found
in van Leeuwen and Evensen (1996).

It is stressed again that the above derivation does not
refer to an unknown ‘‘true’’ evolution. So, contrary to
what large groups of meteorologists and oceanographers
think, the equations for the optimal model evolution
require neither the model nor the observations to be
unbiased. Clearly, an unbiased model and unbiased ob-
servations will lead to a better estimate of the true evo-
lution of the system, but that is not a prerequisite for
data assimilation. This is fortunate, because it is ex-
tremely difficult to find model biases. Sometimes it is
even impossible, because the observations are likely to
be biased too. An example are observations of the
Southern Ocean, which are strongly biased to austral
summer situations. More generally, a lack of observa-
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FIG. 1. Bottom topography. Contour interval is 1000 m, with the
continental shelf at 100-m depth shaded. Crosses denote 18 inter-
polated values of TOPEX/Poseidon.

tions will prevent us from determining model biases,
but, as stated above, data assimilation is still well de-
fined.

3. Data assimilation experiment

TOPEX/Poseidon data are assimilated in a nonlinear
quasigeostrophic ocean model with the ensemble
smoother. Observations and model are presented and
much effort is put in the determination of proper error
statistics.

a. Observations

The standard corrections were applied to the TOPEX/
Poseidon data (solid Earth and ocean tides, the dry and
wet troposphere, the inverse barometer effect, and the
sea state bias as 2% of the significant wave height). The
excellent satellite orbits needed no orbit error correc-
tions. Because the geoid is not known very precisely
we only used the time-varying part of the altimeter sig-
nal. The time mean part is obtained from the Gordon
(1982) Southern Ocean Atlas dataset. The altimeter data
where Gauss–Markov interpolated to a one-by-one de-
gree grid is given in Fig. 1, every 10 days. The decor-
relation length was 100 km in space and 10 days in
time. These observation fields are assimilated every 10
days in the model.

Tsaoussi and Koblinsky (1994) estimate the error in
the time-varying part of the raw altimeter data to be 3
cm rms. The space and time smoothing will reduce this
error even further. The error in the time mean field is
incorporated in the error of the initial condition. Clearly,
incorporating this error at each measurement time will
lead to highly correlated error estimates of initial con-
ditions and measurements, which is not realistic. Fur-
thermore, the error in the mean field will have larger
spatial scales than those present in the altimeter fields.
We finally estimated the error in each measurement to
be 1 cm, with the above discussion in mind. Error co-
variances between different measurements are neglect-

ed, mainly due to the large distance between the mea-
surement points. The next section gives some statistical
evidence that the errors were probably chosen correctly.

One may argue that the observations have to be as-
similated as purely as possible, that is, including the
alongtrack observations as soon as they are available.
A disadvantage of this procedure is that the observations
contain subgrid-scale information alongtrack, while
they are sparse acrosstrack. By interpolating to a grid
the subsampling problem is avoided. So gridded fields
are chosen, but it is recognized that the choice is sub-
jective. However, the exact choice is not of relevance
to the main part of the paper.

Figure 2 shows an interpolated set of eight consec-
utive fields that are assimilated into the model. These
fields are interpolated with a decorrelation scale of 100
km and a decorrelation time of 10 days. It should be
realized that the interpolation results in rather smooth
fields, which sometimes even cross the continental shelf
(see below). A large anticyclonic Agulhas ring is in the
process of being shed in the first image. At day 30 it
seems to leave the domain around 378S. A second ring,
or the remaining part of the first ring, leaves the domain
on day 60, at 388S. The large cyclonic ring, centered at
368S, 188E seems to be at least partly responsible for
the shedding of the rings. We will come back to this
later. The Agulhas Current, as it flows along the con-
tinent, is rather smooth, as can be expected from the
interpolation. This will also be commented on later. It
should be noted that we assimilate only the observations
at the individual points given in Fig. 1.

b. Model and initial state

The model describes the ocean in a box from 328S,
158E to 428S, 308E and describes the circulation of the
ocean around the southern tip of the African continent.
Figure 1 gives the bottom topography in this area. Char-
acteristic here is the large continental shelf, given by
the shaded area and the steep slope seaward of it. The
relatively shallow Agulhas Plateau centered at 388S,
258E is important for the current system. The Agulhas
Current flows along the east coast of the continent south-
ward with velocities of up to 3 m s21. The main portion
of the current retroflects at about 388S, 208E and flows
back as the Agulhas Return Current into the Indian
Ocean (see Fig. 3). The Agulhas plateau forces the re-
turn current to make a large northward meander. Some-
times a direct connection seems to exist between the
Agulhas Current and the Return Current close to the
plateau. At the retroflection loop large anticyclonic rings
are formed, the Agulhas rings, which travel west into
the South Atlantic, thus carrying large amounts of rel-
atively warm and salty water from one ocean to the
other. Farther south the Antarctic Circumpolar Current
runs from west to east.

To model these features the numerical model has open
boundaries to account for the inflow of the Agulhas



APRIL 2001 715V A N L E E U W E N

FIG. 2. TOPEX/Poseidon altimeter fields interpolated to the model grid. Contour interval 10 cm, zero line not
indicated, dashed lines denote negative values.

Current, the in- and outflow of the Antarctic Circum-
polar Current, the outflow of the Agulhas Return Cur-
rent, and the migration of Agulhas rings westward. The
quasigeostrophic approximation is made and the African
continent is extended to the 100-m depth contour to
prevent too much influence of coastal shelf dynamics,
which is not described well by quasigeostrophic dy-

namics. The most energetic processes have a larger scale
and it is assumed that the influence of the shelf sea can
be neglected. The model consists of two layers in the
vertical of 1- and 4-km depth, and 25-km resolution in
the horizontal. The density difference between the layers
is 2.5 kg m23. The time step is 1 h. Small-scale features
are removed with a Shapiro filter of order 8 once every
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FIG. 3. Initial condition for upper- and lower-layer streamfunction. The water flows approximately along the contours.
East of the continent flows the Agulhas Current, which turns back to the Indian Ocean below the tip of the continent.
A large eddy is about to be pinched off. Contour interval 20 and 10 Sv, respectively. Dashed contours denote positive
values.

day. The along-boundary derivative of the streamfunc-
tion is kept zero on the land boundary (free slip) by
applying the modified capacitance matrix method as de-
scribed by Millif (1990). The influence of the bottom
topography is reduced by a factor of 0.2 to compensate
for the overestimation of bottom topography in a qua-
sigeostrophic model. At the open boundaries baroclinic
waves are propagated out of the domain, perpendicular
to the boundary, as in Ikeda and Apel (1981) and Ikeda
et al. (1989). This means that no small-scale distur-
bances enter the domain. Experiments showed that me-
soscale features leave the domain with a speed com-
parable to that in observations, that is, about 5 cm s21

(see Olson and Evans 1986), without shape distortions.
It should be noted, however, that the precise boundary
condition is not that important, as long as it is not totally
wrong. The data-assimilation scheme allows the bound-
aries to contain errors and the assimilated fields have
boundary values consistent with the observations and
the model dynamics. [The same model configuration is
used in van Leeuwen (1999a), but in that paper an at-
tempt was to reconstruct the time mean field using the
time-varying part of the altimeter signal and the model
dynamics.] In comparison, Holland et al. (1991) used
sponge layers at the horizontal boundaries. A disadvan-
tage of that approach is extra computations in the sponge
layers. As mentioned above, the boundary conditions
used here are satisfactory. They also used a five-layer
model in an extended domain. The main reason to keep
to two layers here is that this is meant as a demonstration
of the capabilities of the smoother method used here,
not for an optimal description of the ocean circulation
around South Africa.

As initial condition we choose the time mean part
from the Gordon (1982) dataset. The time mean cir-
culation derived by van Leeuwen (1999a) could not be
used because the same observations are used in that
paper as are used here. This means that the model and
the observations would become correlated, while the
assumption made in the derivation above, and in fact

in most (if not all) data assimilation methods, is that
they are uncorrelated. To the upper layer we added a
stream function field obtained from the first one-by-one
degree TOPEX/Poseidon altimeter grid, interpolated to
the model grid.

The difference with Evensen and van Leeuwen (1996)
is that an ensemble Kalman filter is used there. Fur-
thermore, the model is slightly different, the observa-
tions are from a different satellite for a different period
of time, and the error statistics of model and observa-
tions are different.

c. Initial, boundary, and dynamical model errors

In the ensemble smoother a number of ensemble
members are integrated forward in time. The members
are found by adding random fields to the initial state.
These random fields are Gaussian distributed with co-
variances given by

2(x 2 y)
cov(x, y) 5 A exp 2 , (18)

2[ ]d

in which A 5 108 m2 s22 for the first layer and A 5
106 m2 s22 for the second layer. Here d 5 Rd is the
Rossby deformation radius, which is about 50 km for
the chosen density difference. The correlation between
upper and lower layer error fields is 0.4. This is the
correlation of the two layers found from a multiyear
integration of the model. The errors do not have to be
distributed in the same way, but it is probably the best
one can do: these vertical correlations of the model error
fields are extremely difficult to determine.

The initial model errors are about 10% of the initial
values. This value has been chosen to incorporate the
errors in the Gordon dataset and the errors in the TO-
PEX/Poseidon data, both due to real observation errors
and due to representation errors. It corresponds to an
error in initial sea level of about 10 cm. Compared to
characteristic sea level variations of the order of 1 m
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this may seem large, but a small shift in the main cur-
rents will give rise to this order of magnitude. For rel-
atively quiet areas this is not a good approximation, but
there the errors in the interpolated observations will be
smaller too. So the weighted mean given by the ensem-
ble smoother will not be too sensitive to this choice.
Another point is that the initial field might contain a
quiet area that will be more variable during the assim-
ilation run: we do not know beforehand which way the
major current and the eddies will move. With this in
mind, position-independent errors are adopted.

The errors in model dynamics are more difficult to
access. We want to describe the combined effect of miss-
ing model physics, like poorly represented stretching
terms and bottom topography, representation errors due
to the two-layer approach, and forcing. In this paper we
focus on the internal dynamics and excluded the wind
forcing.

As a first estimate one can use the fact that the errors
in the momentum equation are of the order of the Rossby
number, which is about 0.05 in this case. However, the
error will be dominated by the assumption that the in-
terface displacement is much smaller than the undis-
turbed layer depth, thus causing errors in the continuity
equation. That missing physics can partly be described
by assuming conservation of potential vorticity II in
each layer, defined as

z 1 f1
P 5 and (19)1 H 1 h 1 h1

z 1 f2
P 5 , (20)2 H 2 b 2 h2

in which z is the relative vorticity, f the planetary vor-
ticity, Hi the layer depth in absence of motion, h the
sea surface height, h the interface height measured pos-
itive downward, and b the bottom topography. The con-
servation of the potential vorticity in each layer can be
split in a quasigeostrophic part and a part that is not
modeled:

dP1H 5 01 dt

d(z 1 f ) f dh f z 1 f dh1 1
5 2 1 2 , (21)1 2dt H dt H H 1 h dt1 1 1

in which h is neglected compared to h and H1, and

dP d(z 1 f ) f d(h 1 eb)2 2H 5 0 5 12 dt dt H dt2

f z 1 f dh2
2 21 2H H 2 h dt2 1

e f z 1 f db2
2 2 , (22)1 2H H 2 b 2 h dt2 2

in which e 5 0.2 to reduce the overestimation of bottom

topography changes in quasigeostrophic context, as
mentioned above. In both equations the first two terms
are modeled in the quasigeostrophic model, while the
rest is not. An order of magnitude for these terms can
be found as follows. A characteristic velocity is 0.5 m
s21 and a characteristic horizontal scale is 100 km, lead-
ing to a relative vorticity of 5 3 1026 s21. This is small
compared to the planetary vorticity, which is 29.3 3
1025 at this latitude. Interface depressions are about 100
m, from quasigeostrophic theory. If we use these values
in the nonmodeled part of the evolution of the upper
layer conservation of potential vorticity, we find an or-
der of magnitude of 10211 s22. This error estimate is
also used for the boundaries.

For the lower layer a characteristic velocity is 0.05
m s21 and a characteristic horizontal scale is 100 km,
leading to a relative vorticity of 5 3 1027 s21. The
bottom topography has an amplitude of 1000 m and a
horizontal scale of 500 km. This leads to a nonmodeled
part of about 10212 s22.

These error estimates have to be combined with errors
due to the bad representation of stratification. It is ex-
tremely difficult to say anything sensible on these errors.
It is assumed that they are at most of the same order of
magnitude as the errors due to the quasigeostrophic as-
sumption. Hence we choose the total errors to be 10211

s22 and 10212 s22 for the upper and lower layers, re-
spectively. To account for the fact that the model errors
will not be white in time, a decorrelation time of 0.5
days is used for these errors. It turns out that the model
is not very sensitive to this choice; white noise gives
differences in the model fields that are not detectable
in the figures given below.

The spatial distribution is again an issue here. For the
active areas the above-defined error estimates are prob-
ably reasonable, but quiet areas west of Africa may need
smaller values. Because this area is probably not of great
importance for the shedding of the Agulhas rings, the
errors are kept position independent.

Finally, it is worthwhile to mention that the errors
were chosen differently in Evensen and van Leeuwen
(1996). As is mentioned in the next section, the errors
used in this paper are consistent with the statistics of
the inversion. That test was not done in Evensen and
van Leeuwen (1996).

4. Results

Initial conditions for the upper and lower layers are
given Fig. 3, showing the streamfunction in each layer.
The Agulhas Current can be detected along the east
coast of South Africa, with velocities of up to 3 m s21.
At the southernmost point of the continent it retroflects
and flows back into the Indian Ocean as the Agulhas
Return Current, which leaves the domain at the eastward
side. In the retroflection area a large Agulhas eddy is
in the process of being pinched off. After pinching off
it will travel westward into the Atlantic Ocean and leave
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FIG. 4. Skewness of the prior probability density with time.

the model domain at the westward side. Note that these
eddies are mainly responsible for the transport of, for
instance, heat, salt, and energy from the Indian to the
South Atlantic Ocean and, as such, may be of impor-
tance for the global climate (Veronis 1973; Gordon
1986; Lutjeharms and Roberts 1988; De Ruijter et al.,
1999b).

a. Assimilation statistics

The size of the ensemble was 500. Increasing this
size to 600 did not change the model results more than
1%, so we conclude that 500 members was enough in
this case. Even an ensemble of 100 members did show
the features described below; however, increasing the
ensemble size still altered details of the resulting fields.
To test the assumption of Gaussianity of the prior dis-
tribution the skewness was calculated every time step,
see Fig. 4. It stayed close to its initial value of 1024.

A time evolution of the upper-layer streamfunction
field is shown in Fig. 5. It shows the mean of an en-
semble of 500 members without data assimilation. These
fields show the best guess the model can give of the
evolution of the circulation, given the model errors.
Note that due to the nonlinearity of the model the central
forecast, defined here as the pure model run from the
optimal initial condition, is not the optimal estimate of
the model evolution. In fact, its statistical meaning is
that it is a first-order estimate of the statistical mean
(see Jazwinski 1970). One might argue that the central
forecast has more dynamical meaning than the mean of
an ensemble. However, since we allowed for errors in
the model dynamics this is not true. We know what the
dynamical evolution of the central forecast is, but we
also know that it is wrong.

The spatial scales in the evolution of the upper layer
are increased somewhat compared to the initial field due
to two effects. First, a quasigeostrophic model has the
tendency to increase the scales due to the ‘‘inverse en-
ergy cascade’’ (see, e.g., Pedlosky 1987). This leads to
an increase in scale for each member of the ensemble

individually. Second, the errors in the model simulation
grow rather large (see Fig. 7), so the ensemble mean
will be smoother than each individual member.

An impression of the errors involved in the solution
can be obtained from Fig. 6, which gives the errors at
day 90 before and after the assimilation run for the upper
layer. (Note that, once the ensemble is created, the errors
are obtained easily in this data-assimilation method.)
The errors have been reduced by a factor of about 10
in some places. Prior to the assimilation, the errors at
day 90 were up to 70% of the streamfunction values in
the area of largest errors. After the assimilation this
number reduces to below 10% of the assimilated stream-
function fields. Another way to visualize the error evo-
lution is given in Fig. 7. The variances at all model area
points from both layers are added and normalized by
the initial total error before assimilation. The variance
of the pure ensemble integration grows rapidly during
the integration. Close to day 80, however, the growth
seems to level off. Further integration of the ensemble
shows that the total variance keeps on growing, but at
a much smaller pace (not shown). This is what one
would expect in a nonlinear model owing to the non-
linear interactions. A linear model would most likely
show a continuation of this fast growth.

The variance of the posterior ensemble shows the
characteristic depressions around the measurement
times. Clearly, the solution is pulled toward the mea-
surements before the actual measurement times. A strik-
ing example of this can be seen at t 5 0. The posterior
variance is a factor of 2 lower than the prior variance
while observations are only available 10 days later. Here
we see the difference with a filter like the Kalman filter,
in which discontinuities arise at measurement times. The
overall error over both layers, depicted in Fig. 7, is
reduced by a factor of 30 at final time.

The difficulty in data assimilation lies in the deter-
mination of the model error covariances. In fact, as Ben-
nett and Thorburn (1992) note, data assimilation is hy-
pothesis testing in which the null hypothesis is given
by the chosen error covariances. It is here that the sci-
ence comes in, in this otherwise purely technical ex-
ercise. The test statistic is the value of the penalty func-
tion. For a linear model Bennett and Thorburn (1992)
shows that the penalty function is a x2 variable with the
number of independent measurements as the number of
degrees of freedom. (This shows that the weights in a
least square procedure are not just weighting factors,
they have a physical meaning: the inverses of the error
covariances.) In our case the penalty function reduces
from about 1 000 000 to 875. The number of measure-
ments was 738, but the number of independent mea-
surements determined from the conditioning of the rep-
resenter matrix was 209. This is not within the error
bounds from the value of the penalty function, which
is given by 875 5 30, pointing to a bad choice ofÏ
the initial error covariances. However, our model is non-
linear, so we cannot reject the null hypothesis on this
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FIG. 5. Prior streamfunction of upper layer, contour interval 5 20 Sv, dashed lines denote positive values.

basis. The fact that the value of the penalty function
was reduced by a factor of 1000 to end up close to the
number of independent measurements gives us confi-
dence in the a priori estimated errors in model and ob-
servations.

The representer matrix can be used to obtain some
idea where to do measurements that will have the great-

est influence on the prior model evolution. To this end
the eigenvectors with largest eigenvalues are deter-
mined. The largest eigenvector elements in these ei-
genvectors give the positions of the measurements that
have most impact, because they point to positions where
the model measurement operator covariances are larg-
est. In Fig. 8 the eigenvector elements are contoured for
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FIG. 6. Prior and posterior error estimates at day 90, contour interval 5 5 Sv. The latter are multiplied by 10 to be
visible, so a huge error reduction has been achieved.

FIG. 8. Eigenvector elements of the first 10 eigenvectors, showing
the measurement positions that had greatest influence on the final
solution.

FIG. 7. Total errors of prior (drawn) and posterior (dashed) stream-
function fields, normalized by the initial error of the prior fields. A
reduction of a factor of 30 is visible at day 90. Note that the errors
are also reduced at the initial time, due to the use of a smoother
instead of a filter.

the first 10 eigenvectors, which explain 90% of the var-
iance. Three maxima can be distinguished, more or less
in a southwest to northeast band. These are the positions
where future measurements of sea surface height should
be done. Of course, altimeters cover the whole area, so
the exercise does not teach us that much here. However,
if we have chosen a model with its error structure, we
could do the same for hypothetical in situ measurements.
This will tell us where to go on a cruise to have max-
imum impact on the final solution. Given the average
cost of about $25 000 per day for a research vessel, the
economical impact can be quite large.

b. Physical results

We have seen in Fig. 5 that the mean of the prior
probability density was rather smooth. As a result of
the larger scales, the Agulhas eddy that finally pinched
of at day 80 is also too large compared to the mea-
surements (e.g., van Ballegooyen et al. 1994). The near-
ly formed eddy at day 60 seems to be unable to leave
the model domain, which could direct to a wrong bound-
ary condition. However, this is only the effect of the

averaging over the members. In some members it leaves
the domain and in others it does not even come this far.

It is interesting to see that the eddy that nearly pinches
of in the beginning of the run is recaptured by the Agul-
has Current to be shed much later again. This also hap-
pens in reality (B. D. Olson and W. P. M. De Ruijter
1999, personal communication), but in this case it seems
to be an artifact of the model, because it does not seem
to happen in the observations (see Fig. 2). There, in-
stead, the ring leaves the domain followed by a second
ring 30 days later. The model also has the tendency to
shed the ring too far south. Several possibilities for this
misbehavior of the pure model can be identified. First,
in a quasigeostrophic model instabilities grow too fast
compared to reality but the final shedding of rings occurs
too slow. This is due to the fact that just before the rings
are shed and a small filament connects the eddy to the
mean flow, small-scale processes are important, beyond
the scale of quasigeostrophic dynamics (see, e.g., Dri-
jfhout 1990). On average the ageostrophic terms are of
moderate importance; the Rossby number is R 5 U/Lf
ø 0.05 for a characteristic velocity of 0.5 m s21 and a
lengthscale L ø 100 km ( f ø 1021 s21). However, in
the neck region of a ring that is being shed the velocity
gradients increase to 4 3 1025 s21, leading to R ø 0.4.
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Another problem with quasigeostrophy is that the in-
terface displacements are assumed to be of the order of
100 m, while van Ballegooyen et al. (1994) show from
hydrography that the displacements can easily be 500
m in a ring. So, without a doubt, ageostrophic terms are
of importance in the shedding area. Second, the mean
field added to the observations, and hence to the model
initial field, is not correct. The mean field used is prob-
ably the best available, but because it is based on hy-
drography it has the problem of the unknown reference
level. Finally, it might be a resolution problem. Insta-
bilities with a wave length of the order of the Rossby
deformation radius are just on the edge of being re-
solved. Because the Shapiro filter is applied once every
day, the instabilities do have the possibility to grow, but
their evolution will be effected.

Figure 9 shows the streamfunction fields of the as-
similated run. The first feature that strikes the eye is the
much smaller spatial scales. So indeed, the TOPEX/
Poseidon observations have their influence on the so-
lution. The scales in this figure compare well with those
obtained from infrared images, considering the 25-km
grid of the model (npcitelut88). Furthermore, a ring
leaves the domain on day 30, and a larger one pinches
off on day 60, about 20 days earlier than in the prior
run. This in agreement with the observations, but does
not follow them exactly. The reason is that the model
dynamics has a voice here too. It is difficult to say which
is correct, the assimilated run or the observations. A
possible source of error for the observations, which is
of importance for the shedding, is the time mean field,
as mentioned above. This points to the van Leeuwen
(1999a) paper in which the time mean field was the
main unknown in the data assimilation procedure. We
come back to this issue later on.

The fact that the pure ensemble run and the assimi-
lated run are so different points to the importance of
the ageostrophic terms, in combination with the other
two potentially problematic artifacts of the model men-
tioned above. To illustrate this, Fig. 10 shows the evo-
lution of a strong constraint run. This run was obtained
by putting the errors in the model dynamics to zero and
repeating the assimilation experiment. The assimilated
field at day 0 is then the initial field for a pure model
run forward in time, and the result of that run is depicted
in Fig. 8. The boundary conditions for this run are found
from the model run itself, as explained above. One could
also determine the optimal boundary conditions for a
strong constraint inversion, but that is not done here. A
ring is being shed on day 40, close to the observations,
but the next ring, centered at 398S, 198E, is too large
and moves southward instead of westward. So, although
the run is close to the observations initially, after about
40 days the model (as it is) is unable to show a realistic
evolution. This is probably related to the sensitivity of
nonlinear systems to initial conditions. (Optimal bound-
ary conditions might have led to a better model evo-
lution, but given the fact that the ring moves too far

south even when it is still far from the boundary, this
is unlikely.)

Another promising feature in the weak constraint in-
version (Fig. 9) is the appearance of cyclonic depres-
sions northward of the retroflection area, at 368S, 188E.
These features seem to play an important role in the
final shedding, as can be seen in Fig. 9. In Fig. 11 a
space–time diagram is depicted showing the sea level
elevation along the maximum mean velocity in the
Agulhas Current as it runs along the continent. Clearly
visible is a depression that starts at day 0 and moves
downstream with a velocity of about 25 km day21. Me-
anders of this kind have been found by Lutjeharms
(1989) and Lutjeharms and Roberts (1988) in infrared
satellite images and named Natal pulses, after their place
of initiation in the upstream Agulhas, in the Natal Bight
area. They move along with the Agulhas Current with
a speed of ø20 km day21. The fact that the meanders
move faster in our simulation is probably related the
highly simplified vertical structure in our model. De
Ruijter et al. (1999b) found from Geosat, ERS-1, TO-
PEX/Poseidon, and infrared satellite observations that
five to six pulses are formed every year. They grow in
size from 30 km at initiation up to a few 100 km in the
ring-shedding area. Their formation in probably related
to barotropic instability of the Agulhas Current in the
Natal Bight (see van Leeuwen et al. 2000). Van Leeuwen
et al. (2000) have shown that these features have a strong
relation to the shedding of Agulhas rings: each ring is
preceded by a Natal pulse. So these pulses might play
an important role in the global transport of heat and salt
in the ocean.

These findings show one of the advantages of using
a smoother over a filter. The cyclonic depression is not
in the model dynamics (see Fig. 4) but arises from the
observations. However, no observations are incorpo-
rated along the east coast of South Africa. What hap-
pened is that the information of the observations is trans-
ported back in time by the model evolution measurement
operator covariance, the representers. We thus see that
with a smoother it is possible to trace features back in
time that are not present in a pure model run due to
incorrect initial and boundary conditions and of which
only the end product is seen in the observations. By
neglecting errors in model dynamics, a strong-constraint
inversion, Natal pulses do arise (see Fig. 10), but they
do not have the correct influence on the shedding of the
Agulhas rings. The fact that Natal pulses do arise is due
to the possibility of the data assimilation method to
propagate information back in time, thus to alter the
initial condition. However, in this simulation it is es-
sential to include errors in the model dynamics to obtain
a correct evolution of the fields.

It is interesting to compare these results with the en-
semble Kalman filter calculations of Evensen and van
Leeuwen (1996). In their Fig. 7 a large meander de-
velops at the position where the Agulhas Current makes
a right turn onto the continental shelf south of the con-
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FIG. 9. Posterior streamfunction of upper layer, contour interval 5 20 Sv, dashed lines denote positive values.

tinent. [They did not exclude the continental shelf from
their calculations and the assimilated fields are unre-
alistic in this respect, e.g., see Lutjeharms (1989).] This
meander cannot be followed upstream but originates at
that location, probably related to inertial overshoot.
Also, the meander does not propagate downstream. We
can thus conclude that no Natal pulse is present, al-

though it should be there (see van Leeuwen et al. 2000).
Still, the situation is not quite comparable. The inter-
polated Geosat altimeter fields used in that paper do not
contain Natal pulses as they travel along the east coast
of South Africa, because of their small scale. However,
observations are assimilated at those locations in that
paper, making it hard for a pulse to develop. But, even
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FIG. 10. Strong constraint inversion of upper layer, contour interval 5 20 Sv, dashed lines denote positive values.

regarding these matters, it is clear that if one would use
the same observation set as in this paper, a filter cannot
create Natal pulses. Furthermore, due to sudden changes
to the model fields at observation times the process of
ring shedding is difficult to study.

In the paper by van Leeuwen (1999a) the same model
and observations have been used in the same area to
obtain a better description of the time mean circulation

in the Agulhas region. In that paper the time mean cir-
culation was taken as the unknown and errors in model
dynamics were neglected. An ensemble of model runs
that differed in the time mean circulation over a 100-
day interval defined the prior probability density of the
time mean circulation. Only the time-varying part of the
altimeter observations was used to constrain the model
evolution and hence the time mean circulation over
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FIG. 11. Space–time diagram showing the propagation of a Natal
pulse along the east coast of the African continent in the ensemble
smoother inversion. Contour interval 5 Sv.

those 100 days. The representers contain the correlation
between the measurements and the time mean field of
the model. In Fig. 10 of van Leeuwen (1999a) the time-
varying altimeter observations are added to the new time
mean circulation. If we compare that figure with Fig. 9
of this paper the circulations have similarities, but also
a few striking differences. The relatively strong cyclone
west of Africa is found in that paper. The Agulhas rings
leave the domain farther north, and Natal pulses seem
to be less influential. Previously it was argued that the
anticyclonic rings that leave the domain at the western
side entrain water resulting in a cyclonic circulation on
their northern side. In our case the cyclonic feature west
of Africa not present. The reason why we do not find
the cyclone might be the following. The cyclonic de-
pression that becomes visible in the observations on day
40 at 378S, 198E was traced back in the present paper
as a Natal pulse, coming from the Agulhas Current, from
the eastern side of the continent. In van Leeuwen
(1999a) at least part of this depression seems to originate
from the strong cyclone west of the continent. So, in
van Leeuwen (1999a) the time mean field was altered
by creating a cyclone west of Africa, kept in place by
the more northward travel path of Agulhas rings. Note
that these areas of the domain were not restricted by
observations. In our case the model chose the Natal
pulse solution. It is interesting to see how the same
model and observations and comparable data assimi-
lations techniques can lead to completely different de-
scriptions of a physical system. Now that data assimi-
lation techniques are maturing, our knowledge of the

system, that is, the places where we think the errors
cannot be neglected, becomes more and more important.

5. Summary and discussion

In this paper the new data-assimilation method pro-
posed by van Leeuwen and Evensen (1996), the ensem-
ble smoother, is shown to work in a realistic oceanic
situation. The generalized inverse of a two-layer qua-
sigeostrophic model of the Agulhas Retroflection area
and TOPEX/Poseidon altimeter data was determined.
The idea underlying the new method is to combine the
probability densities of the model and the observations
in a Bayesian way to obtain the probability density of
the model given the observations. The general solution
to the minimum-variance smoother is presented. The
probability density of the observations is assumed to be
Gaussian. In addition, the probability density of the
model, the prior density, is assumed to be Gaussian in
the ensemble smoother. As noted, a similar procedure
is adapted for a Kalman filter. The effect of the non-
Gaussianity is discussed, and it was shown that the
smaller the posterior covariances, the better the ap-
proximation. This result gives us a clue to why Kalman
filters work for nonlinear models too. Inspection of the
third moment of the prior density showed that this as-
sumption of Gaussianity was acceptable for the present
experiment.

The probability density of the model, the prior dis-
tribution, is described by an ensemble of possible model
evolutions. We need 500 members in the present ex-
periment. In an experiment with 600 members, changes
in the model fields were below 1%. We even found that
only 100 members gave an inverse estimate close to the
500-member case.

An important practical advantage is that no adjoint
of the model has to be determined. There are still prac-
tical and fundamental problems with adjoint equations
for models with discontinuous dynamics (‘‘if state-
ment’’) (see Miller et al. 1994b). Furthermore, error
estimates are obtained relatively easily, so the accuracy
of the results is known. This is contrary to all other
existing smoothers in which a large extra effort is in-
volved. (Clearly, in analogy to the situation with ob-
servations, an inversion without a proper error estimate
is of much less value.) In the particular experiment de-
scribed here the error reduction is about a factor of 6
overall.

By studying the representer matrix an optimal mea-
surement antenna for this model configuration was de-
termined. This was found to be the area in which the
Agulhas rings form and shed from the Agulhas Current.
Clearly, quasigeostrophic dynamics is insufficient to de-
scribe this process accurately. For altimeter measure-
ments this is an academic example because the data
coverage is global. However, the same method can be
used for in situ measurements too. A large gain in ef-
ficiency is expected here.
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It has been shown that data assimilation in general
requires neither the model nor the observations to be
unbiased. This is an important point, because the model
biases are generally extremely difficult to determine. If
unbiased observations are present one may determine
the model bias, as in Dee and da Silva (1998), but biases
in observations are difficult to detect in general. Aside
from this, it is unclear how to define a model bias pre-
cisely. Since the atmosphere or the ocean both vary on
all timescales, with most energy in the slowest motions,
a statistical steady state cannot be determined (if it exists
at all). The point made here is that the present derivation
of the smoother does not assume that either model or
observations are unbiased. Rather, the more general
viewpoint is taken that all the knowledge we have about
the system is contained in two probability densities, one
from the observations, and one from the dynamical
equations, represented by the model. Data assimilation
is just combining the two densities, whether they are
biased or not.

The question remains why only 500 members are
needed for the inversion. After all, the ensemble has to
describe the probability density of a quasi-geostrophic
model run over 100 days, leading to 12.5 million grid
points! An answer can be found in the following way.
At each time step we have 5600 unknowns and 500
independent guesses. The factor of about 10 between
the two numbers can be explained by the spatial cor-
relation of the error fields, thus by correlations among
the 5600 unknowns. The characteristic horizontal length
scale of about 50 km combined with a horizontal res-
olution of 25 km count for a factor of about 4. Another
factor of 2 is due to the correlation of the error fields
in the vertical, which is about 0.4. So an ensemble of
500 members should do a reasonable job, especially if
we take into account that the noise is correlated in time
in this experiment. In fact, Evensen and van Leeuwen
(1996), van Leeuwen and Evensen (1996), van Leeuwen
(1999a), and the present paper all find convergence by
using 500 ensemble members. This is less strange than
it seems because all papers use two-layer quasigeo-
strophic ocean models of comparable size, with com-
parable characteristic length scales. At this stage it is
unclear how much ensemble members are needed for a
primitive equation model. The number of degrees is
much larger, pointing to more ensemble members, but
the model errors will be much smaller, or neglible for
some variables.

Another important factor lies in the model dynamics.
In Fig. 7 we see that the model variance started to level
off after about 80 days. This is not likely to happen
with a linear model. The nonlinearity of the model keeps
the ensemble relatively narrow, although it keeps slowly
growing even after 125 days. Strange outliers are quick-
ly removed by nonlinear processes, greatly restricting
the number of possible model evolutions. This is prob-
ably also the reason why the skewness of the distribution
stays relatively low, so the prior distribution remains

Gaussian approximately. A more detailed discussion on
these matters can be found in, for example, Houtekamer
and Derome (1995) and Lermusiaux and Robinson
(1999), who concentrate on the error subspace, thus on
an optimal description of the model state assuming
Gaussian statistics.

It is interesting to compare the smoother results with
what can be expected from other methods. A nudging
technique has been use by Holland et al. (1991), Cai
(1994), Stutzer and Kraus (1998), Florenchie and Verron
(1998), and Zhang and Marotzke (1999) in this area of
the world ocean. Florenchie and Verron (1998) use an
iterative procedure to obtain a time mean field that is
consistent with the TOPEX/Poseidon altimeter data. The
nudging technique can be viewed as a mixture of a filter
and a smoother, in the sense that the model notices the
observations ahead in time. However, this is just used
to pull the model to the data, not to propagate infor-
mation from the observation back in time. It was shown
that the observations detected cyclonic structures that
seemed to influence the ring shedding process. Thus,
when the mechanism of ring shedding is studied, it is
important to know where these cyclonic features came
from. The smoother traced them back to so-called Natal
pulses, meanders in the Agulhas Current when it flows
along the east coast of South Africa, an area void of
observations. With the nudging technique the smoother
interval is relatively short, at least less than the time
interval between observations at a certain point, so the
technique will not be able to produce Natal pulses. Ob-
viously, all filters have the same problem.

Another problem with nudging and related methods
is that it is unclear how to judge the final results because
no error information is available. It is clear that each
estimate should contain an estimate of how good that
particular estimate is. Because the model is forced to
the observations, the shedding of Agulhas Rings will
be according to the observations. However, the process
of ring shedding cannot be studied very accurately be-
cause the model dynamics are severely violated around
times when observations are present. This latter point
also holds for filters in general.

A strong constraint assimilation procedure shows
their origin, but the difference with the present results
is the following. Both the ensemble smoother and the
strong constraint method will transport the feature all
the way back to the northward boundary consistent with
quasigeostrophic dynamics. However, in a strong con-
straint approach the feature also moves downstream for-
ward in time consistent with quasigeostrophic dynamics.
As was shown, the strong constraint method is in agree-
ment with the observations initially but deviates from
it when rings are to be shed, some 40 days later. It seems
that quasigeostrophic dynamics is not adequate for de-
scribing the ring-shedding process because of strong
ageostrophic motions at the separation point and pos-
sible resolution problems. Implementations of the strong
constraint method using a gradient descent algorithm
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have the further disadvantage that error estimates are
difficult to obtain for nonlinear model dynamics.

To conclude, neither a filter nor a strong constraint
technique will be able to describe the mechanism re-
sponsible for ring shedding the way a weak constraint
smoother can. The ensemble smoother seems to be an
interesting method because it is relatively cheap to ob-
tain both the inverse solution and a proper error esti-
mate. A final remark is that it is extremely simple in
ensemble methods to include model errors that are non-
white in time. For methods based on the minimalization
of a cost function this is much more problematic.

As a final point it is mentioned that none of the above-
mentioned methods has attacked the linear update equa-
tion. One of strong points in the ensemble Kalman filter
is that each ensemble member can be updated indepen-
dent from all others. This will not be the case for an
update equation that takes the nonlinearities into ac-
count. So the question here is how to update an ensemble
without destroying the nonlinear features (in probabi-
listic sense) that are represented by the ensemble. This
is an area of active research.
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APPENDIX

The Posterior Error Covariance

In this appendix a derivation is given of the posterior
covariance using the probabilistic description. It is noted
beforehand that again no reference is made to an un-
known true model evolution, so this derivation is valid
even if biases in model and/or observations are present.
We start with Eq. (14), which we write as

5 cF 1 rTb 1 a,ĉ (A1)

in which a contains the effect of the non-Gaussian part
of the prior probability density. The posterior covariance
can be written as

2Q 5 (c 2 ĉ) f (c | d) dcĉĉ E
25 A (c 2 ĉ) f (c) f (c) f (d | c) dc. (A2)E G N

If we use (A1) in this equation we obtain

2 T T T TQ 5 A [(c 2 c ) 2 2(r b 1 a)(c 2 c )] f (c | d) dc 1 r br b 1 2r ba 1 aa. (A3)ĉĉ E F F

Now use

d fG
c 2 c 5 2Q • (A4)F cc

dc

and perform the partial integrations to find

T T T TQ 5 Q 1 [(c 2 c ) 2 2(r b 1 a)]r w[d 2 L(c)] f (c | d) dc 1 r br b 1 ĝ, (A5)ĉĉ cc E F

in which is given byĝ

d fNT Tĝ 5 A [(c 2 c ) 2 2(r b 1 a)]Q • f (c) f (d | c) dc 1 2r ba 1 aa. (A6)E F cc G
dc

The trick that is used now is to add to (c 2 cF) inĉ
(A5) and subtract it again. Do the same with inL(ĉ)
[d 2 L(c)] in the same integral. By performing the
multiplication of the two terms and noting that from
(12)

21 21b 5 w[d 2 L(ĉ)] 1 A(R 1 w ) L(Q )cc

d f (c)N
• f (c) f (d | c) dc, (A7)E G

dc

we arrive at
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5 Qcc 2 rTw 1 g,Q L(Q )ĉĉ ĉĉ (A8)

in which g is given by
T T 21g 5 ĝ 1 r ba 1 (r b 1 a)A(R 1 w) L(Q )cc

d f (c)N
• f (c) f (d | c) dc. (A9)E G

dc

To proceed we measure this equation (a procedure fol-
lowed before):

L(Q ) 5 r 2 RwL(Q ) 1 L(g) or (A10)ĉĉ ĉĉ

21L(Q ) 5 (1 1 Rw) [r 1 L[g]]. (A11)ĉĉ

Use this result in (A8) to find finally

5 Qcc 2 rT(R 1 w)21r 1 gQĉĉ

2 rT(R 1 w)21L[g]. (A12)

The last two terms are called b in the main text. If the
non-Gaussian term are neglected we end up with the
linear update as can be found in Bennett (1992), among
others, and as is used in the Kalman filter.
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