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ABSTRACT

A fully nonlinear particle filter is used on a simplified ocean
model, consisting of the barotropic vorticity equation. While
common knowledge is that particle filters are inefficient and
need large numbers of model runs to avoid degeneracy, the
newly developed particle filters need only of the order of 10-
100 particles on large scale problems. Also, we show that
the scaling is perfect in that increasing the dimension of the
system does not need more particles. This opens the possibil-
ity for fully nonlinear filtering/smoothing in very high dimen-
sional state spaces, e.g. for numerical weather forecasting.

Index Terms— Data Assimilation; Particle filtering; high
dimensional; Bayes theorem; nonlinear filtering

1. INTRODUCTION

Numerical model for simulation and prediction of atmo-
spheric and oceanic flows are becoming ever more complex.
While relatively simple linear balances dominate the flows
at large scales, with increasing resolution 2 and 3 D turbu-
lence have to be resolved, leading to highly nonlinear flow
structures. Another related area were nonlinearity is crucial
is in climate models were many physical, chemical and bi-
ological systems are coupled leading to extremely complex
behaviour. To the extend that these flows are initial value
problems our incomplete knowledge of the exact initial con-
ditions leads to incomplete knowledge of the evolution of the
system, which can be described in probabilistic terms. If the
system is Markov, our present knowledge of the system in the
form of a probability density function evolves according to
the Kolmogorov or Fokker-Plank equation.

When observations of the system are present, their infor-
mation on the system can be incorporated using Bayes Theo-
rem, in which the prior probability density function (pdf from
now on), representing our prior knowledge, is multiplied by
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the likelihood, i.e. the probability density of the observations
given a specific model state. This then leads to the so-called
posterior pdf, that describes our updates knowledge of the
system. This process of updating the prior pdf with observa-
tions is called data assimilation, and its goal is to determine
properties of this posterior pdf. It should be realised that this
posterior pdf is unlikely to be ever at our disposal in full be-
cause the size of the state space is huge, typically 100 million
for numerical weather prediction. We can only infer statistical
moments like mean, covariance, percentiles, and modes.

It is stressed here that the data-assimilation problem as
specified above is a multiplication problem and not an inverse
problem. Also parameter estimation falls in this framework:
the prior pdf of the parameters is updated through the likeli-
hood to the posterior pdf of the parameters. When the system
at hand and the relation between observations and state vec-
tor are close to linear it makes sense to concentrate on the
mode of the posterior pdf. The problem of finding the mode
is usually formulated as an inverse problem, i.e. a problem
in which a matrix has to inverted, although there is no ne-
cessity to do so. Examples are variational algorithms that try
to find the mode by exploring the gradient of the log of the
posterior pdf. In the geosciences these methods are known
as e.g. 3DVar, 4DVar [8], representer method[1], PSAS [3],
depending on details of the solution method. The Ensemble
Kalman filter [4],[2] is slightly different in that it tries to find
the posterior mean (the least-squares estimate, which is the
mean by definition), but because of the linearity assumptions
in the Kalman filter the mean is equal to the mode. This has
led to confusion in at least the geophysical, but also the so-
called inverse-problem, community in what one is actually
trying to solve, and and in some cases hampered progress to
more nonlinear problems.

In this paper we propose solutions to highly nonlinear
high-dimensional data-assimilation problems. Our stating
point is the particle filter [6], in which an ensemble of model
runs is performed, representing our prior knowledge of the
system. Each ensemble member, or particle, is weighted with
its distance to observations when these become available. The



distance norm is determined by the value of the pdf of the
observations given this particle. The weights are the relative
probabilistic weights of the particles, so e.g. the mean of the
ensemble now becomes a weighted mean.

It is well known that in systems with moderate dimen-
sions, say 10 and higher, particle filters tend to be degenerate,
meaning that the weights vary too much. Typically after one
or a few updates with observations the relative weight of one
particle is close to one, while that of all others is very close to
zero. This means that e.g. a weighted mean is in fact based on
only one particle, so all statistical information in the ensemble
is lost. To prevent this from happening several methods have
been proposed, starting from resampling [6] to more compli-
cated or approximating solutions (see e.g.[4], and [9] for a
review of applications in the geosciences). None of the pro-
posed method is applicable to systems with larger than say
100, without having to need millions of particles, so millions
of model integrations. As mentioned, our final goal is 100
million dimensional systems, and this number keeps on in-
creasing with the size and speed of supercomputers.

In this paper we discuss a new particle filter methodology
that is applicable to systems of much higher dimension, and
which up to the dimensions we tested it on has perfect scaling,
i.e. the number of particles is independent of the dimension
of the state vector. The secret is a proper use of the proposal
density, that allows much more freedom than perhaps antici-
pated in earlier work. The method is introduced in [10]. In
this paper, the method is outlined and its performance on sys-
tems with up to 70,000 dimensions is demonstrated.

2. PARTICLE FILTERING

The probability density function pdf of the state vector is rep-
resented, and approximated, by a discrete set of delta func-
tions centred around the particles. Using this representation
of the prior pdf of the model in Bayes theorem one finds:

p(ψ|d) =
N∑

i=1

wiδ(ψ − ψi) (1)

in which the weights wi are related to how close each particle
is to the observations:

wi =
p(d|ψi)∑N

j=1 p(d|ψj)
(2)

The density p(d|ψi) is the likelihood, i.e. the probability den-
sity of the observations given the model state ψi, which is
given in the data-assimilation problem, and often taken as a
Gaussian:

p(d|ψi) = A exp
[
− (d−H(ψi))2

2σ2

]
(3)

in which H(ψi) is the measurement operator, which projects
the model state on the observation d, and σ is the standard

deviation of the observation error. When more observations
are available, which might have correlated errors, the above
is replaced by the joint pdf of all these measurements.

Unfortunately, weights vary wildly even when resam-
pling is applied, and again only a few particles will have
relatively high weight, so will have any statistical signifi-
cance. This as called filter degeneracy and is a very serious
problem in standard particle filtering [7]. Several methods
have been proposed to solve this problem (see review for the
geosciences by [9], but none of these is directly applicable to
large-dimensional geophysical problems.

3. THE NEW METHOD

The new method that will be explored in this research pro-
posal consists of two new ingredients. The first new ingre-
dient is that the particles are steered towards the future ob-
servations by choosing a specific form of model forcing that
tends to pull the model towards the observations. This is an
old idea in particle filtering, but has not been explored in the
geosciences. Assume the model equation to be written as

ψn = f(ψn−1) + βn (4)

in which f(..) denotes the deterministic part of the model and
βn is the stochastic part, and n is the time index. Instead of
using this, the model equation is modified to:

ψn = f(ψn−1) + β̂n +K(dn+m −H(ψn−1)) (5)

in which β̂ is random forcing which might have different char-
acteristics from the original random forcing, and dn+m de-
notes future observations at time n + m. The main differ-
ence with the original model equation is the ’nudging’ term
that tends to pull the particle to the observations. This looks
like cheating in the sense that the model forcing is not chosen
from the probability density of the model error, but as some-
thing that we like better. Also, the different particles will have
different strength of the ’pulling’ term dependent on how far
they are from the future observations, so we seem to loose
control over the statistical meaning of each particle. How-
ever, this different forcing can be compensated for exactly by
changing the relative weights of the particles. The weights
are modified as (see e.g. [4],[9]):

wi ∝ p(dn|ψn
i )

p(ψn
i |ψ

n−1
i )

q(ψn
i |ψ

n−1
i dn+m)

(6)

The extra factor in the numerator is the probability that the
actual state of particle i moves from ψn−1

i to state ψn
i , which

can be calculated from the pdf of the random forcing βn. The
extra factor in the denominator follows from the pdf of ran-
dom forcing β̂, with mean K(dn+m −H(ψn−1)).

But there is more. Making sure that all particles end up
relatively close to the observations still does not mean that



the weights will not vary wildly in large-dimensional systems.
The second new ingredient is that we ensure that all posterior
weights are almost equal. This consists of two stages: first
perform a deterministic time step with each particle that en-
sures that most of the particles have equal weight, and then
add a very small random step to ensure that Bayes theorem is
satisfied. There are infinitely many ways to do this.

A simple choice for the first stage is enforcing

ψn+m
i = f(ψn+m−1

i )+αiK(dn+m−H(f(ψn+m−1
i ))) (7)

in which K = QHT (HQHT + R)−1, Q is the error covari-
ance of the model errors, and R is the error covariance of the
observations. αi is a scalar that is to be determined such that
the weights are equal. Exploiting the explicit expressions for
the weights we obtain for each αi, see [10]:

α = 1−
√

1− bi/ai (8)

in which ai = 0.5xT
i R
−1HKx and bi = 0.5xT

i R
−1xi −

C − logwrest
i . Here x = dn+m −H(f(ψn+m−1

i )), C is the
chosen weight level, and wrest

i denotes the relative weights
of each particle i up to this time step, related to the proposal
density explained above.

Of course, this last step towards the observations cannot
be fully deterministic, as can be seen from Eq. (6). A de-
terministic proposal would mean that the proposal transition
density q can be zero while the target transition density p is
non zero, leading to division by zero, because for a determin-
istic move the transition density is a delta function. The pro-
posal transition density could be chosen a Gaussian, but since
the weights have q in the denominator a draw from the tail
of a Gaussian would lead to a very high weight for a particle
that is perturbed by a relatively large amount. To avoid this q
is chosen in the last step before the observations as a mixture
density

q(ψn|ψ′) = (1− α)U(−a, a) + αN(0, a2) (9)

in which ψ′ the particle before the last random step. By
choosing α small the change of having to choose from
N(0, a2) can be made as small as desired. For instance,
it can be made dependent on the number of particles N .

4. RESULTS

Here a few results using the new particle filter with almost
equal weights are shown. Figure 1 shows the application of
the method to the highly chaotic barotropic vorticity equation,
governed by:

∂q

∂t
− ∂ψ

∂y

∂q

∂x
+
∂ψ

∂x

∂q

∂y
= β

q =
∂2ψ

∂x2
+
∂2ψ

∂y2
(10)

in which q is the vorticity field, ψ is the streamfunction, and β
is a random noise term representing errors in the model equa-
tions. It was chosen from a multivariate Gaussian with mean
zero, variance 0.01, and decorrelation lengthscale 4 grid-
points. The equations are implemented on a 256 X 256 grid,
using a semi-Lagrangian scheme with time step ∆t = 0.08,
grid spacing ∆x = ∆y = 1/256, leading to a state dimension
of close to 70,000. The vorticity field was observed every 25
time steps on every 4th gridpoint, giving about 4,000 obser-
vations every time step. The observations were obtained from
a truth run and independent random measurement noise with
standard deviation 0.05 was added to each observation.

Only 24(!) particles were used to track the posterior pdf.
In the application of the new particle filter we chose K = 0.1
in the nudging term (except for the last time step before the
new observations, where the ’almost equal weight’ scheme
was used, as explained above), multiplied by a linear function
that is zero half way the two updates and growing to one at the
new observation time. The random forcing was the same as
in the original model. This allows the ensemble to spread out
due to the random forcing, and pulling harder and harder to-
wards the new observation the closer to the new update time.

Fig. 1. Snap shot of the vorticity field of the truth (right)
and the particle filter mean (left) at time 25. Note the highly
chaotic state of the fields, and the close to perfect tracking.

Figure 1 shows the difference between the mean and the
truth after 25 time steps, and figure 2 the ensemble standard
deviation compared to the absolute value of the mean-truth
misfit. Clearly, the truth is well represented by the mean of
the ensemble. Figure 2 shows that although the spread around
the truth is underestimated at several locations, it is over esti-
mated elsewhere,

Finally, figure 3 shows that the weights are distributed as
they should: they display small variance around the equal
weight value 1/24 for the 24 particles. Note that the parti-



Fig. 2. Snap shot of the absolute value of the mean-truth mis-
fit and the standard deviation in the ensemble. The ensemble
underestimates the spread at several locations, but averaged
over the field it is slightly higher, 0.074 versus 0.056.

cles with zero weight had too small weight to be included in
the almost equal weight scheme, and will be resampled from
the rest.

Because the weights vary so little the weights can be used
back in time, generating a smoother solution for this high-
dimensional problem with only 24 particles.

5. CONCLUSIONS AND DISCUSSION

A new particle filter has been introduced that exploits the
proposal density and allows small ensemble sizes on very
large dimensional problems. It was demonstrated here on
the highly nonlinear 70,000 dimensional barotropic vorticity
equation that simulates ocean eddy processes.

The big advantage of this method is the enormous free-
dom in the two steps that make up the new method. The
first adds terms to the model equations that force the model
towards the future observations. The simple additive terms
allow easy implementation in any simulation code for atmo-
sphere of ocean, or more general any computer code that sim-
ulates a Markov process. But also more sophisticated propos-
als can be used, like e.g. a weak-constraint 4DVar solution
on each particle, or an Ensemble Kalman filter. The second
crucial step allows the weights to be almost equal. Without
this step the particle filter would still be degenerate with a
large number of independent observations in the present set-
tings. Also here a large freedom exists in how this term is
implemented. We replaced the search for the intersection of
a hyperplane and the pdf in the 70,000 dimensional space by
a simple line search, but many other possibilities can be ex-
plored.

Fig. 3. Weights distribution of the particles before resam-
pling. All weights cluster around 0.05, which is close to 1/24
for uniform weights (using 24 particles). The 5 particles with
weights zero will be resampled. Note that the other particles
form the smoother estimate.
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