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1. Introduction

In an interesting paper Houtekamer and Mitchell (1998;
hereafter HM98) introduce a variant of the ensemble Kal-
man filter (EnKF) as proposed by Evensen (1994). HM 98
point to the hitherto unacknowledged problem that the
EnKF has an “‘inbreeding”” problem: in the analysis step
the ensemble is updated with a gain calculated from that
same ensemble. In their new approach a double ensemble
(DEnKF) is used and the gain of each ensemble is used
to update the other ensemble in the analysis step. The new
approach is argued to be much less senditive to this in-
breeding. They strengthen their argument by a specific
example, in which the EnKF shows a variance that is too
low for small ensemble sizes (=100), but they fail to give
arigorous justification. The purposes of this comment are
twofold. First, a theoretical justification of the inbreeding
effect isgiven, and it is shown that the DEnKF has similar,
but smaller, problems. Second, a serious concern about
the use of small ensemble sizesis expressed, thus bringing
into question the use of the DEnKF over the EnKF for
real applications.

2. Covariances in ensemble Kalman filters

To analyze the effect of approximate knowledge of
the error covariances before the analysis step in ensem-
ble Kalman filters we follow Burgers et al. (1998). The
prior and posterior error covariances are given by

Pr =@ — )& — ) @
Pe= (g — 4)(W* — ¢, @)

Pe = (¥ — )W — ¥°)'

where the overline indicates an expectation value; ¥ is
the model state at a particular time; and the superscripts
f, a, and t denote forecast, analyzed, and true state,
respectively.

Because the truth is not known a convenient estimate
of it must be defined. In ensemble Kalman filters the
ensemble covariance is used, so the mean state is taken
as an estimate for the truth, leading to

PL= (" — )W~ §T) ®
Pe = (¥ — #)(W* — ). ©

Evensen [1994; but see also Burgerset a. (1998)] showed
that the analyzed ensemble can be obtained from the old
ensemble by updating each member i according to

2 = o + K(d, — Hy), )

in which K, is the gain determined from the ensemble,
defined as

K, = PIHT(HPSHT + W), (6)

and d; is a vector obtained by adding a random vector
to the data vector. This random vector is chosen from
a Gaussian distribution with zero mean and data co-
variance W. (In passing, | note that the analysis step
used in the Kalman filter is not optimal for a nonlinear
model. The assumption made is that the error covari-
ances are Gaussian distributed or that the model islinear.
However, this issue is not the focus of this comment.)

The analyzed ensemble covariance can now be eval-
uated as

= @9 KH@ — 90 K - )@~ &7~ KH@ — $0) + K(d - Q)
= Pi — KHPL — PLHTKT + K (HPTHT + W)KT + (I — K H)D, + DI(I — K H)T
= (I — KH)P, + (I — KH)D, + DI(I — K H)T, )
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where the forecast—observation covariance is given by
D. = (¢' — ¢7)(d — d)'KL. 8

Note that it is essential that each ensemble member
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is updated with different data to avoid an analyzed
variance that is too low (see Burgers et al. 1998). At
first sight the inbreeding effect might be compensated
for by the fact that each ensemble member is updated
with a different data vector. As we will see below,
and anticipated by HM98, this is not the case. When
the ensemble size increases, K, will approach the true
gain K. Also, the model—data covariance will become
negligible; hence P2 will tend to the true Pa.

In the DENKF the situation is as follows. Each en-
semble member i of ensemble 1 is updated as

¥a = P + Ky(dy, — Hb) 9)

and vice versa, in which K, is the gain obtained from
the other ensemble:

K, = PJHT(HPIHT + W), (10)

The analyzed ensembl e covariance of the first ensem-
ble now becomes

Pe= (4 — 9P)W — ) = ...
= (I = K,H)P{ — P{HTKT + K,(HP{HT + W)K]
+ (I = K,H)D, + DI(l — K,H)T (1)
and the forecast-observation covariance is given by
D, = (¢ — ¥f)(d, — d;)"K]. (12)

The extraterms compared to the EnKF are due to the
fact that the gains of the two ensembles are not the
same. Also, in this case the true P2 will be approached
for increasing ensemble size because the two ensem-
bles will obtain identical gains. At this point, | intro-
duce

8 = PJHT — PJHT(HPIHT + W) (HP/HT + W)

13
to simplify (11) to
a= (I = K,H)P{ — 6K} + (1 — K,H)D,
+ DI(1 — K,H)T. (14)

3. Analysis of finite ensemble size effects

Let us neglect the forecast-model covariances D for
the moment to clarify the discussion. We will come back
to them later.

The prior covariances will differ from the true prior
covariance due to finite ensemble effects. The mean
state is taken for granted; we are interested in the error
covariance of that mean state. The differences between
the estimated and the true covariance around this mean
state are denoted by e, €,, and €, for the three covari-

ances in question. So,
Pl =P + €,

e

P =

=P+ €

P, + e, (15)
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If we assume that the ensemble estimates are not too
far off, ||e/| is small (in some sense, not too impor-
tant here). An ensemble Kalman gain can now be
written as

K = PLHT(HPLHT + W)
(P + e)HT(HPHT + HeHT + W)t
K[l — He HT(HPHT + W)~

+ He HT(HPHT + W)-tHe HT(HPHT + W)~]
+ HT(HPHT + W)1[| — He,HT(HPHT + W)~1]
+ O(lle.|). (16)

Similar equations arise for K, and K,. These resulting
expressions are used in the analyzed ensemble covari-
ances (7) and (11). We then obtain for the EnKF (ne-
glecting the forecast—observation covariances)

a= (I — KHP + (I — KH)e,(I — HKT)
— (I = KH)eHT(HPHT + W)-tHe (I — HTKT)
+ O(llecl®).- 1

The first term on the rhs is the optimal posterior co-
variance in the Kalman filter framework. The second
term is proportional to e.. Since this term can have any
sign it will not lead to a bias initially. This error term
is downweighted with a factor (I — H'K™) compared to
the covariance itself. The third term, however, is always
negative, leading to a negative bias in the total variance
in the standard ensemble Kalman filter. It isillustrative
to see where these terms come from. The second term
on the rhs can be written as

(I — KH)e, — (I — KH)eHTKT. (18)

The first term is due to the error in P{ directly while
the second is due to the error in P/ via the gain matrix.
Note that these two terms have opposing tendency. The
third term on the rhs can be decomposed as

—(I = KH)e,HT(HPHT + W) 'He,
+ (I = KH)e,HT(HPHT + W) He HTKT.  (19)

Thefirst term in this expression is due to the interaction
of the errorsin P/ and the gain, while the second term
is due to the nonlinearity of the gain. Again, theseterms
have opposing tendency. HM98 only argued about the
first effect, while the nonlinearity of the gain tends to
compensate for this inbreeding.

The effect of the finite ensemble size will be as fol-
lows. Initially the second-order error term, thethird term
on therhsof (17), will tend to decreasethetotal variance
compared to the Kalman filter analysis step. As soon as
a negative bias is created that is not compensated for
by the spread of the ensemble between analyses, the
linear term will take over and decrease the bias even
further, until the error becomes so large that our analysis
fails.

e
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The analysisin the DEnKF case is more complicated,
but following the same approach we arrive at

2= (I — K,HP, — 8KI + (I — K,H)e (I — HTK])
— O0(HP,H™ + W) *He,(I — HTKT) — (transpose)
— (I = K,H)e,HT(HP,HT + W)~ He, (I — HTKY)
— (transpose) + (I — K,H)e,HT(HP,HT + W)-1
X He,(HP,HT + W)~15 + (transpose)
+ (I = K,H)e,HT(HP,H™ + W)~ *(HP,H™ + W)
X (HP,HT + W)~1He,(I — HTKT) + O(|l& ).
(20)

Thefirst two terms on the rhs form the optimal posterior
covariance in the Kalman filter framework. The third
term is proportional to €, and can have any sign. The
fourth term (and its transpose) is proportional to ée,,
so it can also have any sign, being smaller than the
third. Aninteresting term isthefifth. Thisterm describes
the imbreeding effect in the EnKFE In the DEnKF the
term can have any sign because it is proportiona to
€,€,. The remaining two terms are due to the nonline-
arity of the gain. The last will be positive and larger
than the other term. This term will lead to a positive
bias, and so to an overestimation of the optimal error
variance in the Kalman filter framework. So, also in the
first analysis step, inaccuracies in the prior error co-
variances due to a small ensemble size lead to abiasin
the posterior error covariances. This effect is due to the
nonlinearity of the gain. HM98 do not seem to have
realized this.

At alater analysis step the fifth term, proportional to
€, €,, Will become important dueto inbreeding, asHM 98
also mention. In the experiment by HM98 this is an
important effect for small ensemble sizes: a bias de-
velops and the linear term takes over.

4. Conclusions and discussion

The EnKF leads to systematically underestimated
error variances for small ensemble sizes. This is not
only due to the effect that the ensemble is updated
with a gain calculated from that same ensemble, as
HM98 claim, but also due to finite ensemble effects
inthe gain itself. Thislast effect comes about because
the gain is nonlinear in the prior covariance. It tends
to partly compensate for the first effect. The com-
bined effect will decrease with increasing ensemble
size.

The remedy proposed by HM98 in which a double
ensemble is used (the DEnKF) has the same kind of
problem, but to a lesser degree. In the first analysis step
the inbreeding is absent, but the nonlinearity of the gain
gives rise to an overestimation of the optimal error in
the Kalman filter framework.
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Clearly, the size of the problems will be dependent
on the application, that is, the size and structure of the
gain matrix, the random generator used, the size of the
ensemble, etc.

The question then becomes which method to use. The
above analysis favors the DEnKF for small ensemble
sizes, when the errors in the estimations of the prior
error covariances, €, will be relatively large. However,
for the same total number of ensemble members, the
EnKF will give a better estimate of the mean. (See, for
instance, Fig. 3 in HM98, the 32 vs 2 X 16 members
case.) It must be said that a worse estimate of the mean
with a proper error estimate is probably worth more
than a better estimate of the mean with a poor error
estimate.

The question then becomes, how relevant are small-
ensemble-size calculations? Apart from the biases de-
scribed above, a new problem arises: the forecast-
observation covariances. HM98 do not mention this
problem, but clearly they are nonnegligible for small
ensemble sizes. It is unclear at what ensemble size
the effect will come into play, that will be application
dependent, but simple experiments with a random
generator show that the correlation between two in-
dependently distributed Guassian random variables
becomes less than 5% at a sample size of about 250.

Finally, an ensemble size that istoo small will cause
problems with statistics due to the fact that the sample
isjust too small. Using the Tchebycheff inequality the
probability that the error in the estimated mean value
¥ issmaller than o/\/N(1 — v) isgiven by (see, e.g.,
Papoulis 1991)

Pf{ltl' A m} >y, (2D

in which vy is the confidence coefficient, o2 is the
variance, N is the size of the ensemble, and ¥/t is the
true mean. So, if a confidence coefficient is chosen,
and the variance is approximated by the estimated
variance, a minimum value for the ensemble size will
result. Suppose we want the mean with a confidence
of 95% to lie in the interval ' — 0.250 < ¥ < Yt
+ 0.250; then the ensemble size should be O(300)!
(Note that this argument is related to the above.)

To conclude, for small ensemble sizes (N = 100)
the DEnNKF has smaller biases, but the smallness of
the sample and the fact that forecast-observation co-
variances are neglected puts serious doubts on the use
of ensemble methods of this size at all. Note that up
to now we only discussed the variances. To estimate
covariances correctly, many more ensemble members
are needed. In view of this, the amount of skill shown
in the experiments performed by HM98 is surprising.
An ensemble size of 2 X 16 members gives a global
error estimate comparable to the true error. A factor
might be the perfect model assumption that they
adopt, but that is difficult to study in ageneral setting;
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it will be model dependent. Experiments with the
EnKF by Evensen (1994) and Evensen and van L eeu-
wen (1996) in an oceanographic context show that
ensemble sizes of at least 100 members are necessary
to obtain reliable converged error variances (not glob-
al rms errors). The experiments by HM98 show that
the difference between the EnKF and the DEnKF be-
come negligible at those sizes. However, we might be
comparing apples with pears; clearly, more research
is needed on the size of ensembles.
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