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Abstract

Chapter 1: Introduction

The development of high-resolution simulation models is justified by the need to capture the variability of physical, biological, chemical activities at scales which could not be resolved by conventional in situ measurements, and also to predict the evolution of these activities from short to long ranges. Three-dimensional reservoir simulation models of the sub-surface are being used with increasing interest to better understand the space-time distribution of the physical properties of an oil and gas reservoir. The basic phenomenology described by these models is the flow of fluids through porous media by using Darcy’s equations of fluid dynamics.
The response of a numerical model depends on a large variety of factors: the parameterization of the dynamic processes, the specification of external forcing functions and the associated fluid dynamic constraints, the discretization of the numerical system in space and time, and so on. As a result of the many degrees of freedom in the model setup, errors can occur in the numerical simulations which lead to imperfect representations of the reality, and consequently mismatches with observation data. 

The comparison of a model response with observation data provides a first opportunity for assessment, validation, and more generally for refinement of the model. A next step is the assimilation of these observed data with the aim to improve the consistency between observations and model simulations, to dynamically extrapolate and interpolate the data in space and time, and to make comprehensive interpretation of the resulting outcomes and the accompanying error variable.

The theoretical framework of data assimilation in meteorology and physical oceanography is now well established: variational methods, such as four-dimensional variational (4D-VAR), seek to minimize the misfit between data and model simulations by optimization of well-chosen control variables (numerical parameters, initial conditions, forcings etc.) while sequential methods (such as the Kalman Filter) proceed by intermittent blending of observations and model solutions according to their respective accuracy. In spite of their theoretical equivalence in a linear framework, significant differences exist between sequential and variational methods concerning implementation issues and algorithmic solutions. 

Advanced algorithms have been developed recently to tackle some of the problems experienced during the implementations of data assimilation processes. Specifically, the Reduced-order Kalman filters, have been developed and applied to academic ocean models, exploring how simplified representations of the estimation error statistics can reduce the computational burden of the conventional Kalman filter while preserving the optimal nature of the method (Fukumori and Malanotte-Rizzoli, 1995; Cane et al., 1996; Pham et al., 1998). Similarly, ensemble Kalman filters, ensemble smoother, and ensemble Kalman smoother which represent the error statistics by simulating a limited set of model trajectories simultaneously (Evensen, 1994; Burgers et al.,1998), have been proposed as alternative to the traditional Kalman filter (KF) [2], [3] and adjoint or 4D-VAR methods [4]–[6] to better handle large state spaces and nonlinear error evolution. 

The minimization of the cost function of a full 3-D application may give considerable problems with convergence and computer capacity when variational algorithms are used in data assimilation.  These ensemble methods provide a simple conceptual formulation and ease of implementation than the variational methods, since there is no need to derive a tangent linear operator or adjoint equations, and there are no integrations backward in time. Also, they overcome two main problems associated with the traditional KF data assimilation methods. First, in KF an error covariance matrix for the model state needs to be stored and propagated in time, making the method computationally infeasible for models with high-dimensional state vectors. Second, when the model dynamics are nonlinear, the extended KF (EKF) uses a linearized equation for the error covariance evolution, and this linearization can result in unbounded linear instabilities for the error evolution [7].
Ensemble methods use the same minimization principle used in KF or EKF. However, in contrast with KF methods, ensemble methods represent the error covariance matrix by a large stochastic ensemble of model realizations. For large systems, the dimensionality problem is managed by using a low-rank approximation of the error covariance matrix, where the number of independent model realizations is less than the number of unknowns in the model. Thus, the uncertainty is represented by a set of model realizations rather than an explicit expression for the error covariance matrix. The ensemble of model states is integrated forward in time to predict error statistics. For linear models the ensemble integration is consistent with the exact integration of an error covariance equation in the limit of an infinite ensemble size. Furthermore, for nonlinear dynamical models, the use of ensemble integration leads to full nonlinear evolution of the error statistics, which in ensemble methods can be computed with a much lower computational cost than in KF or VAR methods.

As a direct consequence of the aforementioned arguments, ensemble-based advanced assimilation schemes are increasingly gaining interests and are being examined and refined. These involve the ensemble Kalman filter (EnKF) by Evensen (1994), the ensemble smoother (ES) by Van Leeuwen and Evensen (1996) and the ensemble Kalman smoother (EnKS) by Evensen and van Leeuwen (2000), and the singular evolutive extended Kalman (SEEK) filter by Pham et al. (1998). In this project, we shall compare two of these methods, the EnKF and the ES and investigate how they compare in terms of efficiency and accuracy.

EnKF and ES both solve the same Bayesian formulation, which in the case of EnKF is written as a recursion in time under the assumption of a Markov reservoir model and measurements that are independent in time. Thus, for linear dynamical models and measurements, EnKF and ES provide identical solutions as is shown by Evensen (2004). However, for nonlinear dynamical models, and in particular models with chaotic dynamics, EnKF is shown to be superior to ES (van Leeuwen and Evensen, 1996, Evensen and van Leeuwen, 2000), due to the fact that the recursive updates keep the model on track and close to the true solution represented by the measurements, unlike the ES which computes one global update in the space-time domain. Thus, because of these findings, ES is not much used and EnKF has become the method of choice in most ensemble-based data-assimilation studies.

Recent studies with reservoir simulation models suggest that the EnKF can be used for improved reservoir management. This was first proposed by Nævdal et al. (2002, 2003) who used the EnKF in a simplified reservoir model to estimate the permeability of the reservoir. They showed that there could be a great benefit of using the EnKF to improve the model through parameter estimation, and that this could lead to improved predictions. These initial works have been followed by several more recent publications (………….[see the listing in the Appendix]). These have mostly considered simplified reservoirs and various test cases and the estimated parameters comprise of porosity and permeability and the data assimilated have been well pressures and rates.

Most of the previous applications of EnKF have considered relatively simple and synthetic models [citations], while issues related to the use of EnKF with large realistic reservoir models are less studied. The estimation of a 3D fields of porosity and permeability on complex models, typically leads to unphysical updates of the state variables (saturation and pressure), and causing instabilities in the restarts of the simulation which are required for the EnKF assimilation. The outcome might be that some ensemble members tend to become very slow or stop what do you mean here ???? during the data assimilation. In addition, because of the long simulation time of the reservoir model, only few ensemble members can be used in the EnKF run, and problems related to spurious correlation and ensemble collapse might appear. The overall problems mentioned above will typically lead to a very time consuming history matching process.

The technical advantages of using ES compared to EnKF are severe, especially when the methods are applied on complex reservoir applications. ES provides a significant reduction in simulation time, since

maxiXjTij _XjmaxiTij , (1)

where Tij denotes the simulation time of member i between restart step j and j − 1. In particular, the ES does not need to make the assumption of independent data, restarts are eliminated, and the model state variables are not updated. Only the history-matching parameters need to be updated before the posterior or history-matched model solution is computed by a new ensemble simulation using the updated history-matching parameters.

Moreover, ES shows the potential to handle a more flexible parameterization, and include structural and geological model parameters in the history-matching process in a much easier way than in EnKF [citation]. Furthermore, time difference data, such as 4D seismic data, can be incorporated in a simpler manner than in EnKF since the EnKS update step is avoided (Skjervheim et al., 2007). Ensemble collapse and filter divergence are well known problems in EnKF. As shown in Myrseth and Omre (2010), the EnKF analysis scheme under the Gaussian approximation violates the assumption of independent realisations because they are coupled through the estimated Kalman gain matrix This was already noticed by Houtekamer and Mitchell (MWR 1998), and discussed further in a comment on this paper by Van Leeuwen (MWR 1999), and the reply by H&M in the same issue of MWR. Hence, we should expect that these problems are less evident for ES, since ES only perform one global update.

The motivation for this paper is that reservoir-simulation models are rather diffusive systems when compared to the chaotic dynamical systems that were previously used to test ES. If we, in addition, can assume that the model solution is stable with respect to small perturbations in the initial conditions and the history-matching parameters, then ES should give results that are similar to those obtained using EnKF, and ES will be a more efficient and much simpler method to implement and apply.

In this project, we will be using a reservoir simulation model from Schlumberger called Eclipse® to assimilate oil, gas, and water production data over a period from November 1997 to December 2004 using EnKF and ES. Then we will proceed by analysing the results from the two methods to investigate how accurate and efficient both methods are. In the following chapters, we will discuss briefly some descriptions of the reservoir simulation model, and then ensemble methods, followed by a field application of the methods using the model, and then discussions of the results from the experiments which is promptly followed by a conclusion on the findings. 

Chapter 2: Model description

In 1953, Uren defined a petroleum reservoir as follows:

“ ... a body of porous and permeable rock containing oil and gas through which fluids may move toward recovery openings under the pressure existing or that may be applied. All communicating pore space within the productive formation is properly a part of the rock, which may include several or many individual rock strata and may encompass bodies of impermeable and barren shale. The lateral expanse of such a reservoir is contingent only upon the continuity of pore space and the ability of the fluids to move through the rock pores under the pressures available.”
Reservoir studies are performed to predict the future performance of a reservoir based on its current state and past performance and to explore methods for increasing the ultimate recovery of hydrocarbons from a reservoir. Reservoir simulators are routinely used for these purposes. A reservoir simulator is a sophisticated computer program, which solves a system of partial differential equations describing multiphase fluid flow (oil, water, and gas) in a porous reservoir rock. 
Simulators can be classified according to the systems they are capable to model based on the number of phases and components in the reservoir, the type of reservoir process, and so on. According to the number of phases, a reservoir simulator can be a one-, two-, or three-phase model (gas, oil and/or water) and the number of components could vary from 1 to N; and according to the type of process, a reservoir simulator can be classified as a black oil, compositional, or enhanced oil recovery (EOR) simulator. The number of phases and the type of process are two main ingredients that determine the complexities of the resulting reservoir simulation model.

The Black Oil Model
Different types of formulation of the transport equations for multiphase/multicomponent flow are used to simulate the various recovery processes; by far the most common is the “Black Oil Model” which can simulate primary depletion and most secondary recovery processes. A black oil simulation model is one of the most common approaches to modelling three phase (oil, water, gas) flow in porous media; it treats the phases rather like components; it does not model full compositional effects; instead, it allows the gas to dissolve in the other two phases (described by Rso and Rsw); however, no “oil” is allowed to enter the gas phase.

A reservoir simulation model (for 1, 2 or 3 phases) is basically: A mass conservation equation combined with Darcy’s law of fluid flow through a porous medium. Mass balance simply states that over a given time period, the sum of all the mass that flows into a system and out of it is the change of mass in that system. Once we have set up the mass balance between the flows and the accumulations, we then need some expressions to describe these mass flows. We do not usually think of fluid flow laws as being mass flow laws. Within a porous medium, the principal flow law is Darcy’s law (either for one or two phases) which is a volumetric flow law. That is, in Darcy’s law, the volumetric flow rate, usually denoted Q, is proportional to the pressure gradient; [image: image1.emf] for a single one dimensional system oriented along the x- direction. So, to derive the flow equations we simply use mass balance plus Darcy’s law. This is shown schematically for single phase fluid flow in Figure 1.
My suggestion is to write down the equations and discuss them separately instead of in a figure.
[image: image2.emf]
THE TWO-PHASE FLOW EQUATIONS
We now consider the equations which govern the flow of two phases through a porous medium e.g. oil-water, gas-oil, air-water. In certain respects, the approach is very similar to that used for single-phase flow in Section 2 above by applying the mass conservation equation to each of the phases separately. However, in the “two-phase physics”, the following concepts also applies:
• Phase saturations: oil saturation (So) and water saturation (Sw); where So + Sw = 1

• Formation volume factors, Bo and Bw (units RB/STB) What is this?
• The two-phase Darcy Law (with gravity) and relative permeability, krw(Sw) and kro(So) 


[image: image3.emf]
• Phase pressures, Po and Pw, and the concept of capillary pressure, Pc (Sw) = Po–Pw, as a constraint of the phase pressure difference at various saturations, Sw.
The derivation of a two-phase conservation equation combined with Darcy’s law results in a coupled two-phase pressure, Po(x,t), and saturation, So(x,t), equations which can be solved numerically in a reservoir simulator.
Introduce the following properly: Oil Pressure Equation:

[image: image4.emf]
Oil Saturation Equation:

[image: image5.emf]
This is the 1-D pressure and saturation equations for a two-phase compressible (fluids and rock) system in which each of the terms is physically interpretable and we expand this out to see each of the contributions more clearly. Obviously, this becomes much more complex for a 3-D system.

Data assimilation techniques

A model consists of a number of mathematical equations which are defined to represent the interaction between various variables through certain physical processes. In many cases the model excludes several processes or scales which are believed to have less importance for the applications at hand. Even if the model is a perfect representation of reality, its solution will not describe reality unless we have perfect knowledge about the initial and boundary conditions which are often difficult to prescribe with high accuracy.

In many applications we have an approximate dynamical model with uncertain estimates of initial and boundary conditions. In addition we may have measurements of the model solution collected at different space and time locations. From a single model integration we obtain a solution or realization without knowledge about its uncertainty. In fact, the model solution is just one out of infinitively many equally likely realizations. Thus, we should really consider the time evolution of the probability density function (pdf) for the model state. This is described by the Kolmagorov’s equation:


Kolmogorov Equation ………(…)

With knowledge of the pdf for the model state we can extract information about the most likely estimate of the model state as well as its uncertainty. The computation of the pdf of the model solution conditioned on the measured observations defines the ensemble data assimilation (Note: there is no inverse problem when Bayes theorem is used. As you can see from the equation we just have to MULTIPLY prior with likelihood. No inversion present!!! )described in Baye’s theorem.

Baye’s theorem equation …………..(…)

The accurate representation of the full pdf becomes extremely expensive for high dimensional simulation models. Thus, data assimilation and inverse methods must normally represent the pdf using statistical moments or an ensemble of model states and then search for estimators such as the mean and maximum likelihood with the associated covariance representing uncertainty.

There is now a large class of different data assimilation and inverse methods which for practical and computational efficiency implement different statistical and conceptual approximations. The different methods have different properties which may depend on the dynamical system to which they are applied. In the next section, we are going to focus our discussions on a class of data assimilation techniques, called the ensemble data assimilation techniques.

Ensemble methods
Given a dynamical model with known uncertainties, initial and boundary conditions and a set of measurements that can be related to the model state, the parameter estimation problem is defined as finding the joint pdf of the parameters and model state, that in some weighted measure best fits the model equations, the initial and boundary conditions, and the observed data. The ensemble data assimilation techniques belong to a general class of the so-called particle methods which use a Monte Carlo or ensemble representation for the pdfs, an ensemble integration using stochastic models to model the time evolution of the pdfs, and different schemes for conditioning the predicted pdf given the observations. Each individual realization is updated with the available measurements to incorporate the new information provided by the measurements. Implementations of the update schemes can be formulated as either a stochastic [9] or a deterministic scheme [8], [10]–[13]. Both kinds of schemes solve for a variance-minimizing solution and implicitly assume that the forecast error statistics are Gaussian by using only the ensemble covariance in the update equation.
Model equations and measurements

We define a model with associated initial and boundary conditions on the spatial domain D with boundary [image: image6.emf], and a set of observations,


[image: image7.emf]
The model state  [image: image8.emf]  is a vector consisting of the [image: image9.emf]  model variables where each variable is a function of space and time. The nonlinear model is defined by (7.1) where [image: image10.emf]is the nonlinear model operator. The model state is assumed to evolve in time from the initial state [image: image11.emf]defined in (7.2), under the constraints of the boundary conditions [image: image12.emf]defined in (7.3). The coordinate [image: image13.emf] is running over the surface [image: image14.emf] where the boundary condition is defined.  We have defined [image: image15.emf] as a set of [image: image16.emf] poorly known parameters of the model. A first guess value [image: image17.emf], of the vector of parameters [image: image18.emf], is introduced through (7.4). Additional conditions are present in the form of the measurements [image: image19.emf] [image: image20.emf] . These can be direct point measurements of the model solution or more complex parameters which are nonlinearly related to the model state.

In (7.1–7.5) we have also included unknown error terms which are representing the errors in the model equations, the initial and boundary conditions, the first guess for the model parameters and the measurements. Without these error terms the system as given above is over-determined and has no solution. On the other hand, when we introduce these error terms without additional conditions there are infinitively many solutions of the system. The way to proceed is to introduce a statistical hypothesis about the errors, e.g. assuming that they are normally distributed with means equal to zero and known error covariances.
Bayesian formulation

We now consider the model variables, the poorly known parameters, the initial and boundary conditions and the measurements as random variables which can be described by pdfs. The joint pdf for the model state as a function of space and time and the parameters is [image: image21.emf]. Further, for the measurements we can define the likelihood function [image: image22.emf], thus we can measure both the model state and the parameters. Using Bayes’ theorem, the parameter estimation problem can be written as


[image: image23.emf]
Parameter estimation problems normally do not include the model state as a variable to be estimated. It is more common to first solve for the poorly known parameters alone, and then rerun the model to find the model solution. This implicitly assumes that the model, with the new estimates of the parameters, does not contain any errors. Generally, this is not a valid assumption so we will always treat the parameter estimation problem as a joint pdf of the model states and the model parameter as defined in section …….above. 

In the dynamical model, we have specified initial and boundary conditions as random variables and we have included prior information about the parameters. Thus, we define the pdfs  [image: image24.emf], for the estimates [image: image25.emf], of the initial and boundary conditions, and the parameters. We then write instead of [image: image26.emf],


[image: image27.emf]
[image: image28.emf]
where it is also assumed that the boundary conditions and initial conditions are independent. The pdf [image: image29.emf] is the prior density for the model solution given the parameters and initial and boundary conditions.
Analysis Scheme
If we adopt for simplicity a notation where [image: image30.emf]  contains the model solution and also includes the initial and boundary data, and the parameters, then

[image: image31.emf]=[image: image32.emf]
and 
[image: image33.emf])=[image: image34.emf][image: image35.emf]
hence

[image: image36.emf]
becomes 

[image: image37.emf][image: image38.emf]=[image: image39.emf][image: image40.emf][image: image41.emf]
Introduce the following equations properly (note the sloppy Word formatting. Do you have time to transfer to Latex?)
[image: image42.emf][image: image43.emf][image: image44.emf][image: image45.emf][image: image46.emf]
and define the dot in the following equation. (Note that this will not be easy because the parameters are now part of psi. I suggest to take the parameters out again, and only include initial and boundary conditions.
[image: image47.emf][image: image48.emf][image: image49.emf] [image: image50.emf][image: image51.emf]
such that

[image: image52.emf][image: image53.emf][image: image54.emf][image: image55.emf][image: image56.emf][image: image57.emf]
Thus Introduce this as: We can write the posterior as pf(psi|y)  = proportional to exp(-1/2 J), with J given by:

[image: image58.emf]
I assume k is a time index? Explain!
[

[image: image59.emf] ]
where [image: image60.emf] and [image: image61.emf] are the analyzed and forecast estimates respectively, [image: image62.emf] is the vector of measurements, [image: image63.emf] is the measurement operator that maps the model state [image: image64.emf] to the measurements [image: image65.emf] is the error covariance of the predicted model state, and [image: image66.emf] is the measurement error covariance matrix. Minimizing with respect to [image: image67.emf] yields the classical KF update equations 


[image: image68.emf]
where the matrix [image: image69.emf] is the Kalman gain. Thus, both the model state and its error covariance are updated and [image: image70.emf]and [image: image71.emf]is defined as in the sections below depending on the assimilation method under consideration.
The Ensemble Smoother
Error Covariance Matrix

The ensemble covariance is defined as


[image: image72.emf]
The ensemble mean [image: image73.emf] , is regarded as the best-guess estimate, while the ensemble spread defines the error variance. The covariance is determined by the smoothness of the ensemble members. A covariance matrix can always be represented by an ensemble of model states and this representation is not unique.

As in Evensen (2003) we have defined the matrix holding the ensemble members [image: image74.emf] is the number of variables in the state vector. Further, we augment the state vector with the poorly known parameters [image: image75.emf], where [image: image76.emf] is the number of parameters in [image: image77.emf], and write the matrix [image: image78.emf], holding the N ensemble members of [image: image79.emf], as


[image: image80.emf]
Note that we have used a time index on [image: image81.emf]even though the parameters are supposed to be constant in time. This is to be able to distinguish between the estimates of [image: image82.emf]at different times, which in the EnKF and EnKS change at each update with measurements.

The ensemble mean is stored in each column of A(x, ti) which can be defined as


[image: image83.emf]
where [image: image84.emf] is the matrix where each element is equal to 1/N. We can then define the ensemble perturbation matrix as


[image: image85.emf]
What is 1N?   The ensemble covariances [image: image86.emf], can be defined as


[image: image87.emf]
Now, given the ensemble matrices for the different instants in time [image: image88.emf], for [image: image89.emf], we can define the ensemble matrix for the joint state from [image: image90.emf] to [image: image91.emf] as


[image: image92.emf]
The space-time ensemble covariance between the model states at two arbitrary times t1 and t2 then becomes


[image: image93.emf]
Ensemble representation for measurements

At the data time ti(j), we have given a vector of measurements dj 2 <mj , with mj being the number of measurements at this time. We can define the N vectors of perturbed measurements as


[image: image94.emf]
which can be stored in the columns of a matrix


[image: image95.emf]
The ensemble of measurement perturbations, with mean equal to zero, can be stored in the matrix


[image: image96.emf]
from which we can construct the ensemble representation of the measurement error covariance matrix

[image: image97.emf]
Ensemble Smoother

The ES was proposed by van Leeuwen and Evensen (1996) as a linear variance minimizing smoother analysis. It computes an approximate update of (9.2) using the linear update (9.5).In ES, the ensemble is allowed to evolve in time according to the nonlinear dynamical model from start to finish to provide a representation of the model state pdf spanning all space and time. The updated states of this ensemble is then found by formulating an analysis scheme to assimilate the perturbation of all the measurements into the ensemble of all space and time, leading to efficient algorithm where the update state is computed in one big global update. 

The linear ES analysis equation then becomes for [image: image98.emf], as defined in (9.15),

[image: image99.emf]
[image: image100.emf]
[image: image101.emf]
Equation (9.21) converges towards the exact solution of the Bayesian formulation with increasing ensemble size if the assumption of Gaussian statistics is true. This requires that all priors are Gaussian and that a linear model is used. In this linear case it will also converge towards the EnKF solution.

Using the ES we should be concerned about the validity of the Gaussian approximation and the required ensemble size. In Evensen and van Leeuwen (2000) it was illustrated that the ES may have problems with nonlinear dynamical models. The method was examined with the nonlinear Lorenz model where it turned out that the Gaussian approximation for the pdf of the model evolution was too crude. 

The Ensemble Kalman Filter

We will now show an alternative approach, by Evensen and van Leeuwen (2000), which solves equations (…) recursively. We start by representing equation (…) in discrete formulation leading to a sequential solution which is then applied by means of an ensemble representation.

Discrete formulation

In the following discussion it is convenient to work with a model state which is discretized in time, i.e.  [image: image102.emf] is represented at fixed time intervals as [image: image103.emf].  Furthermore, we define the pdf for the model integration from time ti−1 to ti as [image: image104.emf], which assumes that the model is a first order Markov process. In the general case when model errors are time correlated this could be written as [image: image105.emf]. The joint pdf for the model solution and the parameters in (7.8) can now be written

[image: image106.emf]
We now assume that the measurements [image: image107.emf]can be divided into subsets of measurement vectors [image: image108.emf], collected at times [image: image109.emf], with [image: image110.emf] and [image: image111.emf]. The subset dj will only depend on  [image: image112.emf]. Further, it is assumed that the measurement errors are uncorrelated in time. We can then write


[image: image113.emf]
[image: image114.emf]
i.e. the model state at time ti is dependent on the model state at all other times. This is the case when time correlated model errors are used. The previous equations constitute the most general formulation of the state and parameter estimation problem.

Sequential processing of measurements

We will now assume that the model can be written as a first order Markov process. This is not a strong assumption or simplification. It was shown by Reichle et al. (2002) and Evensen (2003) that in the case of time correlated model errors, it is still possible to reformulate the problem as a first order Markov process by augmenting the model errors to the model state vector.
We now rewrite (7.12) as follows: It is unclear to me what this all means. Explain better what you are doing, and why. I see a lot of equations, but I'd like to see only equations that are necessary to prove an argument..
[image: image115.emf]
This expression can be evaluated sequentially in time as shown below, and the result will be identical to the one obtained by direct evaluation of (7.12),


[image: image116.emf]
From these equations it is clear that, as long as the model is a first order Markov process and the measurements are available at discrete times with errors uncorrelated in time, we can process the measurements sequentially in time. 

Ensemble representation of the EnKF

In (7.15), the joint pdf for the model prediction until ti(1) is


[image: image117.emf]
Similar to the procedure used in the ES, this joint pdf can be evaluated using a large ensemble of realizations for each of the prior pdfs and integrating these forward in time using the stochastic model equations. The stochastic integration results in an ensemble representation of the joint pdf for the model solution[image: image118.emf], the initial condition[image: image119.emf], the boundary condition[image: image120.emf], and the poorly known parameters[image: image121.emf].

The major problem is now the efficient computation of the joint pdf conditional on the measurements d1, given the ensemble representation of (9.28); i.e. we need to solve (7.15) rewritten as


[image: image122.emf]
which gives the update based on the first set of measurements at [image: image123.emf].

The EnKS is similar to the ES, except that it processes the measurements sequentially in time. Starting from the initial ensemble stored in [image: image124.emf], a forward stochastic integration of the ensemble until the first available data set, gives the ensemble prediction


[image: image125.emf]
Using the ES update (9.27) with (9.30) using the first set of measurements d1, which solves (9.29) under the assumption of a Gaussian pdf for the predicted ensemble, we get: [amend equation (below) to be similar to one obtained in ES]


[image: image126.emf]
Here we have used the definitions of innovation vectors,


[image: image127.emf]
The update (9.31) is identical to the ES update in the case where the time interval covers t 2 [t0, ti(1)], and the data are all contained in d1. This is an approximate ensemble representation for the joint pdf conditional on d1, in (9.29), and serves as a prior for a continued ensemble integration until the next time when measurements are available, and then a new update is computed.

Now, define the ensemble prediction matrix 


[image: image128.emf]
where the ensemble prediction [image: image129.emf]is obtained by ensemble integration starting from the final analyzed result in [image: image130.emf] and in general [amend equation to general case where update time is arbitrary i.e. instead of 1 in equation below, use j]

[image: image131.emf]
where [image: image132.emf]
The assumption of Gaussian distributions in EnKF allows for a linear and efficient update equation to be used. A more sophisticated update scheme needs to be derived to take into account higher order statistics, which leads to particle filtering theory [14], where the Bayes formula is solved at each update step, although normally at a huge computational cost. While the particle filter accounts for non-Gaussian distributions by representing the full pdf in the parameter space, its applicability is normally limited to estimation of a few unknowns at the cost of integrating a very large ensemble consisting of typically more than O(104 ) realizations. Note new developments in e.g. Morzfeld, M. and A. J. Chorin, Implicit particle filtering for models with partial noise, and an application to geomagnetic data assimilation, Nonlinear processes in geophysics, 2012, doi:10.5194/npg-19-365-2012
Van Leeuwen, P.J. and M. Ades, Efficient fully nonlinear data assimilation for geophysical fluid dynamics Computers and Geosciences, http://dx.doi.org/10.1016/j.cageo.2012.04.015, 2012

This latter paper uses 32 particles in a 65,000 dimensional system. (No need to read these papers in general, but do mention that good progress is being made.)
Although the EnKF analysis scheme does not solve the Bayesian update equation for non-Gaussian pdfs, analysis scheme is not just a resampling of a Gaussian posterior distribution. Only the updates defined by the right-hand side of (24), which are added to the prior non-Gaussian ensemble, are linear. Thus, the updated ensemble inherits many of the non-Gaussian properties from the forecast ensemble. In summary, we have a computationally efficient analysis scheme where we avoid resampling of the posterior.

Like in ES, a major approximation introduced in EnKF is related to the use of a limited number of ensemble realizations. The ensemble size limits the space where the solution is searched for and in addition introduces spurious correlations that lead to excessive decrease of the ensemble variance and possibly filter divergence. The spurious correlations can be handled by localization methods that attempt to reduce the impact of measurements that are located far from the gridpoint to be updated. Localization methods either filter away distant measurements or attempt to reduce the amplitude of the long-range spurious correlations. The use of a local analysis scheme effectively increases the ensemble solution space while reducing the impact of spurious correlations. The use of a local analysis scheme allows for a relatively small ensemble size to be used with a high- dimensional dynamical model.
Field Application

To evaluate and compare the performance of the ES and the EnKF, the methods are applied on a large and complex North-Sea field model, the Norne field. In this study, ES and EnKF are used to update the reservoir parameters (porosity and permeability) while conditioning on the observed production data (well oil production rates, well oil gas ratios, and well water cuts). 
The Norne Field

The Norne Field was discovered in December 1991. Development drilling began in August 1996 and oil production started November 6th 1997. Norne consists of two separate oil compartments; Norne Main Structure (Norne C-, D and E-segment), which contains 97% of the oil in place, and the North-East Segment (Norne G-segment). The reservoir is discretized by 46×112×22 grids with 44431 active cells. Totally 50 wells have been drilled in the field which contains 33 producers (16 active wells, 2010), 10 water injectors (8 active wells, 2010) and 7 observation wells. Injection fluids have been both gas and water up to 2004, in 2005 the gas injection was ceased and the oil was produced only by water injection as a drive mechanism.

Petrophysics

A total of 5 seismic surveys have been carried out, starting with the first conventional base survey in 1992. The next four surveys have been rendered with a Q-marine vessel in 2001, 2003, 2004 and 2006.  Time-lapse changes in the reservoir between the different years are identified by use of these data in the petrophysical studies and have been used to update the geological and simulation model. In additional to the seismic studies, other measurement data such as wireline log data, conventional and special core analysis, formation pressure points, and fluid samples have been used for the evaluation of the reservoir field.

The result of the petrophysical study is that the Norne reservoir has good to very good reservoir properties with an average porosities of 20% – 30%, average net to gross of 0.7 – 1.0 (what is this???), water saturation, 12% – 43% in the hydrocarbon zones, and permeability, 20 – 2500 Md.
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Figure 1: The Norne Field Model what do these colours mean? If they are not important for your story mention that.
Applications
Recent studies with reservoir simulation models suggest that the EnKF can be used for improved reservoir management. This was first proposed by Nævdal et al. (2002, 2003) who used the EnKF in a simplified reservoir model to estimate the permeability of the reservoir. They showed that there could be a great benefit of using the EnKF to improve the model through parameter estimation, and that this could lead to improved predictions. These initial works have been followed by several more recent publications (see the listing in the Appendix). These have mostly considered simplified reservoirs and various test cases. The estimated parameters comprise porosity and permeability and the data assimilated have been well pressures and production rates. In this project, we will, for the first time, use both the EnKF and the ES in a real oil field application and compare the efficiency and effectiveness of both methods.

Reservoir Modelling Process

The process of defining an oil reservoir model could be daunting. Geologists and geophysicists start by estimating the location of the top of the reservoir. Then, using seismic data together with log-data from test wells, combined with a good geological understanding of the depositional processes, they develop a conceptual model for the layering of different sand types and shales in the reservoir. A structural geologist will analyse the presence of faults in the reservoir and develop a structural model. This will also be based on the relatively few test wells and the seismic data. Using data from the test wells, one attempts to identify the locations of the fluid contacts, as well as the properties of the oil, gas and water in the reservoir. 

It is clear that there are large uncertainties when it comes to defining the exact properties of the reservoir. The main contributors to this uncertainty are to do with lack of knowledge about the input data although the modelling process itself is also not error free. A list of possible sources of error is as follows:

• Lack of knowledge or large inaccuracies in the size of the reservoir; its areal extent, thickness and net-to-gross ratios

• Lack of knowledge about the reservoir architecture i.e. its geological structure in terms of sandbodies, shales, faults, etc.

• Uncertainties in the actual numerical values of the porosities (φ) and permeabilities (k) in the inter-well regions (which make up the vast majority of the reservoir volume)

• Inaccuracy in the fluid properties such as viscosity of the oil (μo), formation volume factors (Bo, Bw, Bg), phase behaviour etc., or doubts about the representativity of these properties

• Lack of data - or very uncertain data- on the multiphase fluid/rock properties, particularly relative permeability and capillary pressure, and on knowledge as to how these curves vary from rock type within the reservoir volume away from the wells

Because the representational reservoir simulations model is poor, it is common practice to build a set of initial models or realizations of the reservoir using various statistical simulation methods effectively creating an error margin such as to allow economic forecasts to be made with the appropriate weights being given to the likelihood of one particular outcome. However, this error margin could be efficiently reduced through the process of history matching.

History Matching
History Matching in numerical simulation is the process of adjusting the simulator input in such a way as to achieve a better fit to the actual reservoir performance. The observables which are commonly matched are the field and individual well production rates, watercuts and pressures. The first step in the history matching procedure is to identify the parameters which determine the uncertainty of the model and need to be estimated. This process is called sensitivity analysis.
In parameter sensitivity analyses, we generally investigate the effects that slight changes in the parameters have on the outcome of the simulation model. As in most previous studies, we are going to study the effects of changes in both the porosity and the permeability of the Norne field and seek to optimize these parameters so that the simulation model most closely reproduce the observed data. It must be noted that other parameters may exist in this model that may be sensitive to the simulation model outputs as well, but for the purpose of comparing the EnKF and the ES, the use of just the porosity and the permeability parameters will suffice.

Parameterisation

We have included the full three dimensional porosity and permeability fields, _(x) and kh(x), as variables to be estimated. The porosity is important to be able to estimate the volume of oil a part of the reservoir can contain, e.g. by increasing the porosity in a region we allow for more oil to be accommodated there. The permeability determines how well fluids are flowing through the reservoir and need to be adjusted to match the observed production rate as well as the timing of the water breakthrough. 

A 50 member of ensemble of parameters are simulated as independent numbers drawn from a Gaussian distribution with the mean equal to a mean of the best guess estimates and standard deviations of 20 percent of such mean value as follows:
Please give a proper equation. Also, this equation is not consistent with the 20% mentioned above.
EnsemblePorosity=RefcasePorosity+GaussianDistribution(Mean(RefcasePorosity),0.5* Mean(RefcasePorosity))

With the permeability components (permx and permz), which are log-normal distributed:

EnsemblePermx=Exp(ln(RefcasePermx)+GaussianDistribution(Mean(ln(RefcasePermx)),0.5* Mean(ln(RefcasePermx)))

EnsemblePermz=Exp(ln(RefcasePermz)+GaussianDistribution(Mean(ln(RefcasePermz)),0.5* Mean(ln(RefcasePermz)))
The simulation model run output from these 50 realisations is called the prior and shows 50 equally likely possible outcomes using the perturbed parameters.

PORO
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All these figures need proper captions. Note that you need to show figures to make a point, not to fill a thesis. What is the error in the observations?
The data assimilation (This title is not very informative.)
Explain better what you have done. First a parameter only study, and now a parameter plus state study? 
This section is a bit hap-snap.For the combined parameter and state estimation problem we also include some dynamic variables, such as the pressure and the saturation the list of parameters to be updated. It is seen that the different dynamic (pressure and saturation) and static (porosity and permeability) variables are updated by adding weighted covariances between the modelled measurements and the variables, one for each measurement. Note that both the state variables and the various parameters are updated simultaneously. The reason why it is possible to update the parameters given only rate information from the wells, is that the rates are dependent on the properties of the reservoir as given by the parameter set defined above. Thus, there will exist correlations between reservoir properties and the observed production rates.

Considering that the porosity field (ø) and the permeability fields (kx and kz) are defined as 3D fields with one unknown on each grid cell, and there are 2 dynamic state variables to be included in the update process, there is a large number of parameters (4X44431) to be estimated in the current system. However, the number of degrees of freedom of the parameter space is much less than the actual number of parameters. The reason is that the porosity and permeability are smooth fields and do not consist of independent numbers in each grid cell. The smoothness is prescribed from prior statistics through horizontal and vertical correlations which characterizes each depositional environment in the model. This effectively reduces the actual dimension of the problem and makes it tractable using a finite ensemble size in the ensemble data assimilation techniques. 

Results of field application
Initially we ran a pure ensemble integration of the prior ensemble. The spread of the results then provides an indication if the parameter space and the perturbations used lead to a realistic representation of the uncertainty in the model predictions. Figs…. are plots of the prior together with the actual production data for the well gas oil ratio, well gas production rate, well gas production total, well oil production rate, well oil production total, well water cut, well water production rate, and well water production total for well E-1H. Explain the abbreviations used in the plots. In the plots, blue is the prior ensemble for the 50 ensemble members while the black dots are the observation data for the 197 time steps from November 7, 1997 to December 1, 2004. It is clear that the uncertainties in the initial parameter space leads to a large uncertainty in the model predictions. Without access to the production history it would not be possible to discriminate between the different realizations since all of them represent a statistically valid representation of the reservoir. 

Most of the other 15 active wells in this model show less matching to the production data than the E-1H. This is mostly due to the fact that the initial priors had spreads that did not capture the magnitude of the observed data evenly (what dos evenly mean? The observation was outside the ensembel?. The lack of evenly spread priors simply means that more parameters are necessary to be added to the data assimilation experiment (or larger error margins in the prior?). Some of such parameters are: MULTREGT (to better handle the communications between different oil regions), RELATIVE PERMEABILITY (to better handle the water cut problem which is having too much water too soon), MULTPV (to help increase the volume of the model if need be), geological modeling (to handle errors in the geological model), FAULTS (to help better match the flow of fluids within the model). In addition, increasing the number of ensemble members, using localization in the data assimilation could also contribute to better observation data matching. However, using just the porosity and the permeability parameters seems to have accounted for the main fluid flow dynamics affecting the E-1H well as can be seen in the spreads of the initial priors below.
This is a very important point in the thesis. You need to give all arguments here why you didn't include all these parameters. 
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In the ensemble experiments we have assimilated the oil production rates (OPR), the gas-oil-ratio (GOR) and the water cut (WCT), from the 16 active production wells. A verification test was performed to ascertain the consistency of the updated parameters over time. The ensemble of estimated parameters, i.e. porosity and permeability, were used in a new pure ensemble integration starting from time zero and integrated forward in time to the final time step 197. The results from this simulation are plotted as the brown curves in Figs…... It is clear that the initially predicted uncertainties have been significantly reduced when the EnKF is applied to the prior. A similar reduction in ensemble spread could be witness in the ES update, although, to a lesser extent compared with that of the EnKF (I'm lost. which plots are EnKF and which are ES? Explain better where to look for what.. This must be attributed to the use of improved values of the static model parameters. Thus, we have successfully managed to compute improved estimates of a total of more than 355448 poorly known model parameters.
It might be useful to compare EnKF and ES plots directly by plotting them next to each other, and discuss what you see. for instance WGOR: EnKF ensemble collapse after a few updates in Jan 2000, but slight recovery afterwards. ES no collapse (explain why not) and clear reduction in uncertainty compared to prior.

WOPR: EnKF: again collapse, good representation of obs after jan 2003. ES no collapse, but ensemble too wide after Jan 2003. (Why is this, what happens here?)

WOPT: EnKF biased, ES 'perfect'

WWCT: EnKF 'perfect', ES not good. (why not? Prior ensemble too wide?)

WWPR: similar to WWCT

etc. Try to explain what you see using the theory you know. 
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The estimates of the porosity and permeability for one of the model layers are plotted in Figs…... The ensemble mean for the estimated porosity and permeability are given, respectively, in the upper and lower plots in the left column. It is clear that the estimated fields have developed clear and significant trends when compared with the first guess ensemble mean and there is an obvious reduction in the standard deviation of the ensemble. We need more guidance on these figures...
PORO:
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Discussions

The histogram plots below were generated for the full grid model for the ensemble prior, the EnKF and the ES. They describe the statistics of the models in the 3 different states that can be used to compare the models for the different states (???). In all the curves, the shape of the distribution has been maintained such that the distributions of the PRIOR state, the ES, and the EnKF states all match the REFCASE case. I don't understand this.
POROSITY 

The tables below summarise the results for the porosity parameter. All the distribution curves for the mean porosity field are approximately Gaussian except for the EnKF porosity mean curve which has a spike at the capped maximum value of 0.4.

MEAN

	Case
	Min
	Max
	Mean
	Median
	Std
	Mean Dfft (%)
	Std Dfft (%)

	PRIOR
	0,1263
	0,3387
	0,2437
	0,2454
	0,0308
	0,00
	0,00

	ES
	0,0997
	0,3725
	0,2430
	0,2434
	0,0396
	-0,29
	28,57

	EnKF
	0,0126
	0,3999
	0,2317
	0,2312
	0,0877
	-4,92
	184,74


STD

	Case
	Min
	Max
	Mean
	Median
	Mean Dfft (%)

	PRIOR
	0,0288
	0,0650
	0,0480
	0,0470
	0,00

	ES
	0,0181
	0,0541
	0,0330
	0,0329
	-31,25

	EnKF
	0,0004
	0,0419
	0,0173
	0,0159
	-63,96


The ES seems to have maintained the mean of the PRIOR but the standard deviation of the porosity parameter values had been increased by about 30%. This implies that the parameter has attempted to acquire all sorts of values during the update process in order to more closely match the observation. This is even more severe in the EnKF update where the standard deviation has increased by almost 200%. Also, the mean of the porosity parameter has been reduced slightly (-4.49%) during the EnKF update. 

From the standard deviation summary table, we can see that in the initial prior ensemble, there is an initial spread with mean of 0.04 (i.e. approximately 20% of the mean of the refcase porosity mean). However, after the ES update, the spread mean has been dropped down to 0.03 (about 30% drop in the spread) and then in the EnKF, there is  a further drop in the ensemble spread to 0.017 (about 60% drop in ensemble spread).
What does this mean?
PERMX and PERMZ

The distribution curves for the permx and permz are approximately log-normal and as a result a transformation has to be performed transforming the distribution from log-normal to normal and adding Gaussian distributed noise thereafter.

PERMX MEAN

	Case
	Min
	Max
	Mean
	Median
	Std
	Mean Dfft (%)
	Std Dfft (%)

	PRIOR
	1,00
	19602,80
	769,92
	380,31
	1167,17
	0,00
	0,00

	ES
	0,31
	18675,00
	669,39
	281,18
	1158,91
	-13,06
	-0,71

	EnKF
	0,16
	19989,70
	1186,91
	137,86
	3104,45
	54,16
	165,98


PERMX STD

	Case
	Min
	Max
	Mean
	Median
	Mean Dfft (%)

	PRIOR
	0,90
	7318,04
	919,54
	473,23
	0,00

	ES
	0,32
	5783,11
	518,46
	229,24
	-43,62

	EnKF
	0,12
	4921,32
	321,31
	71,49
	-65,06


This time (time ?), the ES shows a slight change in the mean of the parameter however, the standard deviation of the parameter values is almost unchanged. However, for the EnKF, there is a significant change in both the parameter mean and standard deviation.

From the standard deviation summary table, we can see that in the initial prior ensemble, there is an initial spread with mean of ~919mD. However, after the ES update, the spread mean has been reduced to 518mD (about 43% drop in the spread) and then in the EnKF, there is  a further drop in the ensemble spread to 321mD (about 65% drop in ensemble spread).

PERMZ MEAN

	Case
	Min
	Max
	Mean
	Median
	Std
	Mean Dfft (%)
	Std Dfft (%)

	PRIOR
	0,02
	4348,49
	201,26
	39,71
	399,68
	0,00
	0,00

	ES
	0,02
	5358,28
	195,42
	35,21
	419,62
	-2,90
	4,99

	EnKF
	0,01
	9824,92
	263,75
	24,73
	834,76
	31,05
	108,86


PERMZ STD

	Case
	Min
	Max
	Mean
	Median
	Mean Dfft (%)

	PRIOR
	0,01
	2580,37
	152,82
	30,16
	0,00

	ES
	0,01
	2191,11
	99,96
	17,22
	-34,59

	EnKF
	0,00
	1688,22
	56,96
	6,93
	-62,73


Again, the ES shows only a very small change in the mean of the parameter while the standard deviation of the parameter values is also of a slight increase. And again, for the EnKF, there is a significant change in both the parameter mean and standard deviation.

From the standard deviation summary table, we can see that in the initial prior ensemble, there is an initial spread with mean of ~152mD. However, after the ES update, the spread mean has been reduced to 99mD (about 35% drop in the spread) and then in the EnKF, there is  a further drop in the ensemble spread to 56mD (about 63% drop in ensemble spread).

From the plots in Figs…, we can see that the integration of the initial prior, in most cases, has an ensemble (blue lines) that is evenly distributed about the observations (black dots). This is an indication that updating the porosity and the permeability alone may just be enough for us to match the observations on this well. However, the same cannot be said of all the 16 active wells. For many of the wells, the initial prior is biased on one side of the observation data, especially the case of the well water data, making the updating of just these two parameters insufficient for an update process for these wells.

As can be seen in plots…, the EnKF had successfully reduced the error margins in the ensemble prior significantly. However, in most cases, the updated ensemble does not overlap with the observation. This is an undesired feature since this result could mislead interpreters to think that the true solution of the simulation run falls within this ensemble if the observation data had not existed, which is the case during prediction exercises. The non-overlapping ensemble of the EnKF could have resulted from spurious correlation or could have been due to ensemble collapse during the update process. Ensemble collapse may occur when the error covariance specified for the observed data is too small, and the error covariance of the ensemble small enough for the assimilation process to think that the observations are outliers hence completely disregard them in the update.

In the case of the ES, we can see that in almost all the cases, the updated ensemble overlaps the observations. This is because the ES does not suffer from spurious correlation and ensemble collapse since only one update is performed which includes all the observed data. However,, in most of these cases, and in particular the case of the water data, the spread of the ensemble is so large that it may not have performed any significant improvement to the error margin of the prior.

What is needed is a discussion on how we could get this better. Would a non-Gaussian method help? Or more parameters to estimate? Or...
Conclusion
Appendices
APPENDIX A
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Note also that much of the code used in the ensemble Kalman filter experiments

is available from the EnKF home page:

http://enkf.nersc.no,

together with other information which is useful for the implementation of the EnKF.
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Appendix A. Here, we briefly review some good texts which cover Reservoir Simulation from various viewpoints. The authors have learned something from each of these and we would recommend anyone who wishes to specialise in Reservoir Simulation to consult these. 

Archer, J S and Wall, C: Petroleum Engineering: Principles and Practice, Graham and Trotman Inc., London, 1986. 

This book is not a specialised reservoir simulation text. However, it offers a good overview of petroleum engineering and it contexts reservoir simulation very well within the overall picture of reservoir development. This book is also one of the earliest proponents of the importance of integrating the reservoir geology within the simulation model. 

Aziz, K. and Settari, A.: Petroleum Reservoir Simulation, Elsevier Applied Science Publishers, Amsterdam, 1979. 

This is a classic text on the discretisation and numerical solution of the reservoir simulation flow equations. It is quite mathematical with a focus on the actual difference equations that arise from the flow equations and how to solve these. 

Crichlow, H B: Modern Reservoir Engineering: A Simulation Approach, Prentice-Hall Inc., Englewood Cliffs, NJ, 1977. 

This book gives a fairly good introduction to reservoir simulation from the viewpoint of it being a central part of current reservoir engineering. 

Dake, L P: The Practice of Reservoir Engineering, Developments in Petroleum Science 36, Elsevier, 1994. 

Again, this book is not about reservoir simulation but it makes a number of interesting and controversial observations on reservoir simulation (not all of which the authors agree with!). An interesting lengthy quote from this book on the relationship between material balance and reservoir simulation is reproduced in Chapter 2. 

Fanchi, J R: Principles of Applied Reservoir Simulation, Gulf Publishing Co., Houston, TX, 1997. 

This recent book provides a good elementary text on reservoir simulation. It is a based around the BOAST4D black oil simulation model which is supplied on disk and can be run on your PC. The software makes this a very attractive way to familiarise yourself with reservoir simulation if you don’t have ready access to a simulator. 

Mattax, C C and Dalton, R L: Reservoir Simulation, SPE Monograph, Vol. 13, 1990. This is an excellent SPE monograph which covers virtually every aspect of traditional reservoir simulation. It is has been put together by a team of Exxon reservoir engineers between them have vast experience of all areas of reservoir simulation. 

Peaceman, D W: Fundamentals of Numerical Reservoir Simulation, Developments in Petroleum Science No. 6, Elsevier, 1977. 

This book presents an excellent treatment of the mathematical and numerical aspects of reservoir simulation. It discusses the discretisation of the flow equations and the subsequent numerical methods of solution in great detail. 52 

SPE Reprint No. 11, Numerical Simulation I (1973) and SPE Reprint No. 20, Numerical Simulation II (19**).

These two collections present some of the classic SPE papers on reservoir simulation. All aspects of reservoir simulation are covered including numerical methods, solution of linear equations, the modelling of wells and field applications. Most of this material is too advanced or detailed for a newcomer to this field but the volumes contain excellent reference material. They are also relatively cheap!

Thomas, G W: Principles of Hydrocarbon Reservoir Simulation, IHRDC, Boston, 1982. This short volume is written - according to Thomas - from a developers viewpoint; i.e. someone who is involved with writing and supplying the simulators themselves. The treatment is quite mathematical with quite a lot of coverage of numerical methods. The treatment of some areas is rather brief; for example, there are only 7 pages on wells. 
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