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Abstract-In order to prevent the generation of spurious free sub- and superharmonics of 
random waves in a laboratory channel, the control signal for the wave board has to be derived 
according to a higher-order wave theory. An expression for this control signal has been derived 
with the perturbation method of multiple scales. It is much less complex and requires less 
computation time than the expressions obtained from the full second-order theory. The new 
method for second-order subharmonics was verified experimentally for waves with bichromatic 
and continuous first-order spectra. The data were analysed with the complex-harmonic principal- 
component analysis to reduce the influence of noise. 

1. INTRODUCTION 

The generation of realistic non-linear random waves in a flume is important for 
laboratory experiments in which the problem under investigation is sensitive to second- 
order effects in the wave field. For instance, second-order subharmonics are important 
for studies of the surf-beat mechanism, the generation and evolution of sand bars and 
the slow-drift motion of moored vessels. The second-order superharmonics sharpen 
the wave crests and flatten the wave troughs and are important for sand transport, 
among others. 

Sand (1982) and Barthel et al. (1983) calculated the second-order wave-board motion 
for the correct generation of the subharmonics, i.e. the bound long waves. They based 
their work on the transfer function for these low-frequency waves in the absence of a 
wave board, as first given by Ottesen-Hansen (1978). Sand and Mansard (1986) and 
Hudspeth and Sulisz (1991) used a similar method for the generation of superharmonics. 
The transfer function for the superharmonics in the absence of a wave board was given 
by Dean and Sharma (1981). 

The expressions thus obtained for the wave-board control signal are exact to second 
order. To obtain this signal a convolution-type integral has to be performed. The 
integration is in the frequency domain and the integrand is a combination of products 
of the Fourier components of the first-order surface elevation at two different frequen- 
cies and the transfer function. In this way the non-linear interactions of all first-order 
spectral components are taken into account. 

$ Address to which correspondence should be sent: P. J. van Leeuwen, IMAU, University of Utrecht, 
Princetonplein 5, 3584 CC Utrecht, The Netherlands. 
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A first look at the resulting equations for the wave-board movement reveals the 
disadvantage of their use: they are complex, and it requires considerable computing 
time to obtain a second-order signal for the wave board, mainly due to the convolution. 
When the first-order spectrum is narrow, this procedure seems unduly expensive. This 
is because only the frequency components near the peak frequency will give rise to 
substantial sub- and superharmonics and the transfer function is only slowly varying 
near the spectral peak frequency. 

If the first-order spectrum is narrow, the first-order waves can be described by an 
oscillation with a slowly modulated frequency and amplitude. This was the motivation 
to use the method of multiple scales to describe the water motion. The same method 
was used previously to calculate the second-order waves in the absence of a wave 
board [e.g. see Mei (1983)]. The modulation acts on a longer time and length scale 
than the periods and wave lengths of the first-order waves. To incorporate these slow 
modulations, new time and length scales are introduced to describe these phenomena. 
So a cascade of new variables is introduced, hence the name of the method. 

In this method the calculation of the second-order surface elevations is reduced to 
a few multiplications in the time domain. In principle, the theory is valid for narrow- 
banded first-order spectra, but it can even be applied to a Pierson-Moskowitz spectrum. 
For a detailed discussion of the applicability of this method, the reader is referred to 
Klopman and Van Leeuwen (1990). 

In this paper we derive expressions for the wave-bound control signal for the gener- 
ation of second-order waves in a channel based on the method of multiple scales. This 
control signal is such that, in theory, it produces the second-order surface elevations 
away from the wave board as found by Mei (1983). The use of the multiple-scales 
method to find the wave-board motion to second order resembles the use of the same 
method by Agnon and Mei (1985), who determined the slow-drift motion of two- 
dimensional bodies in beam seas to second order. 

The structure of this report is as follows. In Section 2 the method of multiple scales 
is briefly discussed. The boundary-value problem for the water movement is formulated 
and the control signal for the wave board is derived. Then in Section 3 the experimental 
setup is described together with a short explanation of the method of data analysis. 
This is followed by an experimental test of the new control signal for bichromatic and 
continuous first-order spectra, described in Section 4. The paper is closed with some 
conclusions. 

2. DERIVATION OF THE CONTROL SIGNAL 

In this section the boundary-value problem for the water movement is given followed 
by a short outline of the method of multiple scales and the resulting expressions for the 
wave-board movement. Then the control signal for the wave board for the generation of 
random waves correctly up to second order is derived. Details on the method of 
multiple scales can be found in Mei (1983), for example; see also Klopman and Van 
Leeuwen (1990). 

2.1. Problem formulation 
In Fig. 1 a sketch is given of the channel equipped with a wave board. The water 

depth in absence of waves is h. 
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Fig. 1. Definition sketch, h is the water depth, X is the wave-board position on the still water level and 
h + l is the rotation ann. 

We assume that the fluid is inviscid and the basic equations for the velocity potential 
are the following. The continuity equation reads 

a~, = 0 (2.1) 

in which A is the Laplace operator and d~(x, z, t) the velocity potential. This equation 
follows from the conservation of mass, with the assumptions of incompressibility and 
irrotationality. The kinematic free-surface boundary condition reads 

~, + d~xG = ~bz on z = ~ (2.2) 

in which ~(x, t) is the surface elevation and the lower index indicates partial differen- 
tiation to the index variable. Because the surface elevation is not known a priori, we 
need an extra boundary condition at this boundary. The dynamic free-surface boundary 
condition is given by the Bernouilli equation 

1 
g ~ + q b , + 2 ( q b 2 + ( b 2 ) = 0 o n z = ~ .  (2.3) 

It states that the pressure at the surface is equal to the atmospheric pressure, which 
is taken as zero here. The boundary condition at the horizontal bottom is given by 

~bz = 0 on z = - h  (2.4) 

and states that the velocity of the water particles perpendicular to the bottom is zero. 
The boundary condition at the wave board reads 

+x - X+z = f ~ -  onx = X, (2.5) 
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in which X(t) is the wave-board position at z = 0 and f is given by 

Z 
f ( z ) = l +  h+ l 

with l ~ o0 for a purely translating wave board and l = 0 for a purely rotating wave 
board. Condition (2.5) states that the particle-velocity component normal to the wave 
board should be equal to the normal component of the wave-board velocity. Finally, 
far from the wave board the solution must describe the first-order waves with the 
bound second-order waves as given by Mei (1983). Free second-order waves should 
not occur. 

Because the free-boundary conditions are non-linear, perturbation techniques are 
used to reduce the non-linear boundary-value problem to a set of linear boundary- 
value problems. To this end the surface elevation ~, the velocity potential 6 and the 
wave-board position X are expanded in a series in a small non-linearity parameter •, 
which is equal to the wave steepness. 

Because the free surface is part of the problem to be solved it is not known a priori 
where the boundary condition at the free surface has to be applied. The amplitude of 
the surface elevation is finite but small, so Taylor series expansions will be carried out 
at this boundary. 

2.2. The method of analysis 
In this section the method of multiple scales is explained in short. The method is 

compared briefly with the conventional spectral method to calculate second-order 
effects. 

The objective of the perturbation method is to find expansions for the potential and 
the surface elevation which are valid for small-but-finite amplitude motions. It is 
convenient to introduce a small dimensionless parameter • which describes the order 
of the amplitude of the motion. In our case • is the wave steepness kA, in which k is 
the wave number and A is the wave amplitude. Next, it is assumed that the wave 
potential, the surface elevation and the wave-board position can be represented by the 

oo 
e " 6 ,  (2.6) 

= ~ •n ~n (2.7) 
n=l 

X = Z ~nXn" (2.8) 
n=l 

The expansions are substituted in the basic equations (2.1)-(2.5). Because 6, ,  ~, 
and X, are independent of •, the coefficients for each power of • are set equal to 
zero. This leads to n sets of linear equations, one for each order. Of course 6 , /6 , -1  
must be bounded in order to have a consistent perturbation scheme. 

In the conventional spectral methods the first-order quantities ~1 and 61 are decom- 
posed into Fourier series of the form 

following expansions: 

6= 
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N 

E1 = E Gin e-i~nt" ( 2 . 9 )  
n=0 

Then the Fourier series of the second-order quantities ~2 and 42 are found from the 
second-order equations. In this way the non-linear interactions of all first-order Fourier 
components are taken into account to obtain the second-order Fourier components. 
This results in complex expressions for the second-order quantities, especially for the 
wave-board motion. A way to decrease the number of calculations is to take only those 
non-linear interactions into account which occur between first-order Fourier components 
which contain more energy than a certain minimum. However, the resulting equations 
are still complex. 

In the case of a narrow first-order spectrum, a stronger assumption can be used. 
The assumption is that ~1 varies sinusoidally with a modulated amplitude and frequency. 
However, two problems occur when the straightforward expansions from Equations 
(2.6)-(2.8) are used in the governing equations. 

Firstly, the solution turns out to have a limited range of validity. So-called secular 
terms, such as et sintot, appear in the second-order terms. Thus, it can be seen that 
f~n/f~)n--i is not bounded as t increases, which means that the expansion is not uniformly 
valid as t increases. The problem arises from the fact that the (angular) frequency to 
is wave-amplitude-dependent in a non-linear system. A possible way to circumvent this 
problem is to introduce new variables describing slow-scale changes which take care 
of the frequency changes. These new variables are used to eliminate the secular terms 
by imposing so-called solvability conditions, which ensure that the expansions are 
uniform (see e.g. Nayfeh, 1981). 

Secondly, non-linear interactions of a sinusoidal wave with itself will only produce 
superharmonics in the straightforward expansion, while subharmonics are clearly pre- 
sent in nature. Also here the introduction of new variables, describing different time 
and length scales, will solve the problem. 

In the method of multiple scales the expansions for the velocity potential, the surface 
elevation and the wave-board position are considered to be functions of multiple 
independent variables, or scales. These new variables are introduced as 

t,, = txnt (2.10) 

Xn = Ixnx, (2.11) 

in which IX is a small parameter which describes the modulation of the first-order wave 
amplitude. So the variables with n > 0 will describe the slow modulation of the primary- 
wave amplitude and will be called slow variables hereafter. Because the slow variables 
will be used to describe the wave-amplitude variations, Ix will be of the order wave 
period over group period. The derivatives with respect to x and t become 

O O 0 
- + + O( ix  2) ot Oto Ix fftaa 

0 0 0 
- + + O( ix  2) ( 2 . 1 2 )  

Ox OXo Ix ~xxl 

so that a derivative to a slow variable is of a lower order than a derivative to a fast 
variable. In the following, the index 0 will be omitted for brevity. 
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In the case of a narrow-banded energy-density spectrum of the primary waves, the 
method of multiple scales can be applied. The assumption is that the water surface 
oscillates with the peak frequency of the spectrum with a modulated wave amplitude 
and frequency. The second-order effects arise from the non-linear interactions of the 
primary waves. The second-order superharmonics have twice the frequency of the 
primary waves, and produce sharper peaks and flatter troughs and thus give rise 
to wave asymmetry. The second-order subharmonics arise from the wave-amplitude 
modulations and appear as long waves bound to wave groups. 

Motivated by the multiple scales, we introduce the following notation: 
r n = n  

~n(X,Z,t) = ~ ~nm(Xo, Xx, tl,x2, t2 , . . . ) e  -imt°t , (2.13) 
m ~ - - n  

in which oJ is the angular frequency of the first-order waves and ~,,,_,,, = ~,,m to keep 
~,, real. An asterisk superscript denotes the complex conjugate of the term. Note that 
~,,m depends only on the slow variables. A similar notation will be used for +,, and 
x..  

As the solution method is posed so far, two small parameters are introduced, ~ and 
Ix. In order to simplify the problem, these two parameters will be related. A standard 
way to do this in perturbation analysis is 

Ix = ~x, (2.14) 

in which h is a parameter of order one. We will assume 

h = 1, (2.15) 

so the wave steepness is equal to the modulation parameter. A motivation for this 
choice comes from the characteristic shape of the first-order spectrum which we usually 
encounter, such as JONSWAP spectrum or a Pierson-Moskowitz spectrum. For such 
a spectrum the magnitude of the parameter Ix can be taken as a dimensionless spectral- 
width parameter. As the magnitude of e we can take the product of the wave number 
at the peak frequency and half the significant wave height. If we choose these values 
for the parameters, they are of the same order of magnitude. 

Now that the slow time and length scales are introduced together with the perturbation 
series for the potential, the surface elevation and the wave-board motion, the first- 
and second-order boundary-value problems can be formulated and solved. 

2.3. First-order solution 

The perturbation series for the wave potential, the surface elevation and the wave- 
board displacement plus the fast and slow time scales are incorporated in Equations 
(2.1)-(2.5). Then a Taylor series expansion of the free-surface boundary conditions 
is carried out in the vertical direction around z = 0, and of the wave-board boundary 
conditions in the horizontal direction around x = 0. The expansions lead to the following 
first-order problem: 

A+I = 0 (2.16) 

61,, + g61z = 0 on z = 0 (2.17) 
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I~)lz = 0 o n z  = 0 (2.18) 

dX1 
(~1 x = f ( z )  ~ -  onx  = 0 (2.19) 

with 

1 
~1 = - -  g ~)lt on z = 0.  (2.20) 

To solve the first-order problem we use as a further input that the first-order surface 
elevation far from the wave board is given by 

1 , )  ~;lei~ , ~1 = ~ (Ae i¢ + = ~11e -i°" + f o r x ~  oo, (2.21) 

in which t~ = kx - itot, A = A(t l ,Xl)  is the complex amplitude of the first-order waves. 
The magnitude ]A[ of A is equal to the envelope of the surface elevation in a time 
simulation based on the first-order energy-density spectrum which we want to have 
in the channel. The asterisk denotes the complex conjugate of the preceding term. 
Note that we used the notation defined in Equation (2.13). 

Suppose the wave-board position is given by 

X u  = ia , (2.22) 

in which a(t,) is the slowly varying amplitude of the wave-board stroke. Although Xlo 
is a first-order quantity, it does not show up in the first-order problem because the 
wave-board position is differentiated to a fast variable [see Equation (2.19)] and X,o 
only depends on the slow variables. It will produce the subharmonics as we will see 
in the second-order problem. 

Bi6sel (1952) found the solution to the first-order problem as 

¢x: 
cosh Q iaeikx cos Pj e_lj x a ,  (2.23) 

~bll = - O  c~sh q + E Cj c o s p j  
j = l  

in which 

2o [ 2ch 2 q ] 
B = k(sh2q + 2q) shZq k ~ + - i ) J  (2.24) 

2t0 [sin 2pj - 2c°s2pj ] 
Cj = - / j ( s i n  2pj + 2pj) lj(h +/ )J  (2.25) 

with 

Q = k ( z + h )  P j = l j ( z + h )  q = k h  p j = l j h ,  

1 q 
= ~ + PJ (2.26) 

n = ~ + sinh (2q) nj sin (2pj) " 

k is the positive and real root of to 2 = gk tanh kh and lj is the positive and real root 
of - to  2 = glj tan ljh with (j - ½)'rr < ljh <- j~r for j = 1, 2, 3, . . . . 
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Note that +1o does not show up in the first-order solution because it only depends 
on the slow variables. It was shown by Mei (1983, p. 615) to represent the bound low- 
frequency waves, arising from the amplitude modulation of the primary waves. It will 
show up in the second-order problem. 

The first-order surface elevation can be calculated from Equation (2.20) as 

and 

t°B ei~a + ~ggj=~ a ~11 = ~ -  Cje - l j  x ia (2.27) 

~1o = 0. (2.28) 

The first term on the right-hand-side of Equation (2.27) represents the progressive 
waves and the second term represents the evanescent modes. We will elaborate on 
these waves shortly. First we identify the quantity a. 

Far from the wave board, where only progressive waves are present because the 
evanescent modes have died out, ~11 should satisfy Equation (2.21): 

1 ikx ~al = ~Ae , (2.29) 

so that using (2.27) far from the wave board we can identify 

gA (2.30) 
a - ~ B "  

The first-order wave-board position is now given by 

Xla = G i A  (2.31) 

and the first-order potential becomes 

~bll g cosh Q iAei ~ + e_qX A . 
2o~ coshq _ B cos& 

(2.32) 

The first term on the right in Equation (2.32) is identical to that obtained by Mei 
(1983, p. 611). It represents the free waves travelling in the positive x-direction. The 
second term describes standing waves in the z-direction, with amplitudes decaying in 
the x-direction, the so-called evanescent modes. They arise because the wave board 
does not produce the correct velocity profile over the water depth, but only an 
approximation. So the progressive waves produced by the wave board do not fulfil the 
boundary condition exactly. Evanescent modes are generated so that the sum of the 
progressive waves and the evanescent modes fulfils the boundary condition to first 
order. The influence of the wave-board boundary condition is via the factors B and 
Cj, which indeed only occur in the second term. 
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The first-order surface elevation becomes 

l j~I CJ t 
~11 : a e  ikx + ~ .= -n e-  t x i z .  (2.33) 

2.4. Second-order solution 

We now consider the second-order problem and solution. We solve for the harmonic 
components separately to keep the work surveyable. First we treat the second-order 
first-harmonic case, then the second-order superharmonic case and finally the second- 
order subharmonic problem. 

2.4.1 
second-order first-harmonic potential are 

A021 = --2011xxl 

--002021 + g 0 2 1  z = 2i60011t 1 

021  = 0 

021. = -itof(z)X21 + f ( z ) X 1 1 , l  - 011x 1 

Xlo011  + - -  
h + l  

The solution to Equations (2.34) and (2.36) is given by 

The second-order first-harmonic solution. The governing equations for the 

o n z = O  

o n z = O  

- f ( z ) X 1 o 0 1 1 x x  

onx = 0. 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

021 = Dch Qe i~ + £j Ej cosP/e-lt ~ g Osh Q OA ei ~ 
2tok chq Oxl 

+~-~L'~[h'PjsinPJ+x(h'-l)c°sPj]e-Zt*~&lj . (2.38) 

The constants D, Ej and kj are determined below. The term with the factor xe-q x 
has not been published before and was overlooked by Hudspeth and Sulisz (1991). 
However, because this term vanishes at the wave board and far from the wave board, 
it does not contribute to the second-order wave-board control signal. At third order 
this term will be important. Note that terms which contain the factor xe i~ are unphysical 
because they give rise to an infinite growth of 021, as x increases. 

Far from the wave board we choose the corresponding surface elevation to be zero. 
(Note that we do have this freedom in the second-order problem.) The advantage of 
this choice is that the spectral density of the waves with frequencies close to the peak 
frequency of the energy-density spectrum is determined by the first-order waves only. 
We thus find far from the wave board: 

io~ 1 
~21 = g 0 2 1  -- g011 t l  = 0 forx  . (2.39) 

This equation is fulfilled when 
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D - gq th q OA g 3A 
2k{och q Oxl 2to2ch q O t l  " 

To find hj we use Equation (2.35). This equation can be rewritten as 

C;( A 
in which Cg is the group velocity given by Cg - 

Because A is independent of Xo, one has 

0A + 0A 
Ot~l Cg~xl=O 

and 

00} 

Ok" 

(2.40) 

(2.41) 

(2.42) 

(2.47) 

in which we introduced the constant R which is given by 

. O A  3oJ OA 
, ~  + ~ j  h j - ~  = 0. (2.43/ 

The first equation shows that the energy-transfer velocity is the group velocity Cg; 
the second equation determines hj as 

(0 /1 
h] = iCg \ olJ " (2.44) 

The determination of the constants Ej is a little more complex. It is found from a 
solvability condition on ~21, which is equal to Green's theorem on d0n and ~21 in this 
case [see for instance Foda and Mei (1981)]. It reads 

y'f: (~b11Ad#21 - -  ~b21A~bll) dxdz = [(bll~)21x -- ~b2ffbnx]x=0 dz (2.45) 
h h 

2i{o f :  
--~ - -  [1~1161 ltl ]Z=0 dx  g 

in which L denotes a position far from the wave board where the evanescent modes 
have died out. When the equations for d?l~ and ~bza are used in this equation, we obtain 
for the constants E/  

ghj ( ~ +  Cj ) OA (2.46) 
E , -  2o, cosp, 1j1 @t, 

Now that we have found the complete solution for ~21, we can determine the wave- 
board motion X2~ from Equation (2.37). This equation is integrated over depth to 
obtain 

o) lltl 0} kJ - -h  t~21x dz + h (~11xl dz - --g Xlod~xl (z = 0) 
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2h + 21 
R ["l AO't 

h + 2l " t~.,o) 

Note that R = 1 for a purely translating wave board. We can evaluate this equation 
as  

X 2 1 = [  g g R (  [ ( tanpj t (2.49) 
2oo2 B 2~TC; 1 + ~  Cj) b- 1 +  2pj / 

j = l  

-hjtanpj~ "J OZ RXlO i ~ Cj A .  
i=lPj + Pi]] Otl 2h 1 + j=l 

The first term in this equation describes the frequency modulation; it is proportional 
to OA/Oh. The second term contains the slow wave-board motion X~o. An expression 
for this quantity will be given below. 

2.4.2. The superharmonic solution. The governing equations for the superharmonic 
second-order potential are 

Ad~22 = 0 (2.50) 

t.O 5 
-4oJz~b22 + gd~z 2 = 3i ~ (~21 ~- 2ioa+21x + io~ l ldP l l x  x (2.51) 

'bZ2z = 0 (2.52) 

+llz (2.53) 
~22x = --  2 i ° ) f ( z ) X 2 2  - f ( z ) S l l f ~ l l x x  7t- X l l  h ~ l"  

The solution to (2.50) and (2.52) is given by 

~b22 = / ) c h  Qe i~ + ~j/~j cos Pie -/~ + Fch 2Q e eik~ 

+ ~j Gflos (Pj - iQ)e(ik-lP x + Eij Hi, cos (Pi + Pj) e-(l~+tP " • (2.54) 

The variables with the tildes contain the wave numbers which follow from the dispersion 
relations for free waves: 

4to 2 = gk tanh hk (2.55) 

and 

-4to 2 = g/j tan h/j. (2.56) 

Because we want all superharmonics to be bound waves, the coefficients/) and/~j 
are set equal to zero. The coefficients F, Gj and Hq can be found from Equation (2.51) 
as: 

3 o~ 
F = 16 sh 4 q iA2 (2.57) 
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1 Cj (6°~4 - 4igZklj - gZk2 + gZFJ) A 2 (2.58) 
Gj - 4to B 4~Zcos (pj - iq) + g(lj - ik)sin (pj - iq) 

1 CiCj (3t°4 + 2gZlilj + gZFj) iA 2 . (2.59) 
H;j - 4oJ B 2 4co2cos (Pi + Pi) + g(li +/j)sin (pi + pj) 

Now that we have found the full solution for the second-order superharmonic poten- 
tial we derive the corresponding wave-board motion. To this end Equation (2.53) is 
integrated over the depth to obtain 

fO f9 fO fl~bllz d~22 x dx = - 2itoX22 f ( z ) d z  - X u  f(z)+11xx dz + X~a h - + / d z .  h --h h h 
(2.60) 

The last two terms can be evaluated to give 

iR ¢22x dz - - -  XH¢~I (z = 0) . (2.61) )(22 = ~ h g 

This can be evaluated as 

iR [{3 gk  g )  2 g Cj 
X 2 2 = 2 - ~ [ \ 4 o ~ q  4B A - ~ E j ~ i A  2 

] _  ]~. Cj (6o~ 4 - 4g2klj - g2k2 + gZFj) a2 (2.62) 
+ 4o~ ' B 4~-~tan--fGc t~+g(/i-Tk) 

L Zi. CiCj (3t°4 + 2gZl'lj + g2~) ] 
+ 4o~ ' B 2 4to2tan -1 (Pi -~ Pj) + g(l~ + It) iA2 " 

Let us now turn to the subharmonic problem. 

2.4.3. The subharmonic problem. In this section we solve the boundary-value prob- 
lem for the second-order subharmonic wave-board motion. The subharmonic wave 
generation is relatively easy to handle because the subharmonic waves far from the 
wave board have no z-dependence,  so the equations can be integrated over the depth. 

The boundary-value problem for ~)10 is given by 

A~blO --- 0 

(l)lOz = 0 on z = 0 

qblOz = 0 on z = - h  

61Ox = 0 o n x  = 0.  

(2.63) 

(2.64) 

(2.65) 

(2.66) 

The solution to this problem is that qblo does not depend on the fast variables. We 
need higher-order equations to determine the dependence of 4)10 on the slow variables. 
Let  us now have a look at the problem for qb20. 

The boundary-value problem for 4)20 reads 
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A~b2o = 0 (2.67) 

(~20 z = (~l l~bl l  x "+" *)x on z = 0 (2.68) 

+2oz = 0 on z = - h  (2.69) 

+zox = Xlo,, - +1% - (X~H+11x~ + *). onx  = 0.  (2.70) 

This last equation can immediately be integrated to 

f° 1 
h (D20x dz = -RXloq - h * l o x ~  - (~l ld)  ~1 x + *) onx  = 0 ,  (2.71) 

in which we used Equations (2.16)-(2.19). An easy way to find Xlo is to ignore the 
solution for (I)2o and start from the continuity equation. It reads after integration over 
depth: 

~t + [(h + ~)U]x = 0 ,  (2.72) 

in which U is the depth averaged velocity given by 

- - - -  +x dz.  U=h+~ h 

The second-order subharmonic continuity equation is given by 

f~ +2oxdz + + = C.  ( 116 *) (2.73) 
h 

Note that ~1o, 1 = 0 from Equation (2.20). C depends on the slow variables and is 

determined by the fact that far from the wave board the subharrnonic velocity potentials 
describe the bound low-frequency waves which are not dependent on the fast variable 
x. So, far from the wave board +2ox must vanish and we find 

C = (~at+7~x + *)x=L, (2.74) 

in which x = L denotes a place far from the wave board where the evanescent modes 
have died out. The same equation can be found via Green's theorem for +1o and +2o 
[see Agnon and Mei (1985)]. 

If we combine Equations (2.71), (2.73) and (2.74), we find for the wave-board 
motion 

Xlo,, = R +1% + 11x + 

Note that we did not have to solve for qbzo. Via the continuity equation we are able 
to link the wave-board position to the variables far from the wave board. Recall that 
+10 does not depend on the fast variables. This result can be interpreted as that the 
evanescent modes give rise to low-frequency motion close to the wave board which 
are described by the part of +2o depending on the fast space coordinate. 

Now we will replace +1o by ~2o in Equation (2.75). To do this we need the third- 
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order subharmonic continuity equation far from the wave board, where the evanescent 
modes have died out. It is given by 

420,, + h61ox,~, + (4H6 ~lx + *)xl = 0. (2.76) 

The surface elevation 420 describes the bound waves and the propagation velocity of 
these waves is the group velocity of the first-order waves C 8. We thus have 

42% = - Cg 4ZOx . (2.77) 

With this equation the continuity equation (2.76) can be integrated with respect to 
xl to obtain 

Cg [~2o - S~] = h61ox, + (~11d~ ~lx + *) (2.78) 

in which $1 is an integration constant. The wave-board motion can now be expressed 
with Equation (2.75) as 

Cg 
Xaoq = R -h- [42o - S 1 ] .  (2.79) 

This equation can be integrated to obtain the control signal for the wave board: 

Cg f]~ Xlo = R ~-  (~2o - $1) dt , ,  (2.80) 

and the constant $1 is found by demanding that the wave-board stroke remains finite: 

$1 = 420, (2.81) 

where the bar indicates the value of the quantity averaged over tl. The equation for 
the wave-board motion (2.80) states that the volume flux due to this motion produces 
the surface elevation of the low-frequency waves, just as one would expect. 

An expression for 42o can be found from the boundary-value problem for 63o or 
from the second-order Bernoulli equation, We will use the last method because its 
physical relevance is more clearly understood. The Bernoulli equation on the free 
surface reads 

1 
g4 + d~, + ~ ([d~x[ z + t6z[ 2) = 0 on z = ~. (2.82) 

The second-order subharmonic version of this equation reads 

(o 4 
g~2o + +1o,, + 161,J 2 - g5161112 = 0 on z = o. (2.83) 

To obtain this equation we made use of the first-order kinematic and dynamic free- 
surface boundary conditions and a Taylor expansion around z = 0. The third-order 
subharrnonic continuity equation was given by: 

~2oq + h61o,,x, + (4n6 ~1, + *)x, = O. 
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Now we use the fact that the bound subharmonic waves travel with the group velocity 
Cg of the first-order waves and eliminate the velocity potential ~blO by substitution of 
Equation (2.83), and the use of Equation (2.77) and a similar equation for ~b~o. We 
then find for the surface elevation 

1 [hl~bllxl2 _ to4h . ] 
gzo gh - I + , , I  = - Cu ( 111 ) 11 x "~ * )  • (2.84) 

The right-hand side can be evaluated with help of the expressions for the first-order 
quantities to obtain 

g( 2n - ~)IAI 2 

420 = gh - Cgg (2.85) 

in which n is given by Equation (2.26). This equation can be written as 

S 
;20-  p(gh - ~ )  (2.86) 

in which S is the radiation stress of the first-order waves. This equation was first 
obtained by Longuet-Higgins and Stewart (1962). If we use this in Equation (2.80) 
for the slow wave-board motion we obtain 

Xlo = R ~_g~Z ~__~ ~1 ([A[2_ ~--'~) d/1. (2.87) 

An important remark has to be made here. From Equation (2.87) one can get the 
impression that Xlo is of second-order magnitude because it is proportional to IAI 2. 
However, due to the integration with respect to q the magnitude of this term is first- 
order. (Its magnitude is of order ~2/1~.) 

The total control signal for random wave generation up to second order now becomes 

X ( t , t l )  = X11(t1) e -'<°` + X~o(q)  + X21(tl) e - i ' t  + X22(tl) e -2i°'t + * 

(2.88) 
The quantities on the right-hand side are found in Equations (2.31), (2.49), (2.62) 
and (2.87). 

2.5. Implementat ion  

Now that we have obtained the control signal for the wave board up to second 
order, we will give the recipe for the generation of the complete control signal. 

Firstly, the peak frequency of the given first-order energy-density spectrum has to 
be determined. At this frequency the wavenumber k, the group velocity Cg and the 
quantities q and Ps (given in Equation 2.26) have to be calculated. 

Secondly, a time series for the required first-order surface elevation ~11 has to be 
generated from the given first-order energy-density spectrum. In this way A(tx) is 
determined. We used the random-amplitude/random-phase method described by Tucker 
et al. (1984). 
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Thirdly, the control signal for the wave board has to be calculated in the time domain 
from Equation (2.88). We perform the time integration in Equation (2.87) with the 
modified midpoint rule and the time differentiations with central differences. The 
accuracy of both operations is second order. 

These three steps are sufficient to obtain the control signal for the wave board 
correct up to second order. To obtain this signal with our narrow-banded approximation 
method, an FFT and a few extra multiplications have to be performed. In the frequency- 
domain exact methods an FFT, a few extra multiplications and a convolution are 
needed. An FFT needs 4pN multiply-add operations in which N is the number of time 
steps and p = 2log N [see for instance Bendat and Piersol (1986)]. For the convolution 
in the frequency-domain methods N 2 operations are needed, as can be observed in 
Barthel et al. (1983) and Sand and Mansard (1986). If we neglect the extra multipli- 
cations (of which more are needed in the frequency-domain approach) the gain in 
computational speed of the new method compared to the conventional method is 

4pN + N2 _ 1 + ~  N " 
4pN 4p 

In a typical experiment N will be of the order of 104 or more, so that the gain in 
speed is of the order of 100. 

Note that the equations can also be used to generate second-order monochromatic 
and bichromatic waves. 

3. EXPERIMENTS 

3.1. Experimental arrangement 

To verify the theory, experiments were conducted in a wave channel of length 40 m 
and width 0.8 m. At 19 m from the wave board a 1:25 concrete slope started (see Fig. 
2). In one experiment a concrete bar of height 10 cm was placed on the sloping bottom. 
This bar has a Gaussian shape. The channel is equipped with a hydraulically driven 
wave board operating in translatory mode. 

The experiments were performed with bichromatic and continuous first-order spectra. 
In the case of the bichromatic energy-density spectrum of the first-order waves, four 
wave-height meters were placed at distances of respectively 10, 14, 16 and 18 m from 
the mean wave-board position. The reflection of the beach was reduced by absorbing 
material on the water line to be able to concentrate fully on the generation. The still- 
water depth was 0.50 m and the sample frequency was 50 Hz. 

0.5 m 

w a v e b o a r d  

< ~ I I I l 
I I I 7 [ ~ ~ j / . - -  
I - ~ ,  , . . . .  b - ,  I- '~ .[~--, / f ~  ,~ ~ ~ × . . . s . . ~  j -  

T i . . . . . . . . . .  ~-~1 .... ' : ~ /  < ; f  .... ~1 ~ .... ~-~ .... ~ :~ . . . .  ~ - ~  
I ~ J J  1 "25 

i > \ 
18.89 m 

Fig. 2. Experimental set-up. 
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In the case of the continuous first-order spectra six wave-height meters were used 
at respectively 6, 10, 12, 14, 15 and 18 m from the mean wave-board position. The 
absorbing material on the water line was not present. The still-water depth was 0.42 m 
and the sample frequencies were 10 and 20 Hz. 

3.2. Reflection on the wave board 

To avoid re-reflection of waves against the wave board, it is equipped with an active 
wave-absorption system. Wave-height meters are fixed to the wave board, which 
measure the instantaneous water-surface elevation on the board. This signal is integrated 
in time to obtain a wave-board position. This position is then compared with the 
previously calculated position and the difference is compensated for by an extra move- 
ment of the wave board. In this way waves which are reflected from the beach are 
absorbed. This absorption system has been used successfully by Kostense (1984). 

We performed a test of this absorption system. To this end the slope was replaced 
by a vertical wall 38 m from the wave board. The reflection coefficient of the wave 
board at a range of frequencies was determined. This coefficient was obtained in the 
following way. The wave board produced waves of a certain frequency until a steady 
situation occurred with standing waves. A wave-height meter was placed at a surface- 
elevation amplitude maximum and this maximum was recorded. Then the absorption 
system was switched on. The amplitude of the standing waves was recorded again when 
waves, which were partially reflected by the wave board, were reflected on the vertical 
wall and reached the wave-height meter again. At that moment the waves coming from 
either side were both partially absorbed by the wave board once. The reflection 
coefficient is given by the ratio of latter to the former recorded amplitude. 

In Fig. 3 the variation of the reflection coefficient as function of frequency is given. 
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Fig. 3. Reflection coefficient of the wave board with active wave absorption as a function of frequency. 
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For frequencies higher than 0.1 Hz the reflection coefficient is well below 10%, which 
is acceptable for our purpose. High-frequency waves will break on the beach and their 
reflection back to the wave board will be very small. Low-frequency waves will reflect 
nearly 100% on the beach, but are of second order. The reflection at the wave board 
will reduce them to third order and we want to test the second-order theory. 

A problem is formed by the waves with frequencies lower than about 0.05 Hz. The 
reflection coefficient of the wave board is too high in this case. It means that these 
waves are re-reflected by the wave board and will travel to the beach again. Of course, 
this does not happen on a natural beach. The reason for this high reflection is probably 
leakage of water below and along the sides of the wave board. In our case it means 
that we can only test the model down to 0.05 Hz. However, for instance surf-beat 
phenomena are usually above this frequency (at the used laboratory scale). 

3.3. Data processing 

The data are Fourier transformed and the influence of noise which is uncorrelated 
with the wave signals is reduced by means of complex harmonic principal component 
analysis (CHPCA). This last method was developed by Wallace and Dickinson (1972) 
and has been widely used in meteorology and oceanography. Recently, the method 
found its way in coastal engineering. An example of this is given by Tatavarti et al. 
(1988), who showed with CHPCA that the reflection coefficient of low-frequency waves 
can easily be overestimated when using standard cross-spectral analysis, because noise 
tends to push the reflection coefficient to one. 

The idea behind the method is that the wave signals and the noise signals are 
uncorrelated. This means that the noise does not show up in the quadrature spectra 
of the different sensors. However, noise does show up in the coincident spectra. In 
the CHPCA the quadrature spectra are used to reduce the influence of noise in the 
coincident spectra. For more details about this method, the reader is referred to 
Preisendorfer (1988) and the articles mentioned above. 

The resulting low-frequency wave signals were split into outgoing bound, outgoing 
free and incoming free waves. ("Outgoing" and "incoming" means travelling from and 
towards the wave board, so we observe the system from the wave board.) This 
decomposition makes use of the difference in wavenumber or in phase speed of different 
low-frequency waves. For the bound waves this phase speed is Cg, the group velocity 
of the first-order waves. The free waves both have a phase velocity of ~ ,  but of 
opposite sign. 

3.4. Noise level and error analysis 

The noise level and the error analysis need special attention. In the bichromatic 
case, we found from parts of the low-frequency spectrum in which no energy was 
present theoretically that the noise level, defined as the root-mean-square of the 
resulting energy, was about 0.3 mm. Increasing the measurement time, and hence the 
accuracy of the estimator of the amplitudes, did not reduce this value. This noise level 
of 0.3 mm was also used in the continuous spectrum cases. It corresponds to an energy 
density of 0.9 mm2/Hz in our case. 

The uncertainties in the estimators of the spectral densities of the energy density 
spectra before decomposition are the normalized random errors, defined as 
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X/variance(energy density) [ 2 
(3.1) 

~r = energy density = ~ d.o.f. 

in which d.o.f, is the number of degrees of freedom of the estimator [see for instance 
Bendat and Piersol (1986)]. The d.o.f, in the estimations of the low-frequency energy 
densities cannot be too high, because then the frequency bins become too broad, in 
which case the wave numbers of the low-frequency waves are not known accurately 
enough for the decomposition to make sense. 

After decomposition, the uncertainties are not precisely known. Firstly, we do not 
know the influence of the CHPCA method on the uncertainties. This is due to the 
fact that the method uses the information of all wave-height meters to reduce the noise 
level, and the wave signals of different wave-height meters are by no means inde- 
pendent. Secondly, after the noise reduction, a least-squares method was used to obtain 
the different low-frequency wave components and again the wave signals from the 
different wave-height meters are not independent. So the standard techniques to obtain 
uncertainties of the spectral estimators cannot be applied. 

We have determined approximate error estimates in the following way. The bound 
low-frequency wave spectral densities are predicted correctly from first-order 
energy-density spectra by full second-order theories such as that of Ottensen-Hansen 
(1978) and Laing (1986). (See for instance laboratory experiments by Kostense in 
1984.) The errors in the estimates of the spectral densities of the bound waves are 
estimated to be the deviation from the calculated spectral densities from the theory of 
Laing (1986), based on the measured first-order energy-density spectrum. This first- 
order spectrum is taken equal to the measured spectrum around the peak frequency 
of the first-order waves. Of course these spectral densities contain their own uncertain- 
ties, but to obtain these spectra the degrees of freedom can be greatly increased. In 
this way we obtain standard deviations in the estimates of the energy-densities of 25%. 

4. TEST OF THE NEW CONTROL SIGNAL 

In this section, the new control signal is tested for bichromatic and continuous 
energy-density spectra of the first-order waves. The frequencies of the bichromatic 
first-order waves ranged from 0.6 to 0.8 Hz, with amplitudes ranging from 1.6 to 3.2 cm 
(see Table 1). This resulted in low-frequency wave amplitudes of about 2 mm. The 
continuous spectra are of the JONSWAP type with peak frequencies of 0.63 and 
0.60 Hz and significant wave heights of 6 cm. In one of the test cases an artificial bar 
was placed on the beach. For all cases only the subharmonic part is tested. The criterion 
for a correct control signal is that outgoing free low-frequency waves should be absent 
up to second order. 

4.1. Bichromatic spectra 

Table 1 gives the test results for the bichromatic case. As stated in the preceding 
section the noise level is 0.3 mm. Because the non-linearity parameter e (or ~) is 
about 0.1, the expected level of third-order effects is also of the order of 0.3 mm. 

If the new generation method for the second-order waves is correct, the outgoing 
free wave signals must at most have amplitudes of those of the noise or due to third- 
order waves. In three of the eight tests, the amplitudes of the outgoing free waves are 
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Table 1. Test for bichromatic case. fl and t2 are the frequencies of the first-order waves and al and a2 the 
corresponding amplitudes. "Laing" is the amplitude of the bound wave following Laing (1986). "Bound", 

"Free out" and "Free in" denote the amplitudes of the corresponding measured waves 

High-frequency wave amplitudes Low-frequency wave amplitudes 

fl 12 al  a2 Laing Bound Free out Free in 
(Hz) (Hz) (cm) (cm) (mm) (mm) (mm) (mm) 

0.6 0.7 1.77 2.97 1.9 1.9 0.0 1.5 
0.6 0.7 2.79 2.12 2.1 2.5 0.5 1.7 

0.7 0.8 1.73 3.12 1.4 1.4 0.2 1.2 
0.7 0.8 2.77 2.21 1.6 1.8 0.6 1.4 

0.6 0.75 1.65 3.10 1.7 1.5 0.3 1.4 
0.6 0.75 2.77 2.25 2.1 2.1 0.5 1.8 

0.6 0.8 1.55 3.18 1.6 1.4 0.3 1.2 
0.6 0.8 2.68 2.37 2.0 2.1 0.3 0.7 

above the 0.3 mm level but still of the same order, so we can conclude that the new 
control signal does work correctly for bichromatic spectra. 

4.2. Continuous spectra 

In Fig. 4 the measured energy-density spectrum is given for the JONSWAP case 
with a peak frequency of 0.63 Hz, a peak-enhancement factor of ~/= 3.3 and a signifi- 
cant wave height of 0.06 m. The sample frequency in this case was 10 Hz. Figure 5 
gives the corresponding low-frequency spectra of the different low-frequency waves. 
The frequency range is 0.05-0.35 Hz. The spectral densities of the incoming waves are 
divided by 10 to fit into the figure. 
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Fig. 4. Measured one-sided energy-density spectrum in the JONSWAP case, tr = 0.06. 
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Fig. 5. One-sided low-frequency wave energy-density spectra. The solid line is the theoretical bound low- 
frequency wave spectrum (Laing, 1986). The other lines are the spectra of the decomposed waves: the line 
with the + for the outgoing bound waves, the line with the x for the outgoing free waves and the line with 
the boxes for the incoming free waves. The spectral densities of the incoming free waves are divided by 10 

to fit into the figure. 

The normalized random errors of the low-frequency wave signals before decompo- 
sition was 0.28 to obtain a frequency resolution of 0.01 Hz. We found that this value 
of the frequency resolution gave measured spectral densities of the bound waves 
which were closest to the theoretical values obtained from Laing (1986). After  the 
decomposition, the spectral densities were averaged over the frequency intervals to 
reduce the sampling error. As noted before,  the errors in the estimates of the spectral 
densities are of the order of 25%. 

The energy densities of the outgoing free low-frequency waves do not exceed the 
noise level of 0.9 mm2/Hz. To calculate the energy-densi ty level of the third-order 
waves, we note that the non-linearity parameter  e (or ~) is about 0.1, so that the 
energy-densi ty level of third-order waves, which is proportional to C,  is about 
0.02 mm2/Hz. So in this case, the noise level is much higher than the expected 
energy-densi ty level of third-order waves. Outgoing low-frequency waves are also 
produced by reflection from the wave board of the incoming waves. We can use the 
measured reflection coefficients (Fig. 3) and the measured energy densities of the 
incoming waves to determine the reflected energy densities. We then find that only 
for the lowest frequencies (up to about 0.07 Hz)  the reflected energy density is compara- 
ble with the noise level; for all other  frequencies the reflected energy densities are 
much lower. 

To gain more insight into the significance of the estimated energy-densi ty levels of 
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the outgoing free waves, we computed the coherence between the envelope of the high- 
frequency waves and the estimated outgoing free low-frequency waves. The envelope of 
the high-frequency waves was obtained from the Hilbert transform of the high-pass 
filtered time series [see Bendat and Piersol (1986)]. The 95% confidence interval on 
zero coherence was estimated by taking the d.o.f, of the low-frequency spectral esti- 
mates before the CHPCA multiplied by the number of points which were used in the 
averaging after the least-squares fit. This results in 65 d.o.f., which corresponds to a 
coherence of about 0.2. Note that the actual confidence interval will be somewhat 
above this value. As shown in Fig. 6, the coherences are not significantly different 
from zero, as would be expected if the low-frequency signals were noise. Of course 
this result does not prove that the outgoing low-frequency free-wave signal is actually 
due to noise, it gives only an indication that this can be the case. 

In Fig. 7 the measured energy-density spectrum is given for a much broader spectrum 
of the first-order waves. The peak frequency is 0.60 Hz and the spectral width is slightly 
more than for a Pierson-Moskowitz spectrum. The significant wave height was 0.06 m 
and the sample frequency was 20 Hz. Figure 8 gives the corresponding spectra of the 
different low-frequency waves. Again, the spectral densities of the incoming waves are 
divided by 10 to fit into the figure. 

The normalized random error was 0.41 for the low-frequency wave energy densities 
before decomposition to obtain again a frequency-bin width of 0.01 Hz. After decompo- 
sition we averaged over five frequency intervals to increase accuracy. The error in the 
spectral densities is again estimated to be 25%. 

For most of the frequencies, the energy densities of the outgoing free waves do not 
exceed the noise level of 0.9 mm2/Hz. The value of the non-linearity parameter can 
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Fig. 6. Coherence between the high-frequency envelope and the outgoing free low-frequency waves for the 
JONSWAP case. The boxes are the estimates for the coherences and the drawn line indicates the 95% 

confidence interval on zero coherence. 
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Fig. 7. Measured one-sided energy-density spectrum for the broad spectrum case, ~, = 0.08. 
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Fig. 8. One-sided low-frequency wave energy-density spectra. The solid line is the theoretical bound low- 
frequency wave spectrum (Laing, 1986). The other lines are the spectra of the decomposed wave components: 
the line with the + for the outgoing bound waves, the line with the × for the outgoing free waves and the 
line with the boxes for the incoming free waves. The spectral densities of the incoming free waves are 

divided by 10 to fit into the figure. 



190 P. J. van Leeuwen and G. Klopman 

again be estimated as 0.1 so that the energy-density level of the third-order waves is 
again about 0.02 mm2/Hz. So also in this case the noise level is much higher than the 
expected energy-density level of third-order waves. Reflection from the wave board 
of incoming waves produces only for the lowest frequencies an energy-density level 
of the reflected waves comparable to the noise level; for all other frequencies the 
energy densities from reflection are much lower. 

In Fig. 9 the coherence between high-frequency wave envelope and outgoing low- 
frequency waves is given. The 95% confidence interval on zero coherence is obtained 
in the same way as above, which results in a threshold level of about 0.3. This time 
two points are on or a little above the 95% confidence interval on zero coherence but, 
as stated above, the coherence level of the confidence interval will be a little higher 
than 0.3. So also in this case we find that the outgoing free wave signals are probably 
due to noise. 

5. CONCLUSIONS 

A new time-domain method has been presented for the generation of random waves 
in a channel correct up to second-order in the wave slope. The derivation of the control 
signal for the wave board is based on multiple-scale perturbation-series analysis. In 
frequency-domain methods a convolution has to be performed, which is replaced in 
the time-domain method by a few multiplications. Therefore, the new method is 
computationally much more efficient than the conventional method. 

The control signal was tested for the second-order subharmonic waves for bichromatic 
and continuous energy-density spectra of the first-order waves. The criterion for a 
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Fig. 9. Coherence between the high-frequency envelope and the outgoing free low-frequency waves for the 
broad spectrum case. The boxes are the estimates for the coherences and the drawn line indicates the 95% 

confidence interval on zero coherence. 
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correct control signal was that free low-frequency waves travelling away from the wave 
board must have amplitudes of third order at most. 

The influence of noise in the data was greatly reduced by the CHPCA.  The determi- 
nation of the uncertainties in the spectral estimates could not be performed in a 
standard way. This is because more than one wave-height meter is used in the analysis 
and these wave-height-meter signals are no longer independent due to the principal- 
component analysis. 

In the case of a bichromatic first-order energy-density spectrum, all tests showed 
free low-frequency waves propagating away from the wave board, which were at most 
of third order or of the same order as the noise level. So the new control signal for 
the wave board worked correctly in this case. 

In the case of continuous first-order energy-density spectra two tests were performed, 
one with a JONSWAP-Iike spectrum and one with a broader spectrum. In both tests 
the energy-density levels of free low-frequency waves propagating away from the wave 
board were well below that of the bound low-frequency waves, which indicates that 
the new method is correct qualitatively. The noise level was too high to determine 
whether these free waves were of third order. However,  the coherences of the first- 
order wave amplitude and the outgoing free low-frequency waves were not significant, 
which indicates that these estimated free-waves signals were probably due to noise. 

An assumption in the new method is that the first-order energy-density spectrum is 
narrow banded. The test case with the JONSWAP-Iike spectrum certainly fulfils this 
requirement, but the other test was done with a first-order energy-density spectrum 
which was slightly broader than a Pierson-Moskowitz spectrum. However,  both tests 
showed similar results, which indicates that the new method can also be applied to 
rather broad-banded spectra. 
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