
A parallel data assimilation model for

oceanographic observations

Fons van Hees � Aad J� van der Steen

fvanhees�steeng�phys�uu�nl
Computational Physics� Utrecht University

P�O� Box ������ ���� TD Utrecht

The Netherlands

Peter Jan van Leeuwen

leeuwen�phys�uu�nl

Institute for Marine and Atmospheric research Utrecht

Utrecht University

P�O� Box ������ ���� TA Utrecht

The Netherlands

June 	
� 	���

Abstract

In this paper we describe the development of a program that aims at

the optimal integration of observed data in an oceanographic model describ�

ing the water transport phenomena in the Agulhas area at the tip of South

Africa� Two parallel implementations� MPI and OpenMP� are described and

experiments with respect to speed and scalability on a Compaq AlphaServer

SC and an SGI Origin���� are reported�

� Introduction

When one wants to study the dynamics in an area where numerical models have
serious shortcomings a possible step forward is to use data assimilation� In data
assimilation all information that is present in observations of the system is combined
with all information we have on the dynamical evolution of the system� i�e�� a
numerical implementation of the physical laws� This can be done by using ensemble
models that do not calculate the evolution of a single state but rather a large amount
of di�erent states� All the states in this collection� the ensemble� should correctly
represent the partially known current state of the system under consideration� In
our case we apply this data assimilation technique on water transport phenomena
in the Agulhas area at the tip of South Africa�

�

� MODEL AND METHODS �

The art of ensemble smoothing is all about �nding that evolution under consid�
eration �i�e�� the ocean� that remains close to the observations while still obeying
the numerical implementation of the dynamical laws relatively closely� The assimi�
lation of the observed data is done by adjusting the ensemble members using these
observations to ensure that their quality in representing the mean and their spread
around the mean do not deteriorate� The principles of smoothing� �ltering� and
assimilation of observations are for instance treated in 	��
��

As each of the ensemble members evolves independently of the others during
the time between two data adjustments this is a particularly good starting point
for parallelisation� This is indeed how the parallelisation is realised in the program
with considerable success and we conducted timing experiments with two parallel
implementations� MPI and OpenMP� on an SGI Origin�

 and� to a lesser extent�
on a Compaq AlphaServer SC�

The structure of this paper is the following� in section �� we brie�y discuss the
model and the numerical methods as implemented in the program� the restructuring
of the code� and the parallelisation strategy� In section � we present the results
of the timing experiments with a test problem of suitable size� and in section �
we analyse these results with respect to scalability and possible sources of further
improvement�

� Model and methods

��� The data assimilation model

The data assimilation method used is the Ensemble Kalman smoother� as described
by Evensen and Van Leeuwen in 	��� We provide a brief description of the idea be�
hind data assimilation and present the resulting equations� Details and derivations
can be found in 	��� and 	���

At the heart of nonlinear data assimilation lies the notion of combining prob�
ability densities of model and observations� By expressing the problem in terms
of probability density functions a Bayesian estimation problem can be formulated�
In Bayesian statistics the unknown model evolution � is viewed as the value of a
random variable ��

The unknown probability density f��� of evolution of states � is related to
the model being used� It is called the prior probability density in contrast to the
posterior probability density f�Dj�� that� according to Bayes� Theorem is given
by

f��jD� �
f�Dj��f���R
f�Dj��f���dL�

� ���

The �rst factor in the numerator� the density f�Dj��� is the probability density
of observationsD given that the model is in state �� The second factor is the prior
model density f���� The denominator is the probability density of the observations�
expressed as an integral over all model states of the joint probability density of
observations and model� We assume that the probability density of the observations
f�Dj�� is known� for instance a Gaussian� Because the model variable � is given�

� MODEL AND METHODS �

the mean of the Gaussian density will be the measurement of the optimal model
state� while its variance is the measurement error�

The prior probability density f��� of the model evolution is more di�cult to
obtain� In principle the Kolmogorov equation describes its evolution� But since
the probability density for the model state has a huge amount of variables� it is
computationally not feasible for real oceanographic or meteorological applications
to determine its evolution� The model evolution of the density could in principle be
determined from ensemble integrations� In simulated annealing and related meth�
ods this probability density is generated approximately� However� these methods
need a huge amount of storage and iterations due to the random nature of the
probing� On the other hand� knowledge of the complete density is too much infor�
mation� One is interested only in its �rst few moments� e�g�� a best estimator of
the truth and its error variance� In that case ensemble or Monte�Carlo experiments
can be extremely useful� The most�used estimator is the minimum�variance esti�
mator� in which only integrated properties of the density are needed� The ensemble
smoother is an example of an approximate variance�minimizing estimator 	��

The approximation made is that the prior� or model evolution probability den�
sity is Gaussian distributed in state space at all times� As is explained in 	�� and
	��� the optimal model evolution is given by

�� � �F �RT
B� ���

Here� �F is the best estimate of the model evolution without data assimilation� B
are the representer coe�cients� which can be determined from

�R�W���B �D � L	�F �� ���

where W�� is the error covariance of the observations� the representer matrix R
is the measurement�operator covariance� given by

R � E
�
L 	� � �F � L

T 	� � �F �
�
� ���

where E	��� is the expectation operator� and in which L	��� is the measurement
operator� assumed to be linear� The representers R� which are the model �eld�
measurement operator covariances� given by

R � E 	�� � �F �L 	� � �F �� � ���

The representers are crucial in the data�assimilation problem� A representer de�
scribes how the information of the corresponding measurement in�uences the so�
lution at all space�time points� Bennett 	�� gives an excellent treatment on the
meaning of representers� The representer coe�cients determine how strong each
representer should be counted in the �nal solution� They depend on the model�
observation mis�t and on their error covariances� Clearly� an important ingredient
in the success of the inversion procedure is the conditioning of the sum of the
representer matrix and the error covariance of the observations� as given in ����

The error covariance of the optimal estimate is given by

Q �� �� � Q�F�F �RT �R�W�����R �
�

� MODEL AND METHODS �

Van Leeuwen has shown 	�� that the assumption of Gaussianity leads to an error
in proportional to the error covariance of the optimal state� So� the smaller this
error� the better the ensemble smoother performs� Note that this will be one of the
reasons that data assimilation methods that use the Kalman �lter update equation
work at all in �strongly� nonlinear situations� as long as the �lter does not diverge
the optimal estimate will be relatively close to the minimum�variance estimate�

��� Physical domain and assimilation data

Although the techniques disscussed above are generally valid� in the code in which
the model is implemented a region of particular interest was chosen� the tip of
South Africa with the Agulhas Stream in the surrounding ocean� This amounts
to a region �
���� South and �
���� East� By considering � vertical layers in
the ocean the region of interest is represented by a ��������� ��D grid� The
data to be assimilated within this computational domain are available from the
TOPEX�Poseidon satellite� The satellite covers the domain approximately every
�
 days� The analysis phase in the model is therefore chosen to span the same time
period� As remarked� although the methodology used is general� the topographical
details �land points� depth information� etc�� are explicit in the code and do not
allow a simple generalisation�

��� Model implementation

At the highest level the model performs two computational intensive tasks� gen�
eration of the ensemble members and the computational �ow part that describes
the evolution of the stream function � in time� In addition� there is a non�trivial
initialisation phase and every ��
 hourly time steps an analysis of the ensemble
members is done to obtain an optimal estimate from the past period� This infor�
mation is used to adjust the ensemble that forms a basis for the evolution in the
next period�
In the original Fortran �� code the generation of the ensemble members and the
�ow part were not clearly separated� To obtain a better maintainability of the code
we decided to separate these two parts leading to a Fortran �
 part for ensemble
generation and analysis and a Fortran �� part for the evolution of the �ow� The
serial program thus obtained has a very simple structure�

Program EnsFlow

Use Field � Contains the e�g� psi �stream function�

� psiRandom� psiEns

Implicit None

Integer i� steps� tStart� tEnd

write �� �Give number of time�steps�

read �� steps

tStart � 	 � Usually one starts at t � 	�

tEnd � tStart
 steps � tEnd is time in units of �steps��

� MODEL AND METHODS �

amplitude � prescribedAmplitude

Call InitializeModel �psi�

�Initiate ensemble

Do i � �� n�e � Loop over number of ensemble members�

Call GenerateRandomField �psiRandom�

psiEns�i� � psi
 psiRandom

End Do

� Start of a possible assimilation loop�

� Time evolve ensemble

Do i � �� n�e � loop over number of ensemble members

psi � psiEns�i�

Call TimeEvolve �tStart� tEnd� psi�

psiEns�i� � psi

End Do

� Analyse and update Ensemble�

Call AnalyseEnsemble �psiEns�

� Random perturbation of ensemble�

Do i � �� n�e � loop over number of ensemble members

Call GenerateRandomField �psiRandom�

psiEns�i� � psiEns�i�
 amplitude � psiRandom

End Do

� End of a possible analysis loop�

End Program EnsFlow

In this program the routine InitializeModel reads various data �les like the bot�
tom topography and initial state data� This takes a negligible amount of time� The
main time in this routine is spent in preprocessing the data such that a �rst initial
state is generated that is stored in array psi�
Routine TimeEvolve does the time evolution of the �ow� GenerateRandomField
generates a random �eld that is added to an ensemble member� and AnalyseEnsemble
performs the analysis phase every after ��
 time steps� The routines InitializeModel
and TimeEvolve are both black boxes for the user but they are not independent
due to the data that are shared through common blocks between the routines�

The routine GenerateRandomField generates a random �eld that �possibly mul�
tiplied with an amplitude� is added to the state �� These random �elds have zero
mean and a prescribed variance� The correlation between � values at di�erent grid
points in the horizontal direction is set at e�d

���� � where � is a prescribed correla�
tion length and d is the distance between the grid points� The correlation between
the vertical layers is obtained by by combining two ��D �elds with appropriate
weighting coe�cients�

As explained before� every ��
 time steps ��
 days� an analysis of the ensemble
is performed� We brie�y mention the numerical steps and data stuructures used

� MODEL AND METHODS

according to the data assimilation model described in section ��� following 	��� We
�rst determine for each of the ne ensemble members �s the value that corresponds
to the nd observations leading to a matrix L � L	�� of size ne � nd� The matrix
�L is obtained by subtracting the ensemble average L form L and we arrive at the
computational equivalent of formula ��� by computing

P �
�

ne
��L�T ��L� � qd

�I� ���

In this equation qd
�I is an nd � nd matrix describing the error covariances of the

observations� Because these are assumed to be uncorrelated we just have a diagonal
matrix�
Next the matrix X is calculated from

X �
�

ne
�LB� ���

where B is a nd�ne matrix obtained by means of a Singular Value Decomposition
from

PB �D � LT � ���

as given in formula ���� The matrix D is formed by perturbing the observation
vector for each of the ensemble members�

Di�j � di � qd�i�j � ��
�

where the ��s are drawn from the Normal distribution N�
� ��� Lastly� the ensemble
is updated according to

�snew � �s� �sX� ����

in which �s contains the states of all the ensemble members�
As the ensemble generation� the analysis� and the �ow calculations in the re�

vised implementation are all self�contained� each of these parts can be adjusted or
replaced at will by the user as long as the existing data structures used are heeded��

��� Parallel implementation

Because of the structure of the serial implementation the parallelisation strategy
could be rather simple� after initialisation� the generation of the ensemble mem�
bers and all associated �ow calculations within the ensemble members are divided
evenly over the available processors using the SPMD programming model� We
mainly discuss the MPI version of the program but the OpenMP implementation
is structured similarly� We strictly used the standard MPI and OpenMP facilities
as given in 	�� �� and 	�� ���

�Alternatively� instead of ���� matrix B could also be obtained from the system of equations
L
T
B � D � L

T � This system is of the much smaller size of nd � ne instead of nd � nd and can
be solved in the Least Square sense by QR factorisation� The numerical stability of this approach
is however to be evaluated more thoroughly�

� MODEL AND METHODS �

The number of ensemble members ne is an input parameter of the program and
the number of ensemble members assigned to a processor is given by�

ne�r � b
ne � r

np
c�

where np is the number of processors and r is the rank of the process within the
range
� � � � � np � �� Obviously� to avoid processors to be idle ne should preferably
be an exact multiple of np�
Each process performs the same ensemble initialization� They all read the �same�
data that are required to specify all details of the time integration �the numerical
�ow calculation� including the initial state data� Each process creates a unique
seed that depends on its rank r� From these seeds each process can generate inde�
pendent sequences of pseudo�random numbers that are used to generate the appro�
priate pseudo�random �elds� The complete intial ensemble �that is distributed over
the various processes� is now generated by adding the initial state to ne di�erent
pseudo�random �elds�
Each process integrates all its members until a �time to analyse� is reached� i�e��
when a certain number of time�steps has been made �in our case ��
�� This number
is the same for all the processes� since it is read from the same data �le�
When the analysis phase is reached each process sends all its members as calcu�
lated for the requested time� the time to analyse� to a single master process� The
master knows exactly how many messages it has to receive from all the working
processes including itself �ne if members are sent one at a time�� Once the master
has received all the messages it goes on with the calculations to analyse und update
the ensemble� All the other workers are now idle waiting to receive updated en�
semble members� When the master is ready� process r receives ne�r messages� one
�updated� member per message� Each such message is about ��� MB in size� The
processes then continue to integrate their ensemble members until a next �time
to analyse� is reached� As stated� only one processor performs the analysis and
update of the ensemble� Although the most time consuming part of this procedure�
the Singular Value Decomposition� can be done in parallel we refrained from that
as the distribution of the ensembles provided a cleaner way of parallelisation� The
ne ensemble members together form a nd�nd size matrix� see Eq� ���� Hence� for
large ensembles� data sets and numbers of processes it may be worthwhile to con�
sider parallelisation of the SVD routine �having O�n�d� �oating�point operations�
as well as of the matrix operations that appear in Equations ���� ���� ���� and �����
The code of the analysis part in the MPI implementation is almost identical to
that in the serial and OpenMP implementation� The di�erence lies in the array
Ensemble� This array is local to each of the processes in the MPI version and has
to be collected in an array GrandEnsemble in the master process before proceeding
with the analysis� Obviously� this distinction is not necessary in the serial and
OpenMP version of the program�

��� Implementation considerations

In the MPI implementation the only thing we have to communicate is a �eld� a
three�dimensional array with numbers� We have developed some generic Fortran

� RESULTS �

�
 routines to facilitate this communication� Throughout the Fortran �
 code the
datatype Real is used� without specifying what a Real is� A compiler option e�g��
�r� guarantees that all �oating�point numbers are � bytes long� Within the MPI
communication routines one has to specify the type of object one intends to com�
municate� It is incorrect to specify MPI�REAL for this type� since it is not a�ected
by the compiler option� Hence� in the communication routines it is necessary to
specify MPI�DOUBLE�PRECISION� which is � bytes long� as the datatype�

In the OpenMP implementation one needs only a few directives to create a parallel
program� The program is structured such that the integration of ensemble mem�
bers is clearly recognizable� Hence this can be done in parallel easily� One only has
to guarantee that some data is private� These private data are stored in Fortran ��
common blocks� Actually there are only � such named blocks present in the code�
i�e�� �worksp� and �worksp��� It is important to include in every routine where
these blocks occur an OpenMP directive like

�
OMP THREADPRIVATE��worksp��

In the NAG library routines used similar changes have to be applied for a correct
working of the routines unless an OpenMP enabled NAG library is available for the
computer platform of choice� Presently� this is not guaranteed for all platforms�

Instabilities in the evolution process are detected internally by monitoring the
growth of the kinetic energy in the top layer� When this quantity rises to an
unacceptable level� the program terminates� The instabilities may occur within
the �ow calculation but this is very unlikely to happen� It is more likely that
instabilities arise immediately after an analysis step or after a random �eld addition�
indicating that these operations introduce �unphysical� components� There are
several mechanisms in order to prevent this from occuring�

� Smear the solution so much� inside the algorithm� that the introduced di�u�
sion �either as a numerical artefact or deliberately put in� prevents this from
occuring�

� Reduce the amplitude of the random �eld and perform such random �eld
additions more frequently� The system may more easily adjust to a smaller�
more frequent �random� forcing than to less frequent but larger boosts�

� Results

In a production environment with OpenMP one may notice that during execution
the situation changes dynamically� For example a job with an ensemble of
 mem�
bers and with � parallel threads may start with all � threads active� each one taking
� ensemble members to calculate� However� when the load of the system� due to
other activity becomes high� it might occur that only one thread remains active�
and processes all ensemble members� This guarantees at least that the performance
does not become very much worse than in the sequential program� With MPI how�
ever� one statically �xes the processes to work on a speci�c load� Therefore� if the
operating system decides for whatever reason not to work on a particular process�
this single process may halt the progress of the complete application� This may

� RESULTS �

0 20 40 60
No. of Processors

0

1000

2000

3000

4000

5000

6000

7000

8000
E

xe
cu

tio
n

tim
e

(s
)

(a)

Compaq AlphaServerSC
SGI Origin 3000

0 20 40 60
No. of Processors

20

40

60

80

100

E
ffi

ci
en

cy
 (

%
)

(b)

Compaq AlphaServerSC
SGI Origin3000

Figure �� Execution times for the MPI implementation of the program for ����
processors with �� ensemble members� ne �

 �a�� and the e�ciency obtained �b�
on the Compaq AlphaServerSC and the SGI Origin����	

eventually lead to a considerable slowdown�
The results presented hereafter did not su�er from these phenomema as we were
able to acquire separate partitions of TERAS� an SGI Origin�

 system with
�
�� MIPS R��

� �

 MHz processors and � GB of memory per processor� The
maximum partition used in our experiments had a size of ��
 processors� For
the Origin�

 system we present two results� one while using ne �

 ensemble
members and an increasing number of processors� A second experiment had one en�
semble member per process and the number of processes ranged from ������ Those
experiments were conducted both for the MPI and the OpenMP implementation�

��� MPI results

The timing of the code with

 ensemble members and ��

 processors is displayed
in Figure �� On � processor of the SGI Origin�

 the execution time for the
integration of two �
�day periods was ���� seconds decreasing to �
� seconds on

 processors� This amounts to an e�ciency of

� on

 processors� This loss of
e�ciency is due to the irreducible scalar part in the program� viz� ���
 seconds for
initialisation and �
�
 seconds for the analysis phases� This will be treated further
in section ��

The results for the experiments with � ensemble member per processor �ne�r � ��
are shown in Figure �� Note that irrespective of how the ensemble members are
distributed over the processors the amount of messages is virtually constant as each
ensemble member is sent individually to the master processor�
The total execution time as shown in Figure � consists of the time spent in the

initialisation� � �ow calculations� � analysis calculations and � times the collect
and distribute communication phases necessary to compute the ensemble update
centrally in the analysis phase� It turns out that the total communication time for
np �� � ranges from
�
����� of the total execution time� It is rather the analysis

� RESULTS �

1 10 100
No. of Processors

100

200

300

400

500

600

E
xe

cu
tio

n
tim

e
(s

)

MPI, ne,r = 1
OpenMP, ne.r = 1

Figure �� Execution times for the MPI and the OpenMP implementation of the
program for ��
�
 processors with � ensemble member per processor �ne�r � �� on
the SGI Origin����	

Table �� Timings and MPI�OpenMP speed ratio on the Compaq AlphaServer SC
and the AlphaServer GS���� corrected for the clock speed	

MPI OpenMP Ratio
Processors Time �s� Time �s� OpenMP�MPI

� ���
 ��

 ����

 �

� �
�� ��
�
�

�� ���� ����

time that contributes most to the growth of the execution time� from �
�� seconds
for � ensemble member to ����� seconds for ��� ensemble members� This is not
surprising as the amount of work to update the ensemble scales with O�n�e� and
eventually becomes the dominating term in the analysis� even more important than
the SVD itself� see Eq� ��
�� However� the SVD as it appears in the present formu�
lation is proportional to n�d and thus easily becomes the computational bottleneck
for larger observational data sets than used at present�

��� OpenMP results

With respect to MPI the SGI Origin�

 and the Compaq AlphaServer SC are
equivalent because of the distributed memory model that ignores the amount of
processors that can address a common memory� This is not true for OpenMP�
the Origin�

 regards up to ��� processors all memory to be shared where in

� RESULTS ��

0 20 40 60
No. of Processors

0

2000

4000

6000

8000
E

xe
cu

tio
n

tim
e

(s
)

(a)

OpenMP, ne=60

0 20 40 60
No. of Processors

0

10

20

30

40

50

60

70

80

90

100

E
ffi

ci
en

cy
 (

%
)

(b)

OpenMP, ne=60

Figure �� Execution times for the OpenMP implementation of the program with
ne �

 on ���� processors on the SGI Origin���� �a� and the e�ciency as a
function of the number of processors �b�	

the AlphaServer SC � processors in a node share the memory local to the node in
which they reside and� consequently� OpenMP can only be used up to � processors
on this system� Instead� of the ��� MHz AlpaServer SC we were able to use an
AlphaServer GS�

 with �
 processors with ��� MHz EV
� Alpha processors to
get an impression of OpenMP on a higher number of processors� In the latter
system all memory is globally accessible� so tests with up to �
 parallel threads are
possible�
In the following we �rst present the results for the SGI Origin�

� Where relevant
and available we also discuss the additional results obtained from the AlphaServer
GS�

� Results are given in Table � for ���
 processors�
As with MPI we measured the execution times of the program with

 ensembles
on ��

 processors� The results are displayed in Figure ��
Up till

 processors the OpenMP implementation is marginally less e�cient than
the MPI implementation� on

 processors the e�ciency for OpenMP is
��
�
against

��� for the MPI version� The speedup is then still a factor ���

From the limited results obtained with the AlphaServer GS�

 it was evident that
the OpenMP version was less e�cient on this machine than the MPI version on
the AlphaServer SC as can be seen from Table �� Not only is the OpenMP version
slower in the absolute sense� it also relatively decreases in speed with an increasing
amount of processors� As far as presently known� this should be ascribed to the
increasing synchronisation and thread handling overhead in the current implemen�
tation of OpenMP�

The scaling behaviour of the program with � ensemble member per processor for
����� processors on the SGI Origin�

 is displayed in Figure �� It shows that
for runs with more than about �

 processors the scaling is clearly worse than for
the MPI implementation� This is due to the �ow part in the computation� The
analysis part takes roughly the same time in both the MPI and the OpenMP ver�

� ANALYSIS OF RESULTS ��

sion but the �ow calculation which is distributed over the CPUs su�ers to a large
extent from synchronisation and thread handling overhead for larger amounts of
processors� In this case the MPI version is therefore to be preferred although a
larger amount of memory is used in this case�

� Analysis of results

In this section we want to consider the timing experiments in a little more detail�
This should enable us to make an estimate on a preferred number of processors to
use with a certain implementation and machine�
In the MPI implementation the following signi�cant parts can be identi�ed�

Setup In this phase the input data are read by all processors� values are initialised
and an initial states are computed by all processors� The time spent in this
phase is weakly dependent on the number of processors�

Flow calculation This part is parallel and very scalable�

Communication This part comprises the sending of the ensemble members to
the master for analysis and sending back the updated states to the other
processors after analysis�

Analysis Analysis of the ensemble and assimilation of data to create updated
states for the next integration period� This part is completely scalar�

Final update At the end of the computation sequence �nal states are distributed
to all processors� This process is very scalable�

We start with discussing the MPI results�

We can express the execution time in the MPI implementation as

Tp � Tinit � T�ow � Tcom � Tan � T�n ����

In expression �� the analysis time� Tan� is completely scalar� Furthermore� the
setup time Tinit contains a part that is not scalable at best� the reading of input
�les by the processors� As with the use of MPI�� there are no facilities for parallel
I�O each processor has to read all of the input data� Depending on the I�O con�
�guration� this may be a constant amount of time or� because of I�O contention�
increase with the number or processors that have to access the data�
Comparing the Compaq AlphaServer SC and the SGI Origin�

 in this respect
we found�

Tinit � ���� �
��
P seconds �AlphaServer SC�

Tinit � ���

 �
�
�P seconds �Origin�

�

We have to stress that these �ndings are very dependent on the I�O con�guration
and may be di�erent even on systems of similar size and architecture�
The communication time Tcom as seen by the master process is on both systems
highly erratic� it ranges from �������� seconds on the Origin�

 and from ������

� ANALYSIS OF RESULTS ��

0 20 40 60
No. of Processors

0

0.2

0.4

0.6

0.8

1

T
p/

T
1

Scaling of Flow computation

Theoretical scaling
SGI Origin3000
Compaq AlphaServer SC

Figure �� Theoretical and observed scaling behaviour for the
ow part of the program
on the Compaq AlphaServer SC and the SGI Origin����	

seconds on the AlphaServer and bears virtually no relationship with the amount
of processors used� This variability is in fact caused not by the communication
itself� but time di�erences in the �ow calculations on each of the processors� Al�
though these computational part should take exactly the same amount of time on
all processors� in practice the processors get slightly out of phase for no tractable
reason� As the master only can begin its analysis when all results are gathered�
reception of the last message determines the �communication time� although it is
rather synchronisation time� In any case� Tcom contributes only a small percentage
to the total execution time� E�g�� in the case of

 ensemble member running on

 processors Tcom takes ��� and �� of the execution time on the AlphaServer and
the Origin�

� respectively�
It turns out that the main part of the total time is consumed by the �ow calcu�
lations� As these are carried out completely independent in each of the ensemble
members� this part is ideally scalable as is evident from Figure �� The observed
values of Tp�T� for both systems almost exactly agree with the theoretical curve�
Tan� the analysis time is constant on both systems for a �xed number of ensemble
members as might be expected� Interestingly� for

 ensemble members �ne �

��
the time required for this part takes about �
�� seconds on the AlphaServer while
the same part take roughly �
 seconds on the Origin�

� For the �ow part the sit�
uation is reversed� the Compaq system is about ��� times faster in this part� This
is more in line with their respective clock frequencies� �

 MHz versus ��� MHz�
The overall e�ect is that for the total execution time the Compaq system starts
o� faster because the �ow computation dominates the total time� The cross�over
point lies somewhere near �
 processors� On

 processors� the Compaq system
spends �
� in the scalar part and

� in the parallel part� For the SGI system

� CLOSING REMARKS ��

these fractions are ��� and
�� respectively� This means that in both systems the
scaling potential is still signi�cant�
Finally� the time for the �nal update turns out to be insigni�cant with respect to
the total execution time never exceeding
��� of this total time� As� in addition�
this part scales perfectly it has no impact on the scaling behaviour of code as such�

� Closing remarks

The results as presented in the former sections show that data assimilation mod�
els of this type can be parallelised very successfully� The model considered here
contains a scalar part that sets bounds to the maximal speedup� but the experi�
ments show that for both the SGI Origin�

 and the Compaq AlphaServer SC
this bound lies clearly above �

 processors when MPI is used and the same holds
for the OpenMP implementation on the Origin�

� Still� the program probably
can be improved in several minor respects�

�� The initialisation phase may� except for the reading of input �les� for a sig�
ni�cant part be parallelised�

�� Also in the analysis part� which is now done in scalar mode� there is the
potential of parallelising either the SVD routine presently used� or the QR
factorisation routine that could alternatively be used�

�� Further evaluation should make clear whether using QR factorisation yields
numerical results that have acceptable stability� If so� this could reduce the
analysis time by more than �
� because the QR algorithm requires less
�oating�point operations than the SVD algorithm and because the linear
system to be solved is of a signifcantly smaller size�

The �rst two items positively a�ect the overall percentage of the code that is
parallelisable and hence the scalability of the code� The last item also indirectly
in�uences the scalability because it would reduce the scalar part present in the
program�

Apart from these points where our existing model could be improved there is a
matter of more general importance that came up in the analysis of our timing
experiments� the I�O con�guration of the system used� When signi�cant I�O has
to be done the scalability of a program can be seriously a�ected by a non�optimal
I�O con�guration� whether this is only due to the hardeware con�guration or also
may have an Operating System component� In such cases it may be di�cult to
project the performance of a program even on systems of the same vendor because
when the I�O con�guration is di�erent this has an impact on the scalability of the
program at hand�
In our particular case� the behaviour in the initialisation phase is less important� for
testing purposes we only considered two evolution cycles following the initialisation�
In realistic modelling runs many more of such cycles will be computed which makes
the initialisation relatively insigni�cant�

REFERENCES ��

Acknowledgments

We would like to thank the Dutch National Computer Facility Foundation �Sticht�
ing NCF� for its National Research Grant� NRG ���
�� which made this work
possible� Also we thank Compaq for providing the opportunity to work on their
AlphaServer SC and AlphaServer GS�

� In particular we are grateful to Michael
Lough at Compaq in Galway� Ireland for his help in porting and running the code
on their machines� Furthermore� we are grateful for the Oceanographic work we
could do under the Dutch National Research Program� grant
��

���� and the
EEC DIADEM project� no� MAS��CT���
�
��

References

	�� A�F� Bennett� Inverse Methods in Physical Oceanography� Cambridge Uni�
versity Press� ����� ��
pp�

	�� R� Chandra� L� Dagum� D� Kohr� D� Maydan� J� McDonald� R� Menon� Par�
allel Programming in OpenMP� Morgan Kaufmann Publishers Inc�� January
�

��

	�� G� Evensen� P�J� van Leeuwen� An ensemble Kalman smoother for nonlinear
dynamics� Mon� Wether Rev�� ���� �������
��

	�� P�J� van Leeuwen� G� Evensen� Data assimilation and inverse methods in
terms of a probabilistic formulation� Mon� Weather Rev�� ���� ����������

	�� P�J� Van Leeuwen� An ensemble smoother with error estimates� Mon�
Weather Rev�� ���� �
������ �

��

	
� R�N� Miller� M� Ghil� F� Gauthiez� Advanced data assimilation in strongly
nonlinear dynamical systems� J� Atmos� Sci�� ��� �
����
�
�

	�� M� Snir� S� Otto� S� Huss�Lederman� D� Walker� J� Dongarra� MPI� The
Complete Reference Vol	 �� The MPI Core� MIT Press� Boston� �����

	�� W� Gropp� S� Huss�Ledermann� A� Lumsdaine� E� Lusk� B� Nitzberg� W�
Saphir� M� Snir MPI� The Complete Reference� Vol	
� The MPI Extensions�
MIT Press� Boston� �����

	�� OpenMP Forum� Fortran Language Speci�cation� version �	�� Web page�
www�openmp�org�� October �����

