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Abstract1

The analysis step of the (ensemble) Kalman filter is optimal when (i) the distribution of the2

background is Gaussian, (ii) state variables and observations are related via a linear operator,3

and (iii) the observational error is of additive nature and has Gaussian distribution. When these4

conditions are largely violated, a pre-processing step known as Gaussian anamorphosis can be5

applied. The objective of this procedure is to obtain state variables and observations that better6

fulfil the Gaussianity conditions in some sense.7

In this work we analyse GA from a joint perspective, paying attention to the effects of8

transformations in the joint state variable / observation space. First, we study transformations9

for state variables and observations that are independent from each other. Then, we introduce a10

targeted joint transformation which objective is to obtain joint Gaussianity in the transformed11

space. We focus primarily in the univariate case, and briefly comment on the multivariate one.12

A key point of this paper is that, when (i)-(iii) are violated, using the analysis step of the13

EnKF will not recover the exact posterior density in spite of any transformations one may14

perform. These transformations, however, provide approximations of different quality to the15

Bayesian solution of the problem. Using an example in which the Bayesian posterior can be16

analytically computed, we assess the quality of the analysis distributions generated after applying17

the EnKF analysis step in conjunction with different GA options. The value of the targeted joint18

transformation is particularly clear for the case when the prior is Gaussian, the marginal density19

for the observations is close to Gaussian, and the likelihood is a Gaussian mixture.20
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1 Introduction21

It is often the case, when estimating a variable of interest, that one only counts with imperfect22

sources of information. For example, to determine the value of an atmospheric variable at a given23

location, one can rely on a short term forecast and observations of the variable, both of which24

contain errors. Data assimilation (DA) is the process of combining these sources of information in25

a way that is optimal in some predefined sense (see e.g. Cohn 1997).26

This paper deals with a particular aspect of sequential DA methods. These methods have two27

steps. In the forecast step, the state estimator is evolved in time following some dynamical28

model, along with some measure of its uncertainty. Whenever an observation becomes available,29

the information from this observation is combined with that provided by the forecast (also called30

background) to produce a better estimate (denominated analysis). This is known as the analysis31

step.32

In the present work we focus only on the latter step. Hence, we consider that when an33

observation arrives we have already got a background estimate (regardless of the way this was34

obtained). We consider both the background and the observations to contain random errors with35

some prescribed probability density functions (pdf’s). Under such probabilistic framework, the36

aim of the analysis step is to obtain the posterior pdf of the variable of interest. In theory, this37

can be achieved through a direct application of Bayes theorem. Nonetheless, in practice this can38

result a difficult task since a complete representation of the distributions for the prior and the39

likelihood is required.40

When dealing with full pdf’s is not possible, one can work with summary statistics for both41

the background and the likelihood. For example, the analysis equations of the Kalman filter (KF:42

Kalman, 1960; Kalman and Bucy 1961) provide a method to update the first two moments (mean43

and covariance) of the state variable from background to analysis. In large scale applications,44

such as numerical weather prediction (NWP) or oceanography, the background statistics are45

usually obtained from samples (ensemble Kalman filter (EnKF) Evensen, 2006).46

Under special conditions: (i) Gaussianity in the prior, (ii) linearity of the observation operator47

and (iii) Gaussianity in the additive observational error density, the solution given by the analysis48

step of the KF/EnKF provides the sufficient statistics of the Bayesian solution (the sampling49

nature of the EnKF obviously introduces statistical error in this case). If these conditions are not50

fulfilled, the application of the (En)KF analysis equations is suboptimal, but it can still be useful.51

In some cases, however, the deviation from these conditions can be quite important. This52

happens, for example, when the prior is multimodal or when it does not have the statistical53

support (domain) of the Gaussian distribution. The latter is the case of positive definite variables54

such as precipitation (see e.g. Lien et al, 2013), and bounded quantities such as relative humidity.55

Large deviations from Gaussianity in the prior are not uncommon in many fields, for example in56

physical-biological models (Bertino et al, 2003; Simon and Bertino, 2009; Beal et al, 2010; Doron57

et al, 2011). Non-Gaussian pdf’s can also result from the deformation of an original Gaussian pdf58

during the forecast step when the model is strongly nonlinear (Miller et al, 1994; Miller et al59

,1999). Problems can also arise if the likelihood presents extreme non-Gaussian features.60

In these cases, either of two options can be taken. One can select an analysis step based on61

methods that do not require Gaussianity, e.g. the rank histogram filter (Anderson, 2010). On the62

other hand, one can still apply the (En)KF analysis step, in conjunction with a procedure known63

as Gaussian anamorphosis (GA). This involves transforming the state variable and observations64

{x,y} into new variables {x̃, ỹ} which present Gaussian features (details will be given in section65

??). The (En)KF analysis equations are computed using the new variables, and the resulting66

analysis is mapped back into the original space using the inverse of the transformation. GA is a67

well-known technique in the geostatistics community (see e.g. Wackernagel 2003), and it was68

introduced to the DA community in a seminal paper by Bertino et al. (2003). Since then, it has69
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been explored in different works (e.g. Zhou et al, 2011; Brankart et al, 2012; Simon and Bertino,70

2012).71

A possible drawback of anamorphosis is that as a result of the transformations a (generally72

nonlinear) observation operator is introduced in the new space (Bocquet et al, 2010). Although73

one can apply the EnKF with nonlinear observation operators (see e.g. Hunt et al, 2007), it74

seems undesirable to solve one problem (non-Gaussianity) at the cost of creating another. A75

central idea in this work is that different transformations in the state variable and/or76

observations can achieve different objectives: marginal Gaussianity in the state variables,77

marginal Gaussianity in the observations, joint Gaussianity in the pair {state variable,78

observation}. As we will see, different transformations will bring different side effects. Is there an79

optimal strategy to follow when performing anamorphosis? If not, how do different80

transformations compare? These questions are at the heart of this paper.81

This paper has 3 main objectives. The first is to study anamorphosis transformations using a82

joint statistical approach between state variables and observations. The second is to visualise the83

effect that different transformations have on the joint probability space in which the EnKF is84

used. The third is to introduce a targeted joint state-variable/observation transformation which85

maps the pair of an arbitrary prior probability and arbitrary likelihood into a joint Gaussian86

space. In order to assess the performance of the different transformations, we choose an example87

in which we are able to compute analytically the posterior pdf of the model variables for different88

given observations. It is against these exact posteriors that we compare the EnKF-generated89

analysis pdf’s.90

The rest of this paper is organized as follows: section 2 discusses the DA analysis step in more91

detail, the probabilistic formulation and the EnKF solution. Section 3 introduces and explains92

the concept of GA. Section 4 discusses the implementation of GA, studying the existing methods93

and introducing a new targeted joint state-variable/observation transformation. In section 5 we94

perform study cases of the methods discussed in section 4. Section 6 includes the conclusions and95

some discussion.96

Some remarks on notation will be useful before starting. We will try to follow (sometimes97

loosely) the convention of Ide et al (1997) in what respects to sequential DA. Pdf’s will be98

denoted as pξ(ξ), while cumulative density functions (cdf’s) will be denoted as Pξ(ξ). If we want99

to explicitly include the parameters when referring to any distribution, this will be done with a100

semicolon in the argument, e.g. pξ(ξ;θξ). The symbol ∼ should be read ’distributed as’. We will101

use Ex to denote expected value, with the subindex indicating the pdf with respect to which this102

operation is computed. For example,103

Ex[ξ] =

∫ ∞
−∞

ξpx(ξ)dξ (1)

Similarly, Covx[·] denotes covariance, with the same meaning for the subindex. The Gaussian104

distribution will appear frequently in this work. For the sake of brevity, if the random variable105

ξ ∈ R1 follows a Gaussian distribution with mean µξ and variance σ2ξ , we will denote its106

probability density function (pdf) as:107

pξ(ξ) = φ (ξ;µξ, σξ) ≡ φ
(
ξ − µξ
σξ

)
≡ 1√

2πσξ
exp

(
−

(ξ − µξ)2

2σ2ξ

)
(2)

and its cdf as:108

Pξ(ξ) = Φ (ξ;µξ, σξ) ≡ Φ

(
ξ − µξ
σξ

)
≡ 1√

2πσξ

∫ ξ

−∞
exp

(
−

(t− µξ)2

2σ2ξ

)
dt (3)
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For some examples we will also use exponential random variables (rv’s). The pdf for this109

distribution is:110

px(x) =
1

λ
e−

x
λ , x ≥ 0 (4)

where λ > 0 is a scale factor.111
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2 Analysis step: Bayesian and EnKF solutions112

In this section we make use of transformations of rv’s; basic concepts of this topic can be found in113

appendix A. Let x ∈ RNx denote the vector of state variables, and consider it follows a prior114

distribution px(x). In the most general case, the observations y ∈ RNy follow the relationship:115

y = ĥ(x,η) (5)

where ĥ : RNx×Ny → RNy is a nonlinear observation operator, and η ∈ RNy represents the116

observational error, which follows a distribution pη(η). Consider there exists an inverse117

η = ĥ−1(y; x) (as a function of y), then the likelihood py|x(y|x) –conditional pdf of y given x–118

can be written as:119

py|x(y|x) = pη(ĥ−1(y; x))

∣∣∣∣det [ ∂∂y
ĥ−1(y; x)

]∣∣∣∣ (6)

where
∣∣∣det [ ∂∂y ĥ−1(y; x)

]∣∣∣ is the absolute value of the determinant of the Jacobian matrix of the120

transformation. The joint pdf of x and y is the product of the likelihood and the prior. The121

posterior distribution can be computed via Bayes’ theorem as:122

px|y(x|y) =
px,y(x,y)∫∞

−∞ px,y(x,y)dx
=
py|x(y|x)px(x)

py(y)
(7)

The denominator py(y) is the marginal pdf of the observations, and can often be treated as a123

normalisation factor of the posterior pdf, since it does not depend on x.124

This is the most general solution for the DA analysis step. Nonetheless, obtaining the125

posterior pdf is not an easy task in many occasions, since it requires full knowledge of the two126

densities involved in the product of the numerator of (??). Let us step back and discuss a127

considerably simpler case; we will build on more complicated cases later. Hence, let (??) become:128

y = Hx + η (8)

where H ∈ RNy×Nx is a linear operator and the observational error is additive. Define129

µb = Ex[x] ∈ RNx , B = Covx[x] ∈ RNx×Nx (denoted σb
2

in the univariate case),130

R = Covy|x[y|x] ∈ RNy×Ny (denoted σo2 in the univariate case), and Eη[η] = 0. One can get a131

minimum variance estimator for the analysis mean µa ∈ RNx as:132

µa = µb + K(y −Hµb) (9)

where K ∈ RNx×Ny is known as gain, and is computed as:133

K = BHT(HBHT + R)−1 (10)

The covariance of the analysis is computed as:134

A = (I−KH)B (11)

Expressions (??) and (??) are the KF analysis equations (Kalman 1960; Kalman and Bucy135

1961). If, besides having a linear observation operator and additive observational error, both136

px(x) and py|x(y|x) are multivariate Gaussians, then using these equations is optimal. This137

means they produce the sufficient statistics of the full Bayesian posterior. Note that if the set138

{x,y} has a joint multivariate Gaussian distribution, then the aforementioned conditions are139

automatically fulfilled.140
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It is important to mention that the marginal pdf of the observations is py(y;µy,Σy), again a141

multivariate Gaussian, this time with mean and covariance:142

µy = Hµb

Σy = HBHT + R
(12)

Now, let us partially relax the assumptions on the likelihood. For nonlinear observation143

operators and additive error, the observation equation is:144

y = h(x) + η (13)

It should be clear that in this case (??) simplifies to py|x(y|x) = pη(y − h(x)). A first order145

(linear) approximation to the KF analysis equations, known as extended KF (EKF, see e.g.146

Jazwinski, 1970) can be written as:147

µa = µb +K(y − h(µb))

A = (I−KH)B

K = BHT(HBHT + R)−1
(14)

where H ∈ RNy×Nx is the tangent linear operator of h, i.e. the Jacobian matrix H = ∂h
∂x

∣∣∣∣
x=xb

.148

Formulating the KF analysis equations for a general observation operator as indicated in (??)149

is much more complicated (and further away from optimal conditions), since it would require the150

linearisation of ĥ(x,η) with respect to η to express:151

y = h(x,η)

∣∣∣∣
η=0

+
∂h

∂η

∣∣∣∣
η=0

η +O(η2) (15)

This approximation of course will only be accurate for small η.152

To end this section, it is useful to discuss the analysis step of the ensemble KF (EnKF; see153

e.g. Evensen 2006). This is a Monte Carlo implementation of the KF, and uses sample statistics.154

Let us denote the background ensemble as Xb =
[
xb1, . . . ,x

b
M

]
, where Xb ∈ RNx×M . The sample155

mean is:156

x̄b =
1

M

M∑
m=1

xbm (16)

An ensemble of perturbations around the mean can be defined as: X′b = Xb − x̄b1T , where157

1 ∈ RM . Then, the sample covariance is:158

Pb =
1

M − 1
X′

b
X′

bT
(17)

The KF analysis equations update both mean and covariance, but in the analysis step of the159

EnKF it is necessary to update each one of the M ensemble members. This can be done160

deterministically (ensemble square root filters: Tippett et al, 2003), or stochastically161

(perturbed-observations EnKF; Burgers et al., 1998). In this work we focus on the stochastic162

formulation (henceforth EnKF will refer to perturbed-observations EnKF), where each ensemble163

member is updated as:164

xam = xbm + K(ym −Hxbm) (18)

where K is defined as before but using the sample covariances, and the perturbed observations165

{ym} are samples from py|x(y|x). In particular, if the error is additive they relate to the actual166

observations by ym = y + ηm, where ηm is a particular realization of the observational error. By167
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construction, the KF analysis equation for the mean is fulfilled if the perturbed observations are168

generated such that ȳ = y, where ȳ is the sample mean. The KF analysis equation for the169

covariance is fulfilled in an statistical sense.170

In the case of nonlinear observation operator, (??) would be written as171

xam = xbm +K(ym − h(xbm)) (19)

In the EKF analysis equation, the computation of K involves calculating H. In the analysis step172

of the EnKF one can avoid computing this Jacobian by using the ensemble (Hunt et al 2007).173

First, one maps Xb ∈ RNx×M into observational space using the nonlinear observation operator174

to get a new ensemble Yb ∈ RNy×M . Explicitly:175

Yb = [yb1 = h(xb1); y
b
2 = h(xb2); · · · ; ybM = h(xbM )] (20)

Then a sample mean ȳb can be computed, as well as an ensemble of perturbations around this176

mean Y′b = Yb − ȳb1T . Finally, K is computed as:177

K = X′
b
Y′

bT
(Y′

b
Y′

bT
+ (M − 1)R)−1 (21)

For the EnKF analysis step, the quality of the sample estimators does depend on the178

ensemble size M , and this size should be related to the number of unstable modes in the model.179

It is not within the objectives of this paper to consider the effect of ensemble size, since what we180

want to evaluate is the exact solution produced by the analysis step of the EnKF when computed181

in different spaces, and how does it compare to the actual Bayesian posterior. For this reason, we182

will consider effectively infinite ensemble size (M = 106 in all our experiments) such that x̄b → µb183

and Pb → B.184

7



3 Anamorphosis185

In section ?? we stated 3 conditions that ensured optimality in the application of the (En)KF186

analysis step. For the moment, let us assume that conditions (ii) and (iii) are fulfilled, and focus187

on non-Gaussian priors. Two cases –for x ∈ R1– that result challenging for the application of the188

EnKF analysis step are illustrated in figure ??. In both cases the likelihood has been kept189

Gaussian and centered at the (directly observed) state variable.190

In the left panel, the prior (blue line) is bimodal, a mixture of two Gaussians centered in191

x = −2 and x = 2 with equal variance σ2 = 1
4 . The prior mean is x = 0, corresponding to a192

region where px(x) is close to zero. By assimilating an observation (red line) at y = x = 1
3 , the193

EnKF incorrectly constructs a unimodal analysis pdf (green line) which does not resemble at all194

the Bayesian posterior (magenta line). In fact, the analysis pdf is centered in a region where the195

posterior pdf is close to zero.196

In the right panel, the prior is an exponential distribution with λ = 1. This is a197

positive-definite variable, and the Bayesian posterior (corresponding to an observation at198

y = x = 2
3) correctly captures this information, since px|y(x|y) = 0 ∀x < 0. The analysis pdf given199

by the KF, however, yields non-zero probabilities for negative values of x. In reality, physical200

observations of a non-negative variable will not be negative. An additive error with Gaussian201

distribution cannot be used in practice: either a truncated nonsymmetric distribution is likely to202

be used, or negative values will be mapped to zero. Moreover, in these cases the nature of the203

observational error tends not be additive, but multiplicative for instance. Nonetheless, for the204

purpose of illustration, we allow the existence of negative observations.205

To avoid the mentioned problems, one can transform the state variable before applying the206

EnKF. The ultimate goal of this procedure is to map x, a variable with an arbitrary multivariate207

pdf px(x), into a new state variable x̃ with multivariate Gaussian pdf px̃(x̃). Then, the KF208

analysis equations can be applied to the transformed variables, and these updated values can be209

mapped back into the original space. This mapping process is known as Gaussian anamorphosis.210

In the univariate case (x ∈ R1), applying GA is conceptually not complicated (aside from the211

implementation aspects). One could use analytic functions such as logarithm or Box-Cox212

transformations, but these are not guaranteed to improve the distribution in general (Simon and213

Bertino, 2009). A better solution is to make use of the integral probability transform theorem214

(IPT) and solve for the new variable as (for details see appendix A):215

x̃ = g(x) = P−1x̃ (Px(x)) (22)

The moments of the target Gaussian variable x̃ are set to be those of the original ensemble (see216

section 4.4 Bertino et al, 2003). Of course, in the implementation one can transform x into a217

standard Gaussian rv N(0, 1), and then translate and scale the values correspondingly to get x̃.218

The actual prior px(x), and consequently the cdf Px(x), are rarely known perfectly. Hence, to219

apply the IPT, the first step is to empirically estimate Px(x). This can be done using the220

ensemble. Then, a set of percentiles of this empirical cdf are mapped to the same percentiles of221

the cdf of a target normal distribution. A piecewise linear transformation can be used to get the222

intermediate values, and special care has to be taken when dealing with the tails (Simon and223

Bertino, 2009; Beal et al, 2010). The quality in the estimation of Px(x) clearly depends on the224

size of the ensemble. In order to increase the sample size, one can make use of values of the225

variable at different times and consider a stationary climatological pdf. Refinements to this idea226

include time-evolving anamorphosis functions. Simon and Bertino (2009), for example, construct227

the GA function for the state variables from a window of three months centered on the datum in228

a 3-D ecosystem model.229

The multivariate case is considerably more difficult. Strictly speaking, it requires a joint230

multivariate transformation. A multivariate version of the IPT exists (Genest and Rivest, 2001),231
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but its application is not simple. Besides, checking for the joint Gaussianity of a multivariate232

spatial law is quite computationally demanding (Bertino et al 2003). For this reason,233

implementation of GA in large models is often done univariately, i.e. a different function is234

applied for each one of the components in the state variable vector:235

x̃ = g(x);


x̃1
x̃2
...
x̃N

 =


g1(x1)
g2(x2)

...
gN (xN )

 (23)

For field variables, one can either consider them to have homogeneous distributions, or one236

can apply local anamorphosis functions at different gridpoints (Doron et al 2011; Zhou et al,237

2011). Another option for the multivariate case is to rotate the space to get uncorrelated238

variables by performing principal components analysis (PCA). It is not straightforward, however,239

that the updated variables will follow the same PCA, since the transformations are nonlinear (see240

the discussion in Bocquet et al, 2010). Moreover, residual correlations may remain (Pires and241

Perdigao, 2007). A more complicated approach involving copulas has been suggested by Scholzel242

and Freidrichs (2008).243

Up to this moment we have only considered transformations of the prior, but the observations244

can be transformed as part of a more general GA process, i.e.:245

x̃ = gmodel(x)

ỹ = gobs(y)
(24)

In the transformed space, ỹ and x̃ are related by the observation operator246

h̃ = gobs ◦ h ◦ g−1model (25)

where ◦ denotes function composition. In this space, for each one of the transformed ensemble247

members the EnKF analysis value can be obtained as (Bertino et al, 2003):248

x̃am = x̃bm + K̃(ỹm − h̃(x̃bm)) (26)

To compute ỹm, Simon and Bertino (2012) propose to perturb the observations in the original249

space by sampling from py|x(y|x), and then map each of the perturbed observations individually250

ỹm = gobs(ym). In this work we use said approach. The perturbed variables have associated251

covariance matrices B̃ and R̃, which can be computed directly from the the ensembles X̃b and Ỹ.252

These covariance matrices are used for the computation of K̃. If h̃ is nonlinear, then one uses the253

same procedure described at the end of section ?? for the computation of K̃.254

A crucial issue in GA is the choice of the transformations gmodel(·) and gobs(·), and the effect255

these choices will have in the observation operator in transformed space. In the next section we256

study different choices for these maps.257
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4 Choosing anamorphosis functions258

We now discuss different ways to transform {x,y} into new variables {x̃, ỹ}, paying notice to the259

effects these transformations cause in the joint characteristics of state and observations. Is there260

a transformation that produces a Gaussian posterior px̃|ỹ(x̃|ỹ) in the transformed space? The261

search for this ideal case leads this section.262

For the moment we focus on the univariate case (x, y, x̃, ỹ ∈ R1). We start with a263

generalisation of (??) and consider joint bivariate forward transformations of the form:264

x̃ = g1(x, y)

ỹ = g2(x, y)
(27)

with the respective backward transformations:265

x = q1(x̃, ỹ)

y = q2(x̃, ỹ)
(28)

Then, if the joint pdf of {x, y} in the original space is px,y(x, y) = py|x(y|x)px(x), the joint pdf in266

the transformed space is (see appendix A for details):267

px̃,ỹ(x̃, ỹ) = py|x(q2(x̃, ỹ)|q1(x̃, ỹ))px(q1(x̃, ỹ))

∣∣∣∣∂q1∂x̃ ∂q2∂ỹ − ∂q1
∂ỹ

∂q2
∂x̃

∣∣∣∣ (29)

We will now study different choices for (??). Throughout the rest of this section we will use268

the following example to visualise the effects of these choices in the joint269

state-variable/observation space. The prior pdf, likelihood, and observation equation are (refer to270

equation (??) for notation on Gaussian rv’s):271

px(x) =
1

2
φ

(
x+ 2

1/2

)
+

1

2
φ

(
x− 2

1/2

)
pη(η) =

4

5
φ

(
η +

1

4

)
+

1

5
φ

(
η − 1

1/2

)
y = h(x, η) = x+ η

(30)

Both pdfs are Gaussian mixtures (GMs) with expected value equal to 0; px(x) is symmetric272

while pη(η) is not. One can think of this choice for px(x) to be plausible, but this type of273

distribution is rarely used for observational error. It could be seen as the result of the interaction274

of a simpler likelihood with a nonlinear observation operator. In any case, using GMs is275

convenient since they allow tractability of the analytical Bayesian posteriors (see appendix B for276

details), something very useful for illustration and evaluation purposes. Also, GMs can be used277

to approximate any smooth pdf.278

The application of different anamorphosis functions for this example is illustrated in figure ??.279

This figure has 5 panels, one for each transformation. In every panel we show the joint bivariate280

distribution of the state variables and observations (contour plot), the marginal distribution of281

the state variable (horizontal plot) and the marginal distribution of the observations (vertical282

plot). Also, we consider individual given observations (shown as color lines on top of the283

bivariate plot), and the effects of the transformations in these observations.284

4.1 Independent transformations285

The simplest case is to make the transformations for state variables and observations286

independent. This means x̃ = g1(x, y) = g1(x) and ỹ = g2(x, y) = g2(y). Then, (??) simplifies to:287

px̃,ỹ(x̃, ỹ) = py|x(g−12 (ỹ)|g−11 (x̃))px(g−11 (x̃))

∣∣∣∣∂g−11

∂x̃

∂g−12

∂ỹ

∣∣∣∣ (31)
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Next, we list some choices for independent univariate transformations.288

(a) Working in the original space.289

In this trivial case, both transformations are the identity:290

x̃ = x; g1(·) = 1
ỹ = y; g2(·) = 1

(32)

This amounts to just applying the EnKF in the original space, but it serves as benchmark for291

comparison. As we see in panel (a) of figure ??, for our example both px(x) and py(y) are292

bimodal, with py(y) showing asymmetry, a consequence of the asymmetric likelihood. In the joint293

state-variables/observations space, this translates into two sell-separated areas of high294

probability. This is indeed a scenario that ensures non-optimality for the use of the EnKF.295

(b) Transforming only x.296

In this case only the state variable is transformed into a Gaussian rv. Hence the297

transformations are:298

x̃ = Φ−1x̃ (Px(x)) g1(·) = gx→x̃(·) = Φ−1x̃ (Px(·))
ỹ = y g2(·) = 1

(33)

where Φx̃(·) explicitly indicates that the cdf in transformed space is that of a Gaussian rv (see299

notation defined in section ??). As we can see in panel (b) of figure ??, this transformation300

achieves a marginal Gaussian px̃(x̃), but does nothing either on pỹ(ỹ) or in the individual301

observation values. The joint pdf px̃,ỹ(x̃, ỹ) does not show the isolated peaks as before, but302

instead it has elongated features, a consequence of populating regions of the space variable303

around 0 which were previously unpopulated.304

(c) Transforming both x and y with the same function.305

This transformation is only possible when the domains of x and y are the same, as in our306

example with h = 1. This option cannot always be applied; it would be incorrect e.g. if x ∈ R307

and y ∈ R+. For the sake of completeness we include it in our discussion. In this case the maps308

would be:309

x̃ = Φ−1x̃ (Px(x)) g1(·) = gx→x̃(·) = Φ−1x̃ (Px(·))
ỹ = Φ−1x̃ (Px(y)) g2(·) = gx→x̃(·) = Φ−1x̃ (Px(·)) (34)

The application of this transformation in y does not guarantee anything characteristics for pỹ(ỹ).310

Panel (c) of figure ?? illustrates the effect of this transformation. While the state variable is311

indeed transformed into a Gaussian, we obtain a non-Gaussian and very peaked distribution for312

pỹ(ỹ), which translates in a very narrow bivariate pdf with respect to ỹ. The individual313

observations are transformed, as depicted by the color lines.314

(d) Transforming x and y marginally.315

With the previous methods one achieved marginal Gaussianity in x̃, but not on ỹ. One can316

apply the IPT to y and obtain marginal Gaussianity in ỹ. The maps would then be:317

x̃ = Φ−1x̃ (Px(x)) g1(·) = gx→x̃(·) = Φ−1x̃ (Px(·))
ỹ = Φ−1ỹ (Py(y)) g2(·) = gy→ỹ(·) = Φ−1ỹ (Py(·))

(35)

This transformation involves knowing the marginal distribution of the observations, or at least318

constructing an estimation. This is the approach used in Simon and Bertino (2009, 2012). In319

these works, the authors estimate a marginal climatological pdf for observations using values320

from an extended time period. Panel (d) of figure ?? shows the effects of this transformation. As321

we can see, both marginal pdf’s are Gaussian. The individual observations are transformed (as in322

panel (c)). The joint pdf, however, looks very different from a bivariate Gaussian; recall that323

whereas bivariate Gaussianity implies marginal Gaussians, the opposite is not true (e.g. Casella324

and Berger, 2002).325

11



4.2 Joint state-variable/observation transformations326

In section ??, the objectives of the proposed transformations became progressively become more327

ambitious. The last case achieves marginal Gaussianity in both x̃ and ỹ. Still, with independent328

transformations we are not able to guarantee any particular characteristics for the relationship329

between state variables and observations in the transformed space. We now introduce a joint330

state-variable/observation transformation which has precisely this objective: to transform the331

pair {x, y} (with arbitrary joint pdf) into the pair {x̃, ỹ} (with joint Gaussian pdf). Consequently332

as a by-product, the marginal and conditional pdfs in this space will also be Gaussian. Our333

algorithm can be divided in 3 steps. These are listed next and also depicted in figure ??.334

(i) The first step corresponds to the upper row of figure ??. In this step we pre-design a335

transformed space (right panel) which is joint Gaussian and that shares statistical characteristics336

with the original space (left panel). In the transformed space we set the prior as337

px̃(x̃) = φ(x̃; µ̃b, σ̃b), and the likelihood as pỹ|x̃(ỹ|x̃) = φ(ỹ; H̃x̃, σ̃o). The moments of px̃ are338

estimated by the sample moments of the ensemble in the original space, i.e. {µ̃b = µb, σ̃b = σb},339

and the observational error is prescribed (or deduced) from the original likelihood, i.e. σ̃o = σo .340

H̃ is a linear observation operator (in our example we choose the identity).341

(ii) The second step corresponds to the middle row of figure ??. We map both x and x̃ into342

w ∼ U [0, 1], i.e. a r.v. with uniform distribution in the interval [0, 1]. This is done by simply343

applying the IPT to both variables:344

w = Px(x)

w = Px̃(x̃) = Φx̃(x̃)
(36)

The previous procedure is just the application of (??) with an extra intermediate step. Let us345

focus on the spaces {w, y} and {w, ỹ}. Since the marginal pdf of w is simply pw(w) = 1 I[0,1](w)346

–where I[0,1](·) is the indicator function–, the joint pdf pw,y(w, y) coincides with the conditional347

pdf py|w(y|w), i.e. pw,y(w, y) = py|w(y|w). The same applies to the {w, ỹ} case, i.e.348

pw,ỹ(w, ỹ) = pỹ|w(ỹ|w).349

For our example, these distributions are illustrated the second row of figure ??, and they are350

shown in better detail in figure ??. In the left panel of this figure we depict pw,y(w, y), the center351

panel depicts pw,ỹ(w, ỹ) and the right panel is the difference between the two (we can do this352

subtraction because y and ỹ have the same support (−∞,∞)). In the left panel, we can see the353

effect of having a GM as prior, as we can see two well separated regions in the joint pdf, with a354

division at w = 0.5. We can also notice the effect of the non-symmetric likelihood: the distance355

between the contours in the upper part of the colored strip is less than the distance between356

those in the lower part. These effects are not present in the center panel. In fact, we need a way357

to convert the left panel into the center panel; this is the purpose of the next step.358

(iii) The last step is depicted in the bottom row of figure ??. For the last step we design a359

transformation from y to ỹ such that the given pw,y(w, y) becomes the prescribed pw,ỹ(w, ỹ). This360

is equivalent –as we have explained before– to transforming py|w(y|w) into pỹ|w(ỹ|w). Hence, for361

each and every value of w, we can state the following equation of cumulative likelihoods:362

Pỹ|w(ỹ|w) = Py|w(y|w) (37)

Although it is not always possible to obtain explicitly, the solution of this equation is of the form363

ỹ = ỹ(w, y). Solving this equation for each and every value of w completes the construction of the364

map from {x, y} into {x̃, ỹ}. To summarize, the transformation we just devised is formed by the365

forward and backward maps:366

x̃ = gx→x̃(x) x = g−1x→x̃(x̃)
ỹ = gbiv(x, y) y = qbiv(x̃, ỹ)

(38)
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In figure ?? we show the form of these maps in our study case: forward transformations in the367

top row and backward transformations in the bottom row. The top left panel shows the simple368

IPT-based transformation from x to x̃. For the region −1 < x < 1 the graph looks almost369

horizontal, but it is not. This consequence comes from the fact that in this region px(x) is close370

to zero, while this same region contains the largest probability mass for px̃(x̃), so the slope of the371

map in this region is extremely small. The top right figure shows the joint transformation372

ỹ = ỹ(x, y), which is the solution of (??) in terms of y and w, but with the values of w replaced373

by the corresponding x for the plot. The bottom left panel shows the transformation from x̃ to x.374

Again, it is a simple IPT-based implementation. This time we observe an almost vertical375

behaviour of the graph near x̃ = 0, for the reasons stated before. On the other hand y = y(u, v) is376

the solution of (??) in terms of y and w, with the values of w replaced by the corresponding377

values of x̃ for the plot. The plot would suggest a discontinuity around x̃ = 0, but this is not the378

case, there is only a sharp change not captured at the resolution of the graph. This behaviour is379

associated to the characteristics around x = 0 previously described.380

The method we just described can be considered a special instance of the multivariate381

Rosenblatt transform (1952). Furthermore, the statistical characteristics of the joint382

state-variable/observation space {x̃, ỹ} constructed with this method fulfil conditions (i)-(iii).383

One could -at first sight- consider this to be an optimal transformation. Things are not that384

simple, however, and the complication comes from the mapping of the given individual385

observations. The issue is that a fixed value y0 in {x, y} is not fixed anymore in {x̃, ỹ}, it386

becomes a function ỹ0 = ỹ0(x, y0) (actually a function of x since y0 is a fixed value). This can387

easily be seen in panel (e) of figure ??. By construction the obtained joint distribution is388

bivariate Gaussian (and consequently the marginals are Gaussian as well), but fixed observations389

are no longer horizontal lines, instead their values depend on x̃. This leads to a conceptual390

complication: in the {x̃, ỹ} space we are not finding a posterior in the proper sense (or estimating391

its first two moments, since we are using the EnKF). In this space, the posterior px̃|ỹ(x̃|ỹ) is the392

pdf along a horizontal line of fixed ỹ. But we do not have fixed ỹ’s, instead we have functions.393

Does this mean we are actually estimating a probability of the form px̃|ỹ(x̃)(x̃|ỹ(x̃)) instead of394

px̃|ỹ(x̃|ỹ)? This may not be as big as a problem if we update individually each ensemble member395

(as we do), it would be more problematic if we were using a deterministic square root filter,396

updating mean and covariance, and constructing the ensemble members after that. Fortunately,397

by using perturbed observations we sample directly from the likelihood. This avoid bias, as398

indicated in Simon and Bertino (2009). Finally, it is important to mention that if we wanted the399

Bayesian solution in the transformed space we would need to compute the corresponding400

normalisation factor, in this case p(ỹ(x̃)), which cannot be considered a constant with respect to401

x̃. Fortunately we do not require this factor after mapping the sample back to the original space.402

The EnKF analysis equation in the transformed space is simply (??), and it is linear. For σ̃b2403

we use the sample covariance in transformed space. The observational error variance σ̃o2 is404

prescribed based on the characteristics of the likelihood in the original space. One could compute405

the empirical observational covariance in the transformed space, but one could not be averaging406

over straight lines, but functions of x̃ (see the previous discussion). Hence, this could lead to an407

overestimation or underestimation of the actual observational covariance.408

4.3 Transformations in the multivariate case409

Performing GA in the multivariate case (x, x̃ ∈ RNx and y, ỹ ∈ RNy) is considerably more410

difficult. As mentioned in section ??, the simplest way is to do independent transformations for411

each one of the state variables (see equation (??)) and observations. If there are variables that412

are neither transformed nor observed, they are still affected by the transformations via the413

corresponding covariances. For illustration, consider a two variable system in which the first414
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variable is indirectly observed, i.e. x = [x1 x2]
T and y = [y1] = [h(x1, η1)]. Even if the415

unobserved x2 is not transformed, the update from background to analysis of this variable is416

different in the original space than in one in which a GA of the form x1 → x̃1, y1 → ỹ1 is417

performed. We can see this if we develop explicitly (??) for this variable in the two cases:418

xa2 − xb2 =
Cov(xb2, y

b
1)

V ar(yb1) + V ar(y1)
(y1 − yb1)

xa2 − xb2 =
Cov(xb2, ỹ

b
1)

V ar(ỹb1) + V ar(ỹ1)
(ỹ1 − ỹb1)

(39)

where yb1 = h(xb1) and ỹb1 = h̃(x̃b1). The anamorphosis functions should guarantee that419

V ar(yb1) ≈ V ar(ỹb1) and that V ar(y1) ≈ V ar(ỹ1). Hence, the crucial part is the way in which the420

anamorphoisis function changes the covariance between the observed and the unobserved421

variable. This is, the change from Cov(xb2, y
b
1) to Cov(xb2, ỹ

b
1).422

Now, let us think again about targeted joint transformations. Following our rationale in423

section ??, the ultimate goal in this case would be to go from the space {x,y} with a general424

nonlinear operator h to a space {x̃, ỹ} with a joint multivariate distribution and a linear425

observation operator H̃. This may not be possible in general, depending on the precise behaviour426

of h.427

For the moment, we can propose a modest solution. Let us consider that there is a set of L428

variables that are observed as: [y1 = h1(x1); · · · ; yL = hL(xL)]. Then, we can perform the429

proposed joint transformations for each pair {xl, yl}. The effect of these transformation into430

other variables will still be communicated through covariance, just as in (??). To explore the full431

problem, one could start with a simple system such as the one described in this subsection (2432

variables, one observed, one not). Can we replace a joint trivariate transformation by a sequence433

of two joint bivariate ones? This is one of the ideas we are exploring at the moment.434
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5 Experiments435

In this section we study the analysis pdf’s that result of performing the EnKF analysis step in436

combination with the transformations described earlier. For the sake of brevity, we will take the437

following short notation when describing the 5 spaces in which the EnKF analysis step is applied.438

Its application in {x, y} is denoted as K{x, y}, in {x̃ = gx→x̃(x), y} as K{x̃, y}, in439

{x̃ = gx→x̃(x), ỹ = gx→x̃(y)} as K{x̃, ỹ∗}, in {x̃ = gx→x̃(x), ỹ = gy→ỹ(y)} as K{x̃, ỹ}, and finally440

in {x̃ = gx→u(x), ỹ = gbiv(x, y)} as K{x̃, ỹbiv}.441

Figure ?? shows the results of assimilating an observation at y0 = −1
3 in the system (??). The442

true Bayesian posterior (black line) is bimodal, with a considerably taller peak in the negative443

values. The analysis pdf produced by K{x, y} (blue line) does not resemble this at all, instead it444

generates a pdf centred close to zero with and a hint of bimodality. Note that a Gaussian445

analysis pdf is not produced (as it was the case in the left panel of figure ??) because in the446

current experiment the likelihood is not Gaussian and the perturbed observations were produced447

using the correct likelihood.448

For the other 5 cases the resulting empirical posteriors are indeed bimodal. K{x̃, ỹ∗}449

(magenta line) produces almost symmetric peaks. K{x̃, ỹ} (green line) gives more probability to450

the wrong mode. K{x̃, y} (red line) and the bivariate transformation K{x̃, ỹbiv} (cyan line) gives451

higher probability to the left peak, resembling the actual Bayesian posterior.452

5.1 An objective assessment of the quality of the453

EnKF-generated analysis454

The previous discussion was rather qualitative. We now use the Kullback-Leibler divergence455

(DKL, see e.g. Cover and Thomas, 2001) to quantitatively compare the EnKF-generated analysis456

pdfs with respect to the Bayesian posteriors. For two continuous pdfs p(x) and q(x), this457

quantity is defined as:458

DKL(p, q) =

∫ ∞
−∞

ln

(
p(x)

q(x)

)
p(x)dx (40)

The definition for DKL can be interpreted as the expected value of the logarithmic difference459

between the probabilities p(·) and q(·), evaluated over p(·). DKL quantifies the information gain460

from q to p (Bocquet et al, 2010). Note that 0 ≤ DKL(p, q) <∞ ∀ {p, q}, and DKL(p, q) = 0 if461

and only if the two densities are equal almost everywhere. Roughly speaking, the larger the value462

of this quantity the more different the two distributions are. In our case, p(x) is the exact463

Bayesian posterior, whereas q(x) is the EnKF-generated analysis pdf. We compute the DKL464

numerically after dividing the data in Jbins bins, and using the following expression:465

DKL(p, q) =

Jbins∑
j=1

ln

(
pj
qj

)
pj (41)

We will consider an experimental setting which stems from a generalisation of the system466

(??). The prior and (additive) observational error pdf’s are:467

px(x) = αx1 φ

(
x− µx1
σx1

)
+ αx2 φ

(
x− µx2
σx2

)
pη(η) = αη1 φ

(
η − µη1
ση1

)
+ αη2 φ

(
η − µη2
ση2

)
and the observation operator is the identity. We will choose three combinations of parameters:468
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(a) The prior is a GM and the likelihood is Gaussian (GM-G).469

αx = {1/2, 1/2} µx = {−2, 2} σx = {1/2, 1/2}
αη = {1, 0} µη = {0, ·} ση = {1, ·} (42)

(b) Both the prior and the likelihood are GMs (GM-GM).470

αx = {1/2, 1/2} µx = {−2, 2} σx = {1/2, 1/2}
αη = {4/5, 1/5} µη = {−1/4, 1} ση = {1, 1/2} (43)

(c) The prior is Gaussian and the likelihood is a GM (G-GM).471

αx = {1, 0} µx = {0, ·} σx = {1, ·}
αη = {4/5, 1/5} µη = {0, 1} ση = {2/3, 1/4} (44)

Furthermore, recall that we are assessing the quality of the empirical distributions that472

approximate px|y(x|y), which depend on a given observation. The Bayesian posterior and the473

analysis pdfs generated by the EnKF analysis step –which were plotted in figure ??– were based474

on a single observation. For the current experiment, however, we reconstruct the distributions for475

a range of 21 different observation values. For each one of the 3 scenarios (a-c), for each one of476

the 5 transformations, and each one of the 21 given observations we compute DKL. We plot this477

information in the left panels of figure ??, a different colour for each different transformation. In478

this figure, the top row corresponds to the GM-G case, the centre row to the GM-GM case and479

the bottom row corresponds to the G-GM case. Of the 21 observation values we select 3, which480

we identify with the violet, black and orange vertical dotted lines in these panels. In the right481

panels we take those observations and plot the Bayesian posteriors associated to them, each482

Bayesian posterior is identified with the corresponding colour. The quality of the483

EnKF-generated analysis distributions in the 5 different spaces will depend on the shape of the484

real Bayesian posterior they are trying to emulate. This is discussed in detail for each scenario.485

(a) Let us start with the GM-G case in the top row. Because of the settings (a bimodal prior486

symmetric with respect to x = 0 and a Gaussian likelihood), we expect DKL(y0 = ξ) equal to487

DKL(y0 = −ξ). This is indeed what we get for the 5 methods. For all the values of the488

observation, it is clear that K{x, y} is the worst method. In particular, its highest DKL value is489

for y0 = 0 (vertical black line), since this y0 gives rise to a bimodal posterior (black curve in right490

panel), a definite challenge for the EnKF applied in the original space. For the other two491

observational values (y0 = −1.8 violet line, and y0 = 1.8 orange line) the posteriors are close to492

Gaussians, and hence the DKL values are lower. The next largest DKL corresponds to K{x̃, y∗}.493

Again, the worst performance is for y0 = 0, but there is a consistent gap for all observational494

values between this and the other methods. The DKL values for the other 3 methods are very495

close. The performance of both K{x̃, y} and K{x̃, ỹbiv} is almost indistinguishable for all values496

of observations. In the interval −0.75 ≤ y0 ≤ 0.75 K{x̃, ỹ} is outperformed by K{x̃, y} and497

K{x̃, ỹbiv}, but outside this interval it is the best method overall.498

(b) In the centre row we have the GM-GM case. Not surprisingly, K{x, y} presents the worst499

performance, followed by K{x̃, ỹ∗}, and both perform worst for observations that produce500

bimodal posteriors. This is again the case of y0 = 0 (black vertical line) which produces a501

nonsymmetric bimodal posterior (right panel). The performance of K{x̃, y} and K{x̃, ỹbiv} is502

again very close to each other. It is interesting that for −2.4 < y0 < 0.6 both K{x̃, y} and503

K{x̃, ỹbiv} have the best performance, whereas for y0 < −2.4 and y0 > 0.6 the best method is504

K{x̃, ỹ}. We could identify that this particular method tends to have trouble with bimodal505

asymmetric posteriors.506

(c) Finally we have the G-GM case in the bottom row. For this scenario, 3 transformations507

are exactly the same: K{x, y}, K{x̃, y} & K{x̃, ỹ∗}. The reason for this is that the508
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transformation gx→x̃ is the identity (the prior is already a Gaussian). This is why in the left509

bottom panel of the figure one line has the three corresponding colours (blue, red and magenta);510

we will refer to this line simply as K{x, y}. One can immediately notice that K{x, y} and511

K{x̃, ỹ} have a very similar performance for most observations. The explanation is that with the512

settings of this experiment the marginal py(y) is very close to being Gaussian, so that the513

transformation gy→ỹ is very close to the identity again. Still this method outperforms K{x, y} for514

y0 < −0.4. Note that the best performance for both methods is for large negative observations; as515

we can see for y0 = −1.8 (vertical violet line) the Bayesian posterior is close to a Gaussian (right516

panel). This is not the case, however, for the posteriors produced by y0 = 0 (black vertical line)517

and y0 = 1.8 (orange vertical line). As it can be seen in the right panel of this row, both Bayesian518

posteriors are bimodal and asymmetric (black and orange lines). In this example we can truly519

appreciate the value of both bivariate transformations; for most part of the observation values520

they outperform the other methods, and the difference is especially significant for the challenging521

cases mentioned above.522
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6 Summary and discussion523

The analysis step of the EnKF is optimal when the following 3 conditions are met: (i) the524

distribution of the prior is Gaussian, (ii) the observation operator that relates state variables and525

observations is linear, and (iii) the observational error is additive and follows a Gaussian526

distribution. The analysis step of the EnKF is often applied in spite of the violation of these527

conditions and still yields useful results. There are cases, however, when the departure from said528

conditions is too considerable. In these cases, a technique known as Gaussian anamorphosis is529

applied to convert these distributions into Gaussians before performing the analysis step.530

The ultimate goal of GA would be to convert the set {x,y} of arbitrary joint distribution into531

the set {x̃, ỹ} with a joint Gaussian distribution. This is not an easy objective at all, and a532

proper multivariate GA transformation is not straightforward to devise. For this reason, GA is533

often applied in a univariate manner. Thus, we have mostly restricted ourselves to the univariate534

case x, y, x̃, ỹ ∈ R1. For this case, we have analysed GA transformations starting from the535

following classification: independent, i.e. transformations of the form x̃ = g1(x), ỹ = g2(y), and536

joint state-variable/observation, i.e. transformations of the form x̃ = g1(x, y), ỹ = g2(x, y).537

For independent transformations (section ??) we have studied some options: (a) an identity538

transformation –i.e. working in the original space– (denoted K{x, y}), (b) transforming only the539

state variable (denoted K{x̃, y}), (c) transforming both state variables and observations using the540

same function –applicable only when h is the identity– (denoted K{x̃, ỹ∗}) and (d) transforming541

state variables and observations to obtain marginal Gaussianity for both (denoted K{x̃, ỹ}).542

One of the contributions of this work is the introduction of a targeted joint543

state-variables/observation transformation (section ??) of the form x̃ = gx→x̃(x), ỹ = gbiv(x, y),544

which is briefly outlined next. Having original distributions px(x) and py|x(y|x), we devise target545

Gaussian distributions px̃(x̃) and pỹ|x̃(ỹ|x̃) with prescribed parameters. Both px(x) and px̃(x̃) are546

mapped into an auxiliary variable w U [0, 1]. Finally, an equality of cumulative likelihoods547

Pỹ|w(ỹ|w) = Py|w(y|w) is solved for all w and this completes the transformation {x, y} → {x̃, ỹ}.548

To test these transformations, we have selected a case in which the Bayesian posterior can be549

obtained analytically, in particular a directly observed GM prior – GM likelihood model with550

three settings: GM prior with Gaussian likelihood, GM prior with GM likelihood, and Gaussian551

prior with GM likelihood. We have compared the posterior pdf to the pdf’s generated after552

applying the EnKF analysis step in conjunction with the different transformations. This553

resemblance has been evaluated using the Kullback-Leibler divergence (DKL) for different given554

observations (figure ??). To further understand the behaviour of the DKL curves, we have plotted555

the Bayesian posteriors for 3 selected observational values (right panel of the same figure).556

The truth is that, despite the application of any of the different transformations, the analysis557

step of the EnKF cannot exactly reconstruct the Bayesian posterior when conditions (i)-(iii) are558

not met in the original space. Still, one can get approximate solutions, and it is clear that some559

are better than others.560

In all cases, K{x, y} has the worst performance, highlighting the fact that severe deviations561

from Gaussianity in both the prior and likelihood can handicap the performance of the EnKF562

analysis step. The next method in increasing order of performance is K{x̃, ỹ∗}. It seems that, at563

least for the situation we studied, applying the same transformation for both state variables and564

observations is not an appropriate strategy. In the first two cases (GM-G, GM-GM), 3 methods565

have very similar performance: K{x̃, y}, K{x̃, ỹ} and K{x̃, ỹbiv}. What are the sources of error566

for each one of these two methods, i.e. in what sense is the application of the EnKF analysis step567

not exact? For K{x̃, y} and K{x̃, ỹ} the answer is the appearance of a nonlinear observation568

operator; for K{x̃, ỹbiv} is the fact that the given observations are no longer fixed values but569

instead functions of the state variable (recall the coloured lines in panel (e) of figure ??). In these570

two cases we studied these errors seem to lead to the same performance.571
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The real advantage of the bivariate transformation K{x̃, ỹbiv} is appreciated in the G-GM572

case. In this case the transformation gx→x̃ is just the identity (since x is already Gaussian), and573

also gy→ỹ is very close to the identity since py(y) turns to be close to Gaussian. In this scenario574

K{x̃, ỹbiv} clearly outperforms the other methods when trying to reconstruct non-symmetric575

non-Gaussian posterior densities.576

This work has two main limitations. First of all, we have considered the infinite ensemble size577

scenario –in fact all our experiments were done with M = 106–, which allows us to perfectly know578

and simulate the distributions px(x) and py|x(y|x). This is of course not the case in real579

applications. In general, an estimation of px(x) has to be constructed empirically using the580

ensemble. The likelihood can often be considered to be prescribed (Bertino et al, 2003), but in581

occasions it is also necessary to construct an empirical estimation. For our bivariate method, the582

estimation of px(x) can be done with the ensemble, but in general one does require a good583

knowledge of the likelihood. When ensemble sizes are small and the knowledge of py|x(y|x) is not584

too precise, it is perhaps better to rely on a marginal transformation for both x and y (section585

??, method (d)). This is because one can increase the sample size by including state variables586

and observations for an extended time period and consider either stationary marginal587

distributions, or slowly-evolving ones (Simon and Bertino, 2009).588

The second limitation is that we have restricted ourselves to the univariate case, and just589

briefly mentioned some ideas for the multivariate one (section ??). GA implementations in large590

models is often done univariately (e.g. Simon and Bertino, 2012). To consider several variables at591

once would require multivariate anamorphosis. This is indeed a challenging and ongoing area of592

research (Scholzel and Friedrichs, 2008), and we hope that our insights on the univariate case593

may give guidance in the multivariate one. A further exploration of joint state variables –594

observations GA transformations for multivariate cases is part of our ongoing work.595

A final comment must be stated. Our entire analysis has been restricted to the analysis step596

of the EnKF, and we have ignored any effects that the cycling of the forecast and analysis steps597

may bring. Therefore, the impacts of GA in forecast capabilities has not been assessed. In this598

sense, any benefit from the suggested transformations has not been proven. We are working599

towards satisfactorily answering these questions in the future.600
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Apprendix A: Transformations of random variables606

Let x be a univariate random variable (rv) with pdf px(x). Let g be a monotonic transformation607

and define x̃ = g(x). The distribution of x̃, denoted as px̃(x̃), is given by (see e.g. Casella and608

Berger, 2002):609

px̃(x̃) = px(g−1(x̃))

∣∣∣∣ ddx̃g−1(x̃)

∣∣∣∣ (45)

where g−1 is the inverse of g. This inverse exists and is unique due to the monotonicity of g; if610

this condition is not met then one has to divide the sample space X into subsets X1,X2, . . . ,XK611

in which g is monotonic, perform the transformation in each set, and then add.612

One must be careful when transforming conditional probabilities. Consider py|x(y|x). If one613

performs the transformation ỹ = g(y), it is clear by (??) that614

pỹ|x(ỹ|x) = py|x(g̃−1(ỹ)|x)

∣∣∣∣ ddỹ g−1(ỹ)

∣∣∣∣
On the other hand, if we still consider the same conditional probability py|x(y|x) but with the615

transformation x̃ = g(x), the new conditional density is simply py|x̃(y|x̃) = py|x(y|x = g−1(x̃)),616

since the transformation is performed on the variable upon which the pdf is conditioned.617

The process becomes clearer if we consider the bivariate transformation for the pair {x, y}.618

Let this pair have a joint distribution px,y(x, y) = py|x(y|x)px(x), and define the joint bivariate619

forward transformations:620

x̃ = g1(x, y)

ỹ = g2(x, y)
(46)

Consider these transformations to be invertible resulting in the following two backward621

transformations:622

x = q1(x̃, ỹ)

y = q2(x̃, ỹ)
(47)

Then, the transformed pair {x̃, ỹ} has the following joint distribution:623

px̃,ỹ(x̃, ỹ) = px,y(q1(x̃, ỹ), q2(x̃, ỹ)) |det[J ]| (48)

where |det(J)| is the absolute value of the determinant of the Jacobian matrix of the624

transformation, namely:625

J =

[
∂
∂x̃q1(x̃, ỹ) ∂

∂ỹ q1(x̃, ỹ)
∂
∂x̃q2(x̃, ỹ) ∂

∂ỹ q2(x̃, ỹ)

]
(49)

In general, a joint multivariate transformation x̃ = g(x), with x ∈ RNx , x̃ ∈ RNx and626

g : RNx → RNx will transform a joint pdf px(x) into:627

px̃(x̃) = px(x = g−1(x̃))

∣∣∣∣det [ ∂∂x̃
g−1(x̃)

]∣∣∣∣ (50)

where ∂
∂x̃g
−1(x̃) ∈ RNx×Nx is the Jacobian matrix.628

Another important concept to recall is the so-called integral probability theorem (IPT). If629

P (x) is the cdf of x, then the variable w = P (x) has uniform distribution in the interval [0, 1].630

Multivariate extensions of this theorem exist, although the application is not straightforward as631

in the univariate case (Genest and Rivest, 2001). The IPT allows us to convert any rv into632

another; to transform x ∼ px(x) into x̃ ∼ px̃(x̃) one can write:633

x̃ = P−1x̃ (Px(x)) (51)

21



One can check (??) by using (??) and defining g(·) = P−1x̃ (Px(·)). Then:634

px̃(x̃) = px(g−1(x̃))
d

dx̃
g−1(x̃) = px(P−1x (Px̃(x̃)))

d

dx̃
(P−1x (Px̃(x̃))) = ((((((((

px(P−1x (Px̃(x̃)))

((((((((
px(P−1x (Px̃(x̃)))

px̃(x̃)
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Appendix B: Exact Bayesian posteriors for GM priors635

and GM likelihoods636

In this appendix, we analytically compute the marginal distribution for the observations py(y)637

and the posterior distribution for the state variable px|y(x|y) when both the prior probability and638

the likelihood have Gaussian mixture distributions. We limit the analysis to the univariate case639

x ∈ R1 with observation operator h = 1. Following the notation for Gaussian densities introduced640

in the text, we have:641

px(x) =

Jb∑
j=1

αbjφ

(
x− µbj
σbj

)
(52)

The first two moments of this distribution are:642

µb = E[x] =

Jb∑
j=1

αbjµbj

σ2b = V ar[x] =

Jb∑
j=1

αbj((µbj − µb)2 + σ2bj)

(53)

In a similar manner, the likelihood can be expressed as:643

py|x(y|x) =

Jη∑
j=1

αηjφ

(
y − (x+ µηj)

σηj

)
(54)

where the subscript η denotes the additive observational error in the observation equation644

y = x+ η. The first two moments of the distribution are:645

µy|x = E[y|x] =

Jb∑
j=1

αηj(x+ µηj) = x+ µη

σ2y|x = V ar[y|x] =

Jb∑
j=1

αηj((µηj − µη)2 + σ2ηj)

(55)

where clearly µη =
∑Jb

j=1 αηjµηj . Notice that the variance σ2y|x is independent of x.646

The joint distribution of the state variables and observations is:647

px,y(x, y) =

Jη∑
j=1

Jb∑
j′=1

αηjαbj′φ

(
y − (x− µηj)

σηj

)
φ

(
x− µbj′
σbj′

)
(56)

Recalling that py(y) =
∫∞
−∞ px,y(x, y)dx, the marginal distribution for the observations is:648

py(y) =

Jη∑
j=1

Jb∑
j′=1

αηjαbj′φ

y − (µηj + µbj′)√
σ2ηj + σ2bj′

 (57)

The first two moments of this distribution are:649

µy = E[y] =

Jη∑
j=1

Jb∑
j′=1

αηjαbj′(µηj + µbj′)

σ2y = V ar[y] =

Jη∑
j=1

Jb∑
j′=1

αηjαbj′((µηj + µbj′ − µy)2 + σ2ηj + σ2bj′)

(58)
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Using Bayes theorem, we can compute the posterior as:650

px|y(x|y) =

∑Jη
j=1

∑Jb
j′=1wajj′φ

(
x−µajj′
σajj′

)
∑Jη

j=1

∑Jb
j′=1wajj′

(59)

where the subindex e.notes analysis. This is again a Gaussian mixture, in which the weights,651

means and variances of each one of the JbJη Gaussian terms are:652

wajj′ = αηjαbj′φ

y − (µηj + µbj′)√
σ2ηj + σ2bj′


µajj′ =

σ2ηj
σ2ηj + σ2bj′

µbj′ +
σ2bj′

σ2ηj + σ2bj′
(y − µηj)

σ2ajj′ =
σ2ηjσ

2
bj′

σ2ηj + σ2bj′

(60)

Finally, the first two moments of this posterior distribution are:653

µx|y = E [x|y] =

∑Jη
j=1

∑Jb
j′=1wajj′µajj′∑Jη

j=1

∑Jb
j′=1wajj′

σ2x|y = V ar [x|y] =

∑Jη
j=1

∑Jb
j′=1wajj′

(
(µajj′ − µa)2 + σ2ajj′)

)
∑Jη

j=1

∑Jb
j′=1wajj′

In this paper we have used cases in which either the prior or the likelihood are simple654

Gaussians. These are obviously special cases of the aforementioned solution. Gaussian likelihood655

corresponds to Jη = 1, whereas Gaussian prior corresponds to Jb = 1.656
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Figures728

Figure 1: Comparison of the analysis pdfs obtained by a direct application of the EnKF analysis step
(green line) with respect to the actual Bayesian posteriors (magenta line). The state variables have
either a multimodal prior distribution (left), or they are positive-definite quantities (right). The EnKF
analysis step is applied with M = 106.
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Figure 2: Bivariate distributions (contour plots) and marginal distributions (line plots) for state vari-
ables (horizontal) and observations (vertical) under 6 different transformations (panels (a)-(e)) described
in the text. Individual given observations are identified with color lines in the contour plot, except for
panel (f) where individual values of x are shown.

.
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Figure 3: The process for the joint state-space/observations transformation described in section ??.
First (i), a target probability space is constructed using the statistical moments inferred or prescribed
by the original variables. Second (ii), the state variables (both original and transformed) are mapped into
a random variable w distributed U [0, 1]. Finally (iii), for each w an equation of cumulative likelihoods
is solved to find ỹ in terms of y.
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Figure 4: Joint pdfs for the spaces {w, y} (left) and {w, ỹ} (center). The difference between the two
densities is plotted in the right panel.
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Figure 5: Joint bivariate transformations from the {x, y} space (with GM marginals) to the {x̃, ỹ}
space (with a joint bivariate Gaussian pdf). The first row show the forward transformations: the state
variable is univariately transformed (left) whereas the observation is transformed in a joint bivariately
manner (right). The backward transformations are presented in the bottom row.
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Figure 6: Comparison of the Bayesian posterior distribution (black line) with respect to the EnKF-
generated analysis pdfs, with the EnKF analysis step applied in 5 different spaces (colour lines) for a
given observation (dotted vertical line). Both the prior and likelihood in the original space are GMs.
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Figure 7: Assessing the quality of the EnKF-generated analysis pdf’s for three cases: GM-G (top row),
GM-GM (center row) and G-GM (bottom row). The left panels shows the DKL for the EnKF-generated
analysis pdf’s with respect to the Bayesian posterior (colored lines) for different given observations
(horizontal axis). In each case we choose 3 given observations (vertical lines with markers) and in the
right panels we show the Bayesian posteriors associated with those 3 observations (colored lines with
markers, the colors correspond to those of the vertical lines). The solid grey curve in these panels
represents the prior for each case.
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