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The equivalent-weights particle filter in a high-dimensional system
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In general, particle filters need large numbers of model runs in order to avoid filter
degeneracy in high-dimensional systems. The recently proposed, fully nonlinear equivalent-
weights particle filter overcomes this requirement by replacing the standard model transition
density with two different proposal transition densities. The first proposal density is used
to relax all particles towards the high-probability regions of state space as defined by the
observations. The crucial second proposal density is then used to ensure that the majority
of particles have equivalent weights at observation time. Here, the performance of the
scheme in a high, 65 500 dimensional, simplified ocean model is explored. The success
of the equivalent-weights particle filter in matching the true model state is shown using
the mean of just 32 particles in twin experiments. It is of particular significance that this
remains true even as the number and spatial variability of the observations are changed. The
results from rank histograms are less easy to interpret and can be influenced considerably
by the parameter values used. This article also explores the sensitivity of the performance
of the scheme to the chosen parameter values and the effect of using different model error
parameters in the truth compared with the ensemble model runs.
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1. Introduction

Numerical models are often used in the geosciences to simulate
and predict the evolution of real-life systems. These numerical
models need an initial condition from which to start the
simulation and generally this cannot be fully determined by
observations of the true system. Data assimilation combines
the often noisy observations with information from previous
numerical predictions to try to estimate the starting state. Since the
initial condition is not fully determined, ideally an understanding
of the full uncertainty is required in order to assess the full
uncertainty in the evolution of the geophysical system. This
uncertainty in the initial condition is represented by a probability
density function (pdf), called the posterior pdf.

Historically, numerical models have been solved at the large
synoptic scale, where relatively simple linear balances tend to
dominate the system. This leads to posterior pdfs that are close to
unimodal or where the majority of the posterior probability mass
is concentrated around a mode of the pdf. Hence, data assimilation
methods have been developed that focus on trying to find the
mode of the posterior pdf, such as 3DVar and 4DVar (Talagrand
and Courtier, 1987). Alternatively the Ensemble Kalman Filter
(EnKF: Evensen, 1994; Burgers et al., 1998) searches for the mean
of the posterior pdf, since the linear assumptions made as part
of the Kalman filter would implicitly lead to a mean close to the
mode.

The above methods do give some indication of the uncertainty
in the posterior pdf. Variational methods find the mode by
exploring the gradient of the log of the posterior pdf. One of
the matrices that can be determined in this process, the Hessian,
measures the curvature in the posterior pdf local to the mode
and so gives some indication of uncertainty. The EnKF makes
the assumption that the posterior pdf is Gaussian and provides
an estimate for the covariance. This, together with the mean,
completely quantifies the Gaussian distribution and so, under
this assumption, the posterior pdf is known. However, both the
methods rely on the posterior having one clear mode. Geophysical
numerical models are becoming ever more complex, with the
inclusion of many more nonlinear processes. The grid resolution
of the models is also increasing, as computer capabilities are
developed. The two combined mean that the posterior pdf is
increasingly likely to be multimodal. This is problematic for
variational methods, since there is no guarantee that a global,
rather than a local, mode will be found via the gradient methods
used. Since the curvature is local, it will also only give probability
information about the mode found, rather than an understanding
of the full uncertainty in a multimodal posterior. The Gaussian
assumptions of the EnKF mean it is not possible to quantify a
multimodal pdf accurately with this method.

Particle filters are data assimilation methods that provide a
representation of the full posterior pdf. Given that the posterior
is the conditional pdf of the state of the system given the
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observations, Bayes’ theorem can be used to calculate the posterior
through the multiplication of the prior pdf and the likelihood.
The prior pdf represents our prior knowledge about the state of
the system and in particle filters is represented by an ensemble of
model runs or particles. The likelihood is the probability density
of the observations given a specific model state and forms a
weight associated with each of the model runs. So, for example,
the mean of the posterior pdf now becomes a weighted mean of
the ensemble of particles.

Particle filters have been shown to perform well in small-
dimensional systems in applications unrelated to geoscience (see
Doucet et al., 2001 and references therein). The problem with
using them in geophysical applications is that, in general, the
dimension of such systems is extremely large. In high-dimensional
systems, particle filters suffer from filter degeneracy, where the
ensemble of model runs representing the prior pdf become highly
unlikely to sample the high-probability region of the posterior pdf
simultaneously. This results in the majority of particles having
relative weights very close to zero, with only one particle retaining
any weight from the likelihood and hence significance in the
posterior. All statistical information on the distribution of the
posterior is therefore lost and there is no longer any advantage
in using particle filters compared with other data assimilation
schemes. This is known as the ‘curse of dimensionality’ and is what
prevents particle filters being considered as realistic alternatives
for data assimilation (Snyder et al., 2008). Recent geophysical
particle filter research has therefore focussed on trying to ensure
that, whilst the ensemble of model runs still represents our prior
knowledge of the system, they are also samples from the high-
probability region of the posterior (Doucet et al., 2000; Chorin
and Tu, 2009; Bocquet et al., 2010; Chorin et al., 2010; Morzfeld
et al., 2012).

The equivalent-weights particle filter (Van Leeuwen, 2010,
2011) uses a proposal density to steer the particles towards
the high-probability region of the posterior pdf. However, just
ensuring particles are in the high-probability region is not
enough. It can be shown that, when the number of independent
observations is large, the relative weights of the particles will
still vary significantly, resulting in filter degeneracy (Ades and
Van Leeuwen, 2013). In the equivalent-weights particle filter,
the proposal density is additionally used to ensure that similar
relative weights are obtained for the majority of particles. Hence
degeneracy is avoided and the possibility of representing a
potentially multimodal posterior pdf is realized.

The ability of the equivalent-weights particle filter to capture
the behaviour of a true solution has been shown for the low-
dimensional Lorenz (1963) model (Van Leeuwen, 2011; Ades and
Van Leeuwen, 2013), the 40- and 1000-dimensional Lorenz (1995)
models (Van Leeuwen, 2011) and more recently the barotropic
vorticity equation solved over a 65 536 dimensional grid (Van
Leeuwen and Ades, 2013). However, in Van Leeuwen and Ades
(2013) the system was fully observed. In reality, in most geoscience
systems, observations are much scarcer than the dimension of the
system and tend to be irregularly distributed over the state.

In this article, the performance of the equivalent-weights
particle filter for the same barotropic vorticity equation is
explored, but now the effect of changing the number and distri-
bution of observations is examined. A comparison of the extra
computational time required by the equivalent-weights particle
filter is made to that required by the Sequential Importance
Resampling (SIR) filter. In addition, the sensitivity of the scheme
to the chosen parameter values is considered, as well as the
consequences of using different stochastic error in the ensemble
model runs compared with the pseudo truth of a twin experiment.
The last is done in an attempt to replicate the realistic situation
of using a geophysical model designed without a complete
understanding of the behaviour and error statistics of the truth.

The article is organized as follows. In section 2 we discuss
particle filters in general, followed by an explanation of the
equivalent-weights particle filter in section 3. In section 4 the

numerical model simulating the barotropic vorticity equation
is outlined and results for varying numbers and distributions
of observations are shown. Computational times are given and
the effects of varying the parameter values and changing the
stochastic error statistics used in the ensemble are also discussed.
Conclusions are drawn in section 5.

2. Particle filters

Particle filters are based on a Bayes theorem expansion of the
conditional posterior pdf of the state of the system xn given a
vector of observations yn:

p(xn|yn) = p(yn|xn)p(xn)

p(yn)
, (1)

where n is the time index. The prior probability density, p(xn),
represents the information coming from the model equations
and can be approximated by a discrete set of N delta functions
centred on individual model states known as the particles:

p(xn) ≈ 1

N

N∑
i=1

δ(xn − xn
i ). (2)

The particle approximation of the prior pdf can be combined
with Eq. (1) so that the conditional posterior pdf becomes the
weighted sum of delta functions:

p(xn|yn) ≈
N∑

j=1

wn
i δ(xn − xn

i ), (3)

with each particle having a weight given by

wn
i = p(yn|xn

i )∑N
j=1 p(yn|xn

j )
. (4)

Since the weights wn
i are calculated using the likelihood, p(yn|xn

i ),
the closer a model state lies to the observations, the greater
the weight of the particle and the more significance it has
in representing the posterior pdf. For a more comprehensive
overview of particle filters, see Doucet et al. (2001).

Filter degeneracy occurs when the particles are distant from the
majority of observations and so only the few particles that happen
to be closest to the greatest number of observations have non-zero
weight. Hence only these few particles have significance in the pos-
terior pdf and the representation of the full uncertainty associated
with the state of the system given the observations is effectively
lost. The higher the dimension of the state or greater the number of
independent observations, the more chance there is of this occur-
ring (Snyder et al., 2008; Ades and Van Leeuwen, 2013). It is this
issue that prevents the use of particle filters in large-dimensional
geoscience applications, despite the solutions proposed so far (see
Van Leeuwen (2009) for a review for the geosciences).

3. Equivalent-weights particle filter

The equivalent-weights particle filter ensures that the majority of
particles are both close to all the observations and also contribut-
ing significant information on the posterior pdf, thus avoiding
filter degeneracy. It consists of two separate steps, the relaxation
proposal density and the equivalent-weights proposal density.

3.1. Relaxation proposal density

In general, in geophysical applications, there are multiple time
steps between observations. This means that the model prior pdf
is the probability density of the model trajectory over all time
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steps, rather than being the pdf of just the model state at time n.
The time step from j − 1 to j is considered in order to demonstrate
in simple fashion how this is incorporated in the particle filter.

Exploiting the Markovian property of the model, the prior pdf
at time j can be written as

p(xj) =
∫

p(xj, xj−1) dxj−1 (5)

=
∫

p(xj|xj−1)p(xj−1) dxj−1.

Given the samples from p(xj−1), trajectories are determined using
the model transition density p(xj|xj−1), which equates to moving
each particle forward in time according to

x
j
i = f (x

j−1
i ) + dβ

j
i , (6)

where f (x
j−1
i ) is the deterministic model equation and dβ

j
i ∼

N(0, Q) represents model error with model error covariance Q
(see Appendix A1 for details).

This formulation of the model prior, is beneficial since it
brings with it the freedom to both divide and multiply the model
transition density by a proposal transition density:

p(xj) =
∫

p(xj|xj−1)

q(xj|xj−1, yn)
q(xj|xj−1, yn)p(xj−1) dxj−1. (7)

In theory, the proposal transition density q(xj|xj−1, yn) can be
any density, provided the support is at least equal to that of
p(xj|xj−1). However, since the aim is to ensure that the majority
of particles are close to all observations, it is logical to choose a
proposal density that incorporates observational information at
some future time n. Given the samples from p(xj−1), trajectories
can now be calculated using the proposal transition density

q(xj|xj−1
i , yn) rather than the model transition density p(xj|xj−1

i ).
In the equivalent-weights particle filter, this results in each particle
being moved forward in time using the adapted model equation

x
j
i = f (x

j−1
i ) + B(τ )(yn − h(x

j−1
i )) + d̂β

j
i, (8)

where h(x
j−1
i ) is the observation operator. This works to provide

a slight relaxation B(τ )(yn − h(x
j−1
i )) towards the observation at

time n. B(τ ) controls the strength of the relaxation and spreads the
observation information from observed to unobserved variables.
The stochastic error d̂β

j
i is now drawn from N(0, Q̂).

Sampling from the relaxation proposal transition density in Eq.
(7) means that an additional factor is present in the representation
of the model prior. This is a value that can be calculated
(dependent on the sample chosen from the proposal transition
density) and forms an additional weight on the particle. The
model prior at time n over multiple time steps now consists of
the weighted trajectories,

p(xn) =
N∑

i=1

ŵn
i δ(xn − xn

i ), (9)

with

ŵn
i =

n∏
j=1

p(x
j
i|xj−1

i )

q(x
j
i|xj−1

i , yn)
. (10)

These weights can vary considerably between particles and can
lead to filter degeneracy before the value from the likelihood in the
posterior (see Eq. (4)) is even taken into account (see Appendix
A1 for further details).

3.2. Equivalent-weights proposal density

To account for the disparity in weights coming from the model
prior, an additional proposal density is introduced. For the
majority of time steps, the relaxation proposal density as described
above is used. However, in the last time step before an observation,
a proposal density is used that ensures the majority of particles
have equivalent weights in the posterior pdf.

The final proposal density q(xn|xn−1
i , yn) can be used to set

p(yn|xn
i )p(xn

i |xn−1
i )ŵn−1

i ≈ wtarget, (11)

where ŵn−1
i are the weights from the model prior Eq. (10) taken

at time n − 1 and wtarget is a target weight. The question is what
value wtarget should have. Since the weight of a particle effectively
defines the significance of that particle in the posterior, ideally each
particle should hold the maximum possible weight. This equates
to a different target weight, w

target
i = wmax

i , for each particle.
However, it can be shown that even without including the value
coming from − log(ŵn−1

i ), wmax
i will vary sufficiently to cause

filter degeneracy when the number of independent observations
is large (Ades and Van Leeuwen, 2013). In the equivalent-weights
particle filter, the aim instead is to ensure almost equal weights
for the majority of particles. Hence a common value of wtarget is
chosen (see Appendix A2), which will be equal to or less than
wmax

i for a chosen percentage of particles but for which Eq. (11)
can be solved for that percentage. The remaining particles, for
which Eq. (11) cannot be solved with the chosen value of wtarget,
will be ignored for now but will return via resampling (Kitagawa,
1996).

In the equivalent-weights proposal density, this leads to the
chosen percentage of particles being set equal to

xn
i = f (xn−1

i ) + αiK(yn − Hf (xn−1
i )) + Q1/2ξ n

i , (12)

where H is the linearization of the observation operator h(x),
K = QHT(HQHT + R)−1 and

αi = 1 +
√

1 − bi/ai, (13)

in which bi = 0.5dT
i R−1di − log(wtarget) − log(ŵn−1

i ), ai =
0.5dT

i R−1HKdi and di = yn − Hf (xn−1
i ) (see Ades and Van

Leeuwen, 2013 for details). Those particles that are unable to
achieve the target weight are simply moved according to the
model equations

xn
i = f (xn−1

i ) + Q1/2ξ n
i , (14)

since their weights are so small that they will effectively
be discarded in the resampling stage. In both cases, ξ n

i ∼
(1 − ε)Ũk(0, γU ) + εN(0, γN I) comes from a mixture density,
where ε = 0.001/N and γU = γN = 10−5 (see Appendix A2 for
details).

The weight associated with each particle at the final time can
now be calculated as

wn
i = ŵn−1

i p(xn
i |xn−1

i )p(yn|xn
i )

q(xn
i |xn−1

i , yn)
, (15)

where q(xn
i |xn−1

i , yn) is evaluated according to Eq. (16):

q(xn
i |xn−1

i , yn) =

1∣∣Q1/2
∣∣


1−ε

(2γU )k + ε

(2π)k/2γN
exp

(− 1
2ξ

n
i

T(γ 2
N I)−1ξ n

i

)
,

if ξ n
i,j ∈ [−γU , γU ], ∀j = 1, . . . , k

ε

(2π)k/2γN
exp

(− 1
2ξ

n
i

T(γ 2
N I)−1ξ n

i

)
,

otherwise,

(16)

and should now be close to equivalent for the percentage of
particles chosen. A detailed overview of the steps required to
implement the equivalent-weights particle filter is included in
Appendix A3.
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4. Application to the barotropic vorticity equation

4.1. Model specification

The model used is based on the barotropic vorticity equation,
which governs the vorticity in a two-dimensional incompressible
homogeneous fluid:

Dq

Dt
= ∂q

∂t
+ u.∇q = dβ , (17)

where u is the two-dimensional velocity vector (u, v) describing
the flow in the x–y plane and q is the vorticity component along
the z-axis. We assume that the truth is a random variable and dβ
arises from unknown subgrid sources and sinks of vorticity. In
addition, since the fluid is incompressible, a stream function can
be defined as

u = −∂ψ

∂y
, v = ∂ψ

∂x
. (18)

Combining these with the relationship between the vorticity and
the velocity field,

q = ∂v

∂x
− ∂u

∂y
, (19)

leads to the equations

∂q

∂t
− ∂ψ

∂y

∂q

∂x
+ ∂ψ

∂x

∂q

∂y
= dβ ,

∂2ψ

∂x2
+ ∂2ψ

∂y2
= q (20)

to be solved at every time step. Vorticity is updated in the
first equation using a semi-Lagrangian scheme with time step
�t = 0.04. The cubic interpolation used as part of this semi-
Lagrangian scheme introduces an implicit hyper-diffusion into
the system of equations (Durran, 1999). The random component
dβ is then integrated using a simple Euler–Maruyama scheme.
The second equation is solved via an inversion of vorticity using
FFTs to give the stream function, which in turn can be used to
generate the velocity field for the next time step.

The equations are solved over a double periodic domain of
256 by 256 grid points with grid spacing �x = �y = 1/256,
which gives a state dimension of 65 536. The initial condition is a
quasi-random vorticity field, which has spectral coefficients sig-
nificantly non-zero only in the range of wavenumbers 2–6, with a
peak at wavenumber 4. It is then normalized such that the integral
of squared vorticity over the domain is equal to unity (Figure 1).
This initial condition was chosen, since it results in chaotic flow
structures. In the non-stochastic version of the barotropic vor-
ticity equation, energy cascades from small to large scales and the
flow becomes more organized as time progresses. The presence of
the stochastic term dβ means that energy continues to be injected
at small scales throughout the 1150 time steps of the experiment.
Although less chaotic behaviour starts to be seen by the end of the
time period, this additional energy means that the flow remains
fully turbulent throughout the majority of the experiment.

The stochastic error dβ is drawn from a multivariate Gaussian
with mean zero and covariance matrix Q = VβQ̃. Q̃ is a
correlation matrix generated using a two-dimensional Second
Order Autoregressive (SOAR) spatial correlation based on the
distance between grid points with a length-scale of five grid
points. At each time step, it is scaled by Vβ = 0.0252�t, where
�t = 0.04. The value of 0.0252 was chosen as it ensured that
the time-averaged l2 norm of the random error, ‖dβ‖2, was
approximately 10% of the vorticity difference caused by the
purely deterministic model equations, ‖f (xn−1

i )‖2. The Q̂ used

 

50 100 150 200 250

50

100

150

200

250

−5

0

5

Figure 1. The model state used to initialize the truth run of the barotropic
vorticity equation. This figure is available in colour online at wileyonlineli-
brary.com/journal/qj

as part of the proposal transition density was chosen to be the
same as Q. Using this random error, the decorrelation time-
scale of the system was determined to be about 42 time steps.
The decorrelation time-scale was calculated by averaging the
auto-correlation function,

rk
i =

∑n−k
t=1 (xt

i − x̄i)(xt+k
i − x̄i)∑n

t=1(xt
i − x̄i)2

, (21)

for 100 of the 65 536 variables, where i refers to the individual
variable and k is the auto-correlation time difference (Wilks,
1995). The correlation time k at which this averaged correlation
function dropped below 1/e was taken as the decorrelation time.

In order to ensure a suitably difficult nonlinear data
assimilation problem was being solved, observations were made
every 50 time steps, which is greater than the calculated
decorrelation time. The effect of varying the spatial distribution
of the observations forms the main part of this article and will be
considered in section 4.2. The observations were obtained from
a truth run and independent Gaussian measurement noise with
standard deviation 0.05 was added to typical observation vorticity
values of O(1).

In the relaxation proposal transition density, the function B(τ ),
which controls the strength and spread of the relaxation term,
was chosen as

B(τ ) = bτQHTR−1, (22)

with τ = (tj − t0)/(tn − t0) being zero at the previous observa-
tion time, t0, and increasing linearly to 1 at the new observation
time tn. The observation-error covariance matrix R is included
in B(τ ) both to normalize yn − h(xj−1) by the errors in the
observations and to ensure the relaxation term has the correct
physical dimension. The b represents a scaling factor, by which
the strength of the relaxation towards the observation can be
controlled. The effect of changing b is discussed in section 4.4.1,
but it is initially set to 0.2.

In the equivalent-weights proposal transition density, 80% of
particles were retained at analysis time, although the effect of
changing this value is considered in section 4.4.2. The parameters
ε, γU and γN were chosen to be: 0.001/N (where N is the number
of ensemble members), 10−5 and 10−5 respectively. It was found
in the Lorenz (1963) model that increasing these values ultimately
leads to filter degeneracy (Ades and Van Leeuwen, 2013). This
result is not expected to differ when applying the equivalent-
weights particle filter to the barotropic vorticity equation and so
these parameter values have been kept throughout. No instances
of filter degeneracy were seen at any of the time steps considered.

4.2. Partial observations

The experiment where every variable is observed across the full
state every 50 time steps has already been reported on in Van
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Leeuwen and Ades (2013). The results showed the effectiveness
of the equivalent-weights particle filter in representing the true
model state of a twin experiment by the mean of the ensemble. A
close-to-uniform rank histogram also indicated that the statistics
of the ensemble were appropriate. However, the model error
covariance matrix Q not only assumed independent model errors
but was also scaled too large. This meant the l2 norm of the
model error was comparable to the l2 norm of the deterministic
model equations. Q has now been scaled appropriately, so
that the random error is approximately 10% of the size of the
deterministic movement and Q is also now fully correlated. These
changes have very little effect on the statistical results found in
Van Leeuwen and Ades (2013) and so the fully observed system
is not discussed further here.

In order to replicate more realistic observation conditions, two
different scenarios have been considered. The first looks at the
effect of reducing the number of observed variables uniformly
over the grid. The cases where observations are available for
every second (1/4 variables observed), fourth (1/16 observed)
and eighth (1/64 observed) grid point in both the meridional
and zonal directions are shown. The second scenario looks at the
effect of first making no observations in the southeast quarter of
the domain and then making no observations over the entire east
half of the state.

The purpose of using a particle filter as a data assimilation
scheme is to enable a representation of a potentially multimodal
posterior pdf. For a system as high-dimensional as the barotropic
vorticity equation considered here, it is not easy to generate
an estimate of the true posterior with which to compare the
particle filter representation (Law and Stuart, 2012). Instead,
different measures must be used to judge the performance of the
equivalent-weights particle filter. One such measure is to compare
the mean of the 32 particle ensemble with the true state of the
system in a twin experiment (Figure 2). Since the barotropic
vorticity equation is nonlinear, a comparison of the mean and
truth does not indicate how well the equivalent-weights particle
filter represents the posterior. However, if there is no relation
between the two then the particles are clearly not sampling from
the high-probability region of the posterior and the scheme is not
performing as we would wish.

It was found that, as the number of observed variables was
decreased, both uniformly and with increasingly larger sections of
the state unobserved, the mean of the equivalent-weights particle
filter continued to be successful in matching the larger scale
features present in the truth. The filament detail was also largely
retained when every second and fourth variable was observed
(Figure 2(b) and 2(c)) and with every other variable over three
quarters of the state (Figure 2(e)), again using the similarity of
the mean to the truth. When this is reduced to observed variables
every eighth grid point (Figure 2(d)) or every other variable over
half the state (Figure 2(f)), the filament behaviour starts to be
lost, although the larger structures are still clearly present and the
truth is recognisable. The results are shown at one analysis time,
but these conclusions hold for all observation times examined.

The success of the equivalent-weights particle filter in
representing the truth becomes more apparent if individual
particles are considered when only half the state is observed
(Figure 3). Although the finer filament structures are still missing
in some areas of the full state, in general both the finer detailed and
larger scale structures are both present in the individual particles.
However, the positioning of these structures differs between
particles and compared with the truth. It is this uncertainty in
positioning that is the major contributor to the loss of detail in
the mean of the ensemble. This demonstrates the weakness of
using the similarity to the truth as a ‘pseudo’ measure with which
to judge the ability of the equivalent-weights particle filter to
represent the full posterior pdf. The posterior pdf is likely to be
broad in areas where there are no observations to constrain it and
hence a smooth mean is to be expected.

The uncertainty of the positioning of features can also be seen
in the marginal posterior pdfs for individual variables (Figure 4).

The difference in posterior distributions when every other variable
is observed over the entire state, compared with only the left half
of the state, is apparent. When the entire state is partially observed,
the distributions are all unimodal and surround the truth and
observations. In contrast, when only half the state is partially
observed, the posterior pdfs are much more widely distributed.
When the variable is within the observed half of the state (Figure
4(b)), the ensemble correctly finds the observation. This is mainly
due to the relaxation term added to the model equations, although
the equivalent-weights step also has an effect on the posterior
pdf. In the unobserved half the posterior pdfs are much more
dispersive (Figure 4(d)) and can show multimodal behaviour
(Figure 4(f)). In both cases the absence of filter degeneracy can
be verified by the clear spread present in the ensemble.

Another method for judging the spread of the ensemble is to
examine the squared difference between the true state and the
ensemble mean compared with the ensemble variance. This was
done for both the prior and posterior ensemble at time step
600 (Figure 5). In both cases it was found that the variance was
higher where there was greater difference between the ensemble
mean and the truth. This indicates that the ensemble is behaving
correctly by being more dispersive in areas of higher truth minus
mean mismatch. In general, the spread around the truth was
overestimated at several locations but underestimated elsewhere
and the average over the field was close to that of the variance. Since
the (truth − mean)2 is one realization of the statistic represented
more generally by the variance, this is acceptable. It is also clear
that the prior has a much larger variance than the posterior
ensemble, as would be expected; however, similar patterns in
variance are observed in both ensembles.

Rank histograms were used to investigate the quality and
spread of the ensemble over all observation times (Figure 6).
Rank histograms are histograms of the position of the truth
in the ranked ensemble (Anderson, 1996; Hamill and Colucci,
1997; Talagrand et al., 1999; Hamill, 2000). A sloped histogram
shows that there may be systematic biases, a humped histogram
is evidence of too much spread in the ensemble and a U-shaped
or concave histogram evidence of too little spread. They can be
difficult to interpret, since there can be many reasons why certain
patterns in the histograms are seen (Hamill, 2000). However, in
the absence of better methods they are used here as an indication of
whether the equivalent-weights particle filter is encapsulating the
true spread of the posterior pdf. To generate the rank histograms
for the barotropic vorticity model, the ensemble values were
ranked and compared with the truth every analysis time and
every 16th variable in each row and column of the field, assuming
they were close to independent.

In all the rank histograms, peaks appear on either side of what
remains a relatively flat central histogram. Although these peaks
are small when every other variable is observed over the full
state, they grow as the number of variables observed is decreased.
On first inspection, these results could be taken as an indication
of underdispersion. This particular distinctive shape, however,
suggests more than just insufficient spread. Instead of the gradual
U-shape commonly associated with underdispersive ensembles,
here two peaks surround a flat central section. The level central
section would suggest a good spread but the peaks imply that
there are insufficient outliers in the ensemble, particularly as the
number of observations decreases. This effect and the cause is
discussed further in section 4.4.2, but the relevant point is that
these results suggest that in most cases the high-probability region
of the true posterior is being captured by the equivalent-weights
particle filter but truncation of the ensemble is preventing it from
encapsulating the far-out tails of the pdf.

It should be stated that the above proposition is a hypothesis,
since there could potentially be other reasons why such a shape
and relationship is seen in the rank histograms. It should also
be noted that, as the number of observations are reduced, the
data assimilation problem becomes increasingly difficult. That the
equivalent-weights particle filter is able to achieve a flat central
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Figure 2. (a) The ‘pseudo’ truth used in the twin experiment compared with the 32-ensemble-member generated mean at time step 600. With observations of every
(b) second and (c) fourth variable in each row and column, very little difference is seen between the mean of the ensemble and the truth. When every (d) eighth
variable is observed (1024 observed variables of the 65 536), the large-scale structures and some of the filament detail of the truth are still retained. With the bottom
right-hand quarter of the state being unobserved (with every other variable observed over the remainder of the state), the details of the filament features are lost in
this quarter (see panel (e)). This is more apparent when every other variable is observed only over the left side of the state (see panel (f)). This figure is available in
colour online at wileyonlinelibrary.com/journal/qj

section in rank histograms when only every fourth variable is
observed (6% of variables) is an important achievement.

Finally, to check that the equivalent-weights proposal density
is only affecting the state where there is information from
observations, the state of an individual particle can be plotted
both before and after the equivalent-weights step (Figure 7). It
was found that when the left half of the state was observed, only
negligible differences could be seen in the right half of the state
when the equivalent-weights step was applied (Figure 7(c)). This

confirms that changes to the state are not being made when there
is no information to justify modifications.

4.3. Relative computation times

The particle filter most commonly considered as the basic particle
filter is the SIR filter described in section 2. Although filter
degeneracy occurs when such a scheme is applied to large-scale
systems, such as the barotropic vorticity model discussed here,

c© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. (2014)



Barotropic Vorticity

50 100 150

(b) Particle 2

(d) Particle 28(c) Particle 23

200 250

50

100

150

200

250

−5

−4

−3

−2

−1

0

1

2

3

4

5

50 100 150 200 250

50

100

150

200

250

−5

−4

−3

−2

−1

0

1

2

3

4

5

50 100 150 200 250

50

100

150

200

250

−5

−4

−3

−2

−1

0

1

2

3

4

5

50 100 150

(a) Truth

200 250

50

100

150

200

250

−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 3. (a) The ‘pseudo’ truth used in the twin experiment compared with (b) Particle 2, (c) Particle 23 and (d) Particle 28 at time step 600 when every other
variable is observed over the left half of the state and no observations are made of the right half. The unobserved right half of the state is comparable to the truth,
although the particles are not able to catch the finer filament behaviour and there is some uncertainty over the positioning of the larger scale features (see for example
the anti-cyclonic feature in the top right corner). This figure is available in colour online at wileyonlinelibrary.com/journal/qj

it is informative to use it as a standard when assessing the
computational costs of a scheme. The equivalent-weights particle
filter may theoretically be a viable data assimilation scheme in
large-scale systems, but if in reality the computational time is
too high then the scheme will never be a possibility for actual
geophysical applications. Table 1 shows a comparison of the
CPU time for the two separate constituent parts of the SIR filter
compared with the equivalent-weights particle filter. The two
parts are the integration period between observations, which can
be performed in parallel since the individual particles or model
runs are independent, and the serial analysis period performed
at observation time. Two different observation scenarios have
been considered for the equivalent-weights particle filter; a fully
observed system (65 536 observed variables) and an ‘every other
variable observed’ scenario (16 384 observed variables). Using the
SIR filter, decreasing observed variables will simply decrease the
total computational time, as the likelihood needs to be calculated
for fewer variables. In contrast, the computational time for the
equivalent-weights particle filter will initially increase once the
system is not fully observed. This is due to the requirement
to invert (HQHT + R) as part of the equivalent-weights step.
Since we use double periodic boundary conditions, a fast Fourier
transform (FFT) can be used to do this inversion when the system
is fully observed. However, when the system is less than fully
observed, an LU decomposition is used, which can result in an
increase in the computation time dependent on the number of
observed variables.

The additional time seen for the equivalent-weights particle
filter in the integration period results from the use of the relaxation
proposal density, as opposed to the model transition density used
by the SIR filter. In particular, it is due to the need to calculate

p(x
j
i|xj−1

i )/q(x
j
i|xj−1

i , yn) at every time step.
In the analysis period, the equivalent-weights particle filter

uses the equivalent-weights proposal density, an inherent part
of which is calculating (HQHT + R)−1(yn − Hf (xn−1

i )); see Eq.
(A16). This calculation is largely responsible for the increase in
CPU time when compared with the SIR filter. However, it should
be noted that this is in part due to the current inclusion of this
step under the necessarily serial analysis computations, which
means the calculation is done for each particle in turn. Since,
for this particular calculation, there is no interaction between the
particles, it would also be possible to include it under the parallel
part of the code and hence reduce the overall CPU time associated
with the analysis.

Taking these values over a fully observed model run of 1150
time steps leads to a total wall time of 45 min for the SIR
filter and 51 min for the equivalent-weights particle filter. If
the number of observed variables is reduced to a quarter of
the full state, then the wall time for the equivalent-weights
particle filter increases to 61 minutes, assuming that the initial
calculations required by the LU decomposition are performed
offline. Hence, although the equivalent-weights particle filter
does result in additional computation time, it does not represent
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Figure 4. The marginal posterior pdfs of three different variables with
observations every other variable over the entire state (a, c, e) compared with the
posterior pdfs of the same variable when only half the state is observed (b, d, f).
The pseudo true state for each variable is shown by a cross (green in the online
article) and the observation by a cross (red in the online article) and the pdf is
taken at time step 600 with 32 particles. The top pdf is from a variable (89, 41)
that is observed under both scenarios whereas the bottom two points ((140, 157),
(156, 225)) are unobserved in both scenarios. More significantly, the unobserved
variables are also in the unobserved part of the state in the second scenario.
(d) Additional spread and (f) multimodal behaviour caused by not observing
whole sections of the state are evident. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

a substantial increase over the SIR filter. Obviously these values
will be application-dependent and will depend to a large extent
on the structure of the covariance matrix Q. Further comparisons
will be made as the equivalent-weights particle filter is explored
in different applications in future articles.

4.4. Parameter sensitivities

There are several different parameters that form an integral part
of the equivalent-weights particle filter. These are discussed fully
in Ades and Van Leeuwen (2013), where specific values for some
of the parameters were determined and are detailed at the end
of section 4.1. The remaining parameters, b and the percentage
of particles retained under the equivalent-weights step, are more
dependent on the model the scheme is applied to and can be used
to tune the performance of the scheme dependent on the measure
chosen. This section looks in more detail at the effects of changing
these two parameters in the barotropic vorticity equation.

4.4.1. Relaxation proposal density

The relaxation term has been chosen in this case to be

B(τ )(yn − Hxn−1
i ), where B(τ ) = bτQHTR−1, (23)

and the first parameter to be examined is the relaxation factor b,
which controls the strength with which each particle is relaxed
towards the observations. Hence, changing its value affects
the balance between the movement determined by the model
equations and the non-physical movement prescribed by the
relaxation term.

Table 2 shows the l2 norm of the movement caused by the model
equations, the additive random error and the relaxation term as
the strength of the relaxation term grows. The values are taken
in the time step immediately prior to an observation, i.e. when
the linearly increasing relaxation term is at a maximum, and
averaged across all particles and all observation times. It is clear
that, regardless of the strength of the relaxation term, the size of
the movement associated with the term is an order of magnitude
smaller than the movement caused by the addition of the random
error. Hence the model equations dominate and the relaxation
term can be seen as an adaptation to the random error to ensure
we are sampling particles in the locality of the observations. Since
the model equation is the controlling term, the majority of the
information from the model prior is being retained, despite the
relaxation towards the observation.

The size of the movement caused by the relaxation term may
be smaller than the model movement, but the effect of increasing
b is still clearly evident in the trajectories of the particles. Figure 8
shows the trajectories of all the particles compared with the truth
between time steps 550 and 650 for the observed variable at grid
point (63 192). With b = 0.05, the ensemble is clearly dispersive
and follows the truth well. When b is increased to 0.4 and hence
a stronger relaxation to the observations is applied, the ensemble
has notably less spread and is no longer always able to follow the
truth.

The ensemble mean and rank histograms can again be used as a
proxy to judge the effect of changing the value of the parameter b
on the posterior pdf (Figure 9). Although little difference is evident
in the mean of the ensembles as b is increased, the reduction in
spread seen in the trajectories is reflected in the rank histograms.
When b = 0.05, the histogram is slightly humped, suggesting
the ensemble is overdispersive. A uniform distribution is seen
with b = 0.2 and a U-shape distribution when b = 0.4. Unlike
the peaks present in Figure 6, the rank histogram in Figure 9(c)
is the more typical U-shape that indicates an underdispersive
ensemble. If the relaxation towards the observation is too strong,
then the particles are all overly drawn towards the same point
in state space, at a detriment to the variance of the ensemble.
These results confirm the behaviour that would be expected by
considering Eq. (23) and in addition demonstrate that it occurs
even when the size of the relaxation term is smaller than the
model error.

The above results refer to the scenario when observations were
available for every other variable over the entire state; however,
similar conclusions are evident when every other variable is
observed only over half the state.

4.4.2. Percentage of particles retained

There are two separate effects that occur due to changing the
percentage of particles retained under the equivalent-weights
step. The first effect relates to the size of the movement required
by each particle to ensure that its weight matches the chosen
target weight. In the Lorenz (1963) model, an increase in the
percentage of particles retained led to greater movement by each
particle (Ades and Van Leeuwen, 2013). In turn, this led to an
increase in the spread of the ensemble, seen in the rank histograms.
Similar results are obtained with the barotropic vorticity equation
(Figure 10). As the percentage of particles retained is increased,
the ensemble becomes overdispersive (90–100%). Although not
shown, the mean of the particles also shows less definition as the
percentage increases, as would be expected with a more diverse
ensemble.

Table 3 shows the l2 norm of the average movement caused
by the equivalent-weights proposal density as the percentage
of particles increases. There is a substantial difference in the
size of the movement when only 70% of particles are retained,
compared with the much larger movement required with 100% of
particles. This table also shows the significant movement caused
by establishing equivalent weights for even 70% of particles. As
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Figure 5. (a,c) The truth minus the mean of the ensemble squared compared with (b,d) the variance at time step 600 for both (c,d) the prior and (a,b) the posterior
ensemble of 32 particles (the prior was calculated by running the same analysis ensemble forward in time from the previous observation without the relaxation).
The patterns in the variance are similar to those observed in the (truth − mean)2 in both cases, indicating that the ensemble is behaving correctly. The ensemble
underestimates the spread at several locations (a maximum variance of 0.466 compared with 1.647 for (truth − mean)2 for the posterior and 0.994 compared with
1.4088 for the prior), but averaged over the field it is slightly higher (0.018 versus 0.0156 and 0.0996 versus 0.0514). Note that the scale for the posterior is an order of
magnitude smaller than the scale for the prior. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

already noted, the movement created by the relaxation term is an
order of magnitude smaller than the random error (Table 2). In
contrast, the equivalent-weights step creates a change in state at
least equal to that caused by the model equations.

The equivalent-weights movement can also be seen if the
marginal posterior pdfs are considered (Figure 11). Taking the
same variable and looking at the change as the percentage of
particles retained is increased shows the change in the variance
of the ensemble at this one time step. With 70–80% of particles
retained, the ensemble is relatively confident in the position of
the observation. Once 90–100% of particles are retained, the
spread is noticeably increased and the mode moves away from the
observation. Although this is just one variable at one time step, it
is indicative of the majority of marginal posterior pdfs observed.

The second effect observed relates to the peaks present on either
side of the rank histogram for the majority of experiments shown
in this article. For all previous experiments, equivalent weights
have been assured for 80% of the ensemble. The remaining 20%,
which were unable to achieve the target weight, were discarded
and returned as duplicates of the retained 80% of ensemble
members in the resampling stage (see section 3.2). Increasing
the percentage of particles retained in the equivalent-weights
step results in the peaks disappearing and the rank histograms
becoming more uniform. This is particularly noticeable if the rank
histograms are considered for observations of every other variable
only over half the state (Figure 12), but it is also apparent when
every other variable over the full state is observed (Figure 10).
These results suggest that the distinctive pattern seen in Figure
6 is due to the truncation of the ensemble caused by discarding
20% of the particles. They also demonstrate that it is possible to

achieve an appropriate spread in the ensemble, even when only
half of the full state is observed, provided 100% of particles are
retained.

The impact of the relaxation factor b and the percentage
of particles retained on the spread and mean of the ensemble
is apparent from both this section and section 4.4.1. It is
also clear that the scheme can be tuned depending on the
performance measure of interest, but this may negatively effect a
different performance measure. For example, retaining a greater
percentage of particles may enable the tails of the distribution to
be encapsulated but could lead to a mean less representative of
the truth. Since the benefit of the equivalent-weights particle filter
is its theoretical ability to represent the true posterior, in this case
rank histograms provide the most objective measure for tuning.

Ideally, guidance would be given on appropriate values for
both b and the percentage of particles retained, independent of
the application. However, since both parameters influence the
representation of the posterior, it is difficult to determine the best
value for either parameter objectively. For example, increasing
the percentage of particles retained in order to capture the tails
of the posterior pdf (but as a result increasing the spread of
the ensemble) can be countered by decreasing the relaxation
factor b. However, since the model equations determine the
best knowledge about the system, choices that keep the particles
closest to their model trajectories are preferable. Retaining a
greater percentage of particles leads to increased movement by
individual particles and so a balance is required between the
requisite particle movement and the loss of information on the
tails of the posterior pdf through resampling. The need to make
this choice and the subsequent tuning of the system are both
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Figure 6. The rank histograms of where the truth ranks in the ensemble.
Independent samples were taken of every 16th variable (beyond the correlation
length) at 23 observation times. When (a) the observations are reduced uniformly
or (b) only every other variable is observed in certain sections of state space (the
observation numbers are shown in the brackets), the two end peaks become larger
but the rest remains flat (as discussed in section 4.4.2). This figure is available in
colour online at wileyonlinelibrary.com/journal/qj

a strength and a limitation of the equivalent-weights particle
filter. For the barotropic vorticity equation, 80% was chosen,
but this may change when other models are considered. Fixing
the percentage of particles retained at 80% means the factor b
becomes a tuning parameter, which can be used to ensure the
appropriate spread in the ensemble.

4.4.3. Size of ensemble

As the size of the ensemble is increased, the distribution of the
marginal posterior pdf is not significantly impacted (Figure 13).
Since all particles relax towards the observation, increasing the
number of ensemble members does not lead to the same increase
in variance as would be expected when using the SIR filter.
This is particularly noticeable when observations are available
for every other variable over the entire state. In this case, the
marginal posterior pdf when 128 particles are used (Figure 13(c))
is almost indistinguishable from that generated using 512 particles
(Figure 13(e)).

4.5. Model error sensitivities

The results discussed in section 4.4 all relate to the sensitivity
of the equivalent-weights particle filter to the parameter values
chosen as part of the scheme. This section considers the sensitivity
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Figure 7. The state of particle 23 (a) before and (b) after the equivalent-weights
step with observations of every other variable only on the left side of the state and
(c) the difference between the two. As would be expected, there is no difference
where there are no observations other than where information is propagating in via
the covariance matrix Q from the observed half of the state. The largest differences
are seen where features are in the wrong place close to the unobserved part of the
state. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

of the filter to differences between the parameters used to generate
the ‘pseudo’ truth and those used to generate the model runs.
Since in real life the model is an approximation to the true
atmospheric evolution, this allows us an insight into the impact
of comparing model runs created with chosen parameters and
observations taken from the true atmosphere. In this case, there
are no actual parameters in the barotropic vorticity equation that
could be altered to give a different model for comparison with
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Table 1. A comparison of CPU time for the SIR filter and the equivalent-weights
particle filter for the integration period between observations and the analysis step
at observation time, as discussed in section 4.3. Both have been averaged over the
23 different instances of a full 1150 time step run. The integration period is over
50 time steps and can be performed in parallel, hence it is independent of the
number of particles. In contrast, the analysis step is dependent on the number of
particles (32 particles were used to generate these results, with 80% being retained

under the equivalent-weights step).

SIR filter Equivalent-weights
particle filter

Observed variables 65 536 65 536 16 384

Integration period (s) 105.7 113.2 113.5
Analysis period (s) 2.4 12.9 31.4

Table 2. The l2 norm of the model equation, random error and relaxation term
movement in the time step preceding an observation (when the relaxation is
strongest), averaged across all observation times (23), to explore the effect of
changing the parameter b (section 4.4.1). The numbers were generated under the

observations of every other variable over the entire state scenario.

b Ei,n[f (xn−1
i )] Ei,n[dβn−1

i ] Ei,n[B(τ )(yn − Hxn−1
i )]

0.05 11.41 1.28 0.04
0.2 11.41 1.28 0.09
0.4 11.20 1.28 0.17

the truth. Hence, instead, the effect of changing the spread and
size of the random error is examined.

4.5.1. Length-scale in Q

The first parameter to be considered is the length-scale used in
the covariance matrix Q defined in section 4.1. If the length-
scale of the truth is kept at five grid points and that of the
model increased to nine grid points, then the ensemble becomes
slightly overdispersive (Figure 14). The mean state at time step
600 fails to capture some of the finer detail of the truth, but is
still clearly a good representation. This is consistent with previous
results, which indicated that a more dispersive ensemble results
in uncertainty in the positioning of the features, which in turn
leads to a less defined mean.

4.5.2. Model error size

A greater effect is seen when the magnitude of Q is increased in the
ensemble compared with the truth. Logically, it would be expected
that increasing the size of the random error would increase the
dispersiveness of the ensemble. It was found with the barotropic
vorticity equation that changing the scaling of Q from 0.0252 in
the truth run to 0.12 in the ensemble actually led to a significant
decrease in the spread of the ensemble (Figure 15). However,
the mean retained a good approximation to the truth. Similar,
although less pronounced, results were seen as the relaxation
strength b was increased (Figure 9), indicating that the unexpected
results may be due to a change in the relaxation term. Since Q
is present in B(τ ) (see Eq. (23)), a change in Q should affect the
size of the movement generated by the relaxation term. For an
increase from 0.0252 to 0.12, the l2 norm of the movement caused
by the relaxation term would be expected to be of the order of
16 times larger. Similarly, the change to the l2 norm of the model
error, which involves Q1/2 rather than Q, would be four times the
true size.

Table 4 shows the l2 norms of the constituent parts of the
equivalent-weights particle filter. As expected, the increase in the
norm of the model error term is four times larger. However, the
increase in the average norm of the relaxation term is much greater
than the estimated 16 times. This additional increase must come
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Figure 8. The trajectories of the particles (blue in the online article) for (a) a
weaker relaxation with b = 0.05 and (b) a stronger relaxation with b = 0.4,
compared to the truth (green in the online article) and observations with error
bars (red in the online article) between time steps 550 and 600 for the observed
variable at grid point (65 193). The spread of the ensemble is much less with a
stronger relaxation term (b = 0.4). This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

from (yn − Hxn−1
i ), as all the other factors remain fixed. Since yn is

also fixed, the increase must be due to additional movement away
from yn caused by a greater random error. The effect of the change
to (yn − Hxn−1

i ) is comparable to the effect of changing the factor
b, since both increase the relaxation towards the observations. It
is more pronounced in Figure 15 compared with Figure 9, since
the relaxation term is now approximately 50% of the size of the
random error. With b = 0.4, the l2 norm of the relaxation term
is still only 13% of the l2 norm of the model error (Table 2).

The same conclusion can be drawn as was made for increasing
the strength of the nudging term through b. Despite expectations
to the contrary, inflating the model error can lead to all particles
being drawn more strongly towards the same point in state
space. This leads to a good representation of the mean but
an underdispersive ensemble. It may be possible to achieve an
appropriate spread in the ensemble again through tuning of the
parameter b, but this would depend on each individual scenario
and so has not been considered further here.

4.6. Discussion

As the number of observations is reduced, both uniformly across
the state and with whole sections of the state unobserved, the mean
of the equivalent-weights particle filter ensemble successfully
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Figure 9. The mean of the 32 particle ensemble (left) at time step 600 and the rank histogram over all 1150 time steps (right) for (a) b = 0.05, (b) b = 0.2 and (c) b =
0.4 in B(τ ). Observations were of every other variable over the entire state. Increasing b has little effect on the mean of the ensemble, but does affect the dispersion of
the ensemble, seen in the change from slightly humped to U-shaped histogram. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

captures the truth in a twin experiment. This implies that
the ensemble is sampling from the required high-probability
region of the posterior pdf. However, closer examination of
the rank histograms shows that the observation can lie distinct
from the ensemble (Figure 6). The conclusions drawn in this
article suggest that this is due to the equivalent-weights particle
filter truncating the ensemble under the equivalent-weights step,
leading to insufficient knowledge about the far-out tails of the
posterior pdf. However, it should be noted that this effect is
small when every other variable is observed over half the state
and disappears entirely as the percentage of particles retained is
increased under all observation scenarios.

In the small-dimensional Lorenz (1963) model, the ability of
the equivalent-weights particle filter to represent the posterior
was most sensitive to changes in the number of particles retained
under equivalent weights (Ades and Van Leeuwen, 2013). In this
high-dimensional barotropic vorticity equation, the scheme was
much less sensitive to this parameter. There was still a noticeable

increase in the average movement when a larger percentage
of particles was retained (Table 3). However, looking at the
performance of the ensemble over multiple time steps through
the rank histograms (Figure 10) and at a single time step with the
marginal posterior pdfs (Figure 11) would seem to indicate less
impact when compared with the results from the Lorenz (1963)
model. Clearly this is a subjective assessment, since the differing
numbers of particles and large difference in the dimensions of the
models make a direct comparison impractical.

The parameter b in the relaxation proposal density had as
significant an effect as the percentage of particles retained in the
barotropic vorticity equation. Although the size of the movement
due to the relaxation term was still significantly less than that from
the model error, regardless of the strength of relaxation chosen
(Table 2), the impact seen in the rank histograms was comparable
to the percentage of particles retained. If the inadvertent increase
in the relaxation term due to the change in model error is
considered (section 4.5.2), then it could be concluded that the
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Figure 10. The rank histograms of the truth compared with the posterior ensemble over all 1150 time steps as the percentage of particles retained is increased from
(a) 70% through (b) 80% and (c) 90% to (d) 100%. Observations were of every other variable over the entire state. The additional movement required to ensure a
greater percentage of particles are retained under equivalent weights results in the over dispersion seen in panels (c) and (d). This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

Table 3. The l2 norm of the model equation, random error and relaxation
term movement in the time step preceding an observation compared with the
movement generated by the equivalent-weights proposal density. The norm
is averaged across all observation times (23) and all particles (32) to look at
the effect of changing the percentage of particles (section 4.4.2). The numbers
were generated under the observations every other variable over the entire state

scenario.

% Ei,n[f (xn−1
i )] Ei,n[dβn−1

i ] Ei,n[B(τ )(yn − Hxn−1
i )] Ei,n[equ.weights]

70 11.43 1.28 0.09 11.89
80 11.40 1.28 0.09 13.94
90 11.29 1.28 0.13 25.83
100 11.08 1.28 0.22 53.95

representation of the posterior pdfs is actually more sensitive
to this parameter. It may be possible to find an appropriate
relationship between the strength of the relaxation term and the
model errors, but this would be extremely difficult to quantify
and has not been considered here.

Interestingly, similar to the results found with the Lorenz
(1963) model, increasing the number of particles has little effect
on the overall distribution of the marginal posterior pdfs. This is
extremely encouraging, since it would indicate that it is possible
to have a representation of the posterior pdf with many fewer
particles than the size of the dimension, a result that could not be
stated with the smaller dimensional Lorenz (1963).

The response of the scheme to different parameter choices used
in the ensemble compared with the truth was most sensitive to the
magnitude of model error, although change was also seen when
a different length-scale was used. The response was not specific
enough to draw any generic conclusions about the behaviour of

the scheme when the true atmosphere is modelled. However, it
does show the importance of understanding the true model error
statistics. This is an issue for data assimilation in general, rather
than a particular issue for the equivalent-weights particle filter.

5. Conclusion and discussion

The aim of developing a scheme such as the equivalent-weights
particle filter is to allow a representation of the high-probability
region of a potentially multimodal posterior pdf. However,
there are two major factors that must be addressed before the
equivalent-weights particle filter can be considered as a serious
possibility for real-life applications.

The first is the ability of the scheme to perform in high-
dimensional settings. The failure of the SIR particle filter
even in relatively small-dimensional systems is a known and
well-understood problem. Although the 65 500 dimensional
barotropic vorticity equation still has a state significantly smaller
than some geophysical applications, it is sufficiently high-
dimensional to provide a rigorous assessment of the performance
of the scheme in a large dimension. Van Leeuwen and Ades
(2013) showed the success of the scheme when the system was
fully observed. This article looks at the more realistic situation
of only a certain proportion of variables being observed. In
particular, it looks at the effect of not observing whole segments
of the state and the impact this has on the ability of the scheme to
represent the posterior pdf.

A comparison of the mean of 32 particles with the truth in
a twin experiment shows that the equivalent-weights particle
filter continues to be successful at sampling from the high-
probability region of the posterior pdf, even when only a small
percentage of variables are observed. The rank histograms are
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Figure 11. The marginal posterior pdf of the variable at location (89,41) and at time step 600 with 32 particles as the percentage of particles retained is increased from
(a) 70% through (b) 80% and (c) 90% to (d) 100%. Observations were of every other variable over the entire state. The additional movement required to ensure
a greater percentage of particles are retained under equivalent weights results in additional spread in the posterior pdfs as the percentage increases. This figure is
available in colour online at wileyonlinelibrary.com/journal/qj
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Figure 12. The rank histograms of the truth compared with the posterior ensemble over all 1150 time steps as the percentage of particles retained is increased from (a)
70% through (b) 80% and (c) 90% to (d) 100%. Observations were of every other variable over the left half of the state. The additional movement required to ensure
a greater percentage of particles are retained under equivalent weights results in the reduction of the peaks on either side of the histogram. This figure is available in
colour online at wileyonlinelibrary.com/journal/qj
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Figure 13. The marginal posterior pdf of the variable at location (156,225) and at time step 600 with (a,b) 32 particles, (c,d) 128 particles and (e,f) 512 particles.
Observations are of every other variable over the entire state (panels (a), (c), (e)) and every other variable only over the left half of the state (panels (b), (d), (f)). In
both cases, the marginal posterior pdf is for an unobserved variable, which is in the unobserved half of the state when only half the state is observed. A cross (green in
the online article) shows the truth and 80% of particles were retained. Increasing the number of particles increases the density of the pdf, but the similarity between
the posterior generated using 32 particles and that with 512 particles is clear. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

harder to interpret, partly because they can be influenced by
the parameter values chosen. In general, under the different
observation scenarios (section 4.2), they have a flat central section
with higher bars on either side (Figure 6), rather than the smooth
U-shape that would provide clear evidence of underdispersion.
The flat central section implies that, in the majority of cases,
the ensemble members are samples from the true posterior pdf,
although the higher bars indicate a difficulty in encapsulating
the far-out tails. A direct comparison with the true marginal
posterior pdfs is not possible for such a high-dimensional system,
but the ensemble marginal posterior pdfs show the ability of
the scheme to represent multimodal distributions. Of particular
significance for operational data assimilation is the fact that the
shape of the marginal posterior pdf remains consistent even
as the number of particles is increased. Also of relevance for
operational systems is the fact that this representation is achieved
without adding significantly to the computational time of the SIR
filter. These results show that the equivalent-weights particle filter
ensures filter degeneracy does not occur even in high-dimensional

systems. However, providing conclusive evidence that the scheme
also gives a good representation of the true posterior pdf without
one for comparison is harder. These results show the potential
of the scheme within the limitations of the measures used,
but further investigation using the gold standard of Markov-
Chain Monte-Carlo (MCMC) (Law and Stuart, 2012) would be
beneficial.

The second important issue relates to model balances. Model
balances are known relationships between variables, which, if
they are not upheld, can lead to unbalanced states, e.g. spurious
gravity waves in the model states. In the equivalent-weights
particle filter, both the relaxation and the equivalent-weights
proposal densities have the potential to affect these balances. The
known relationships between variables are implicitly contained
in the model equations, leading to balanced states at each time
step. The relaxation term has no such constraints and so has
the potential to induce artificial gravity waves by its addition
to the model equations. However, the need to include model
error in the geophysical equations in data assimilation schemes is
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Figure 14. (a) The true state compared with (b) the mean of the 32 particle
ensemble at time step 600, with (c) the rank histogram over all 1150 time
steps when every other variables is observed over the entire state. Using a
longer length-scale for the ensemble compared with the truth results in a more
dispersive ensemble (section 4.5.1). This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

increasingly being considered important. This forms an inherent
part of particle filters through the model transition density and
will have an effect on the balances maintained through the model
equations. Provided the relaxation term is of a similar magnitude
to the model error, or smaller, it should not affect balances
additionally beyond what is already considered acceptable in
other data assimilation schemes.

The equivalent-weights proposal density also has the potential
to impact balances through the artificial movement required to
ensure equivalent weights for the majority of particles. Again,
the size of the movement could be restricted but this has the
potential to be at the expense of ensuring almost equal weights.
The significance of the majority of particles in estimating the
posterior is a key factor in the equivalent-weights particle filter
and so compromising this would be undesirable. An alternative
would be to apply initialization, as is currently done in the EnKF
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Figure 15. (a) The true state compared with (b) the mean of the 32 particle
ensemble at time step 600, with (c) the rank histogram over all 1150 time
steps when every other variables is observed over the entire state. Using an
increased model error for the ensemble compared with the truth results in an
underdispersive ensemble (section 4.5.2). This figure is available in colour online
at wileyonlinelibrary.com/journal/qj

Table 4. The l2 norm of the model equation, random error and relaxation
term movement in the time step preceding an observation compared with the
movement generated by the equivalent-weights proposal density. The norm is
averaged across all time steps and all observation times as the percentage of
particles retained is changed. The numbers were generated under the observations

every other variable over the entire state scenario.

σm Ei,n[f (xn−1
i )] Ei,n[dβn−1

i ] Ei,n[B(τ )(yn − Hxn−1
i )]

0.025 11.40 1.28 0.09
0.1 10.23 5.12 2.43

(Houtekamer and Mitchell, 2005; Buehner et al., 2010). The
effect of the equivalent-weights particle filter on model balances
is a critical issue that needs to be addressed before the scheme
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can be considered for real-life geophysical applications. Work
is currently being undertaken to answer this question in a
one-layer primitive equation model and will be the focus of
future articles.
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Appendix A: Equivalent-weights particle filter

This appendix [j1]outlines the link between the theory of the
equivalent-weights particle filter and the practical application
of the scheme in more detail. Although the majority of the
information is also contained in Ades and Van Leeuwen (2013),
some of the specific details have subsequently been developed.
This is particularly the case in relation to the equivalent-weights
proposal density and its application in higher dimensional
systems. The appendix also includes a summary of the full scheme
for clarity.

A1. Relaxation proposal density

In the SIR filter, a particle is propagated forward in time according

to the model transition density p(xj|xj−1
i ). The model transition

density specifies how likely a state xj is given the state x
j−1
i .

Since the prognostic model equations f (x
j−1
i ) are deterministic,

this relates to the random error dβ
j
i added to the deterministic

movement to represent unknown processes:

x
j
i = f (x

j−1
i ) + dβ

j
i . (A1)

If the model error is assumed to be multivariate Gaussian, with
known covariance matrix Q, then the model transition density is
given by

p(xj|xj−1
i ) ∼ N(f (x

j−1
i ), Q). (A2)

The probability of samples from this density can be directly
calculated according to

p(x
j
i|xj−1

i )

∝ exp

[
−1

2

(
x

j
i − f (x

j−1
i

)T
Q−1

(
x

j
i − f (x

j−1
i

)]
. (A3)

It should be reiterated that this does not mean any linear or
Gaussian assumptions are being made about the model equations:

the f (x
j
i) may be fully nonlinear. It is the additive model error that

is taken to be Gaussian and leads to the model transition density
given in Eq. (A2).

In a similar manner, the relaxation proposal density of the
equivalent-weights particle filter is chosen as

q
(
xj|xj−1

i , yn
) = N

(
f (x

j−1
i

) + B(τ )
[
yn − h(x

j−1
i )], Q̂

)
. (A4)

It works to provide a slight relaxation B(τ )
(
yn − h

(
x

j−1
i

))
towards

the observation at time n, in addition to the model equations.

B(τ ) controls the strength of the relaxation and spreads the
observation information from observed to unobserved variables.
Q̂ is now the error covariance associated with both the model
equations and this additional deterministic movement. This leads
to each particle being moved forward in time according to

x
j
i = f (x

j−1
i ) + B(τ )(yn − h(x

j−1
i )) + d̂β

j
i. (A5)

Again, no assumptions are being made about the linearity or
otherwise of the model equations or the relaxation term. The
distribution of the relaxation proposal density is related to the
additive model error. A sample from this relaxation proposal
density is evaluated as

q(x
j
i|xj−1

i , yn)

∝ exp

[
−1

2

(
x

j
i − [f (x

j−1
i ) + B(τ )(yn − h(x

j−1
i ))]

)T

× Q̂−1
(

x
j
i − [f (x

j−1
i ) + B(τ )(yn − h(x

j−1
i ))]

)]
= exp

[
−1

2
(d̂β

j
i)

TQ̂−1d̂β
j
i

]−1

. (A6)

Sampling from the relaxation proposal density instead of the
model transition density leads to the additional factor

p(x
j
i|xj−1

i )

q(x
j
i|xj−1

i , yn)
(A7)

to be calculated at every time step. Using Eqs (A3) and (A6), this
is given by

p(x
j
i|xj−1

i )

q(x
j
i|xj−1

i , yn)

∝ exp

[
−1

2

(
B(τ )(yn − h(x

j−1
i )) + d̂β

j
i

)T

× Q−1
(

B(τ )(yn − h(x
j−1
i )) + d̂β

j
i

)
+1

2
(d̂β

j
i)

TQ−1d̂β
j
i

]
, (A8)

where it has been assumed that Q̂ = Q.
In a high-dimensional system, the matrix Q−1 has the potential

to cause computational cost issues in the practical application of
the scheme. It is possible, however, to simplify this calculation and
remove the inverse of Q. First, it must be recalled that the standard

way to produce a sample of random error, d̂β
j
i ∼ N(0, Q),

with the correct covariance structure is via d̂β
j
i = Q1/2̂ξ

j
i , where

ξ̂
j
i ∼ N(0, I). In Eq. (A6), this leads to

(d̂β
j
i)

TQ−1d̂β
j
i = (Q1/2̂ξ

j
i )TQ−1(Q1/2̂ξ

j
i )

= (̂ξ
j
i )TQ1/2T

Q−1Q1/2̂ξ
j
i

= (̂ξ
j
i )Tξ̂

j
i , (A9)

removing the need for the inverse in q(x
j
i|xj−1

i , yn). Similarly, the
factor B(τ ) in the relaxation term is chosen as

B(τ ) = bτQHTR−1 (A10)

(see section 4 for details) and so includes the matrix Q. This
means that

B(τ )(yn − h(x
j−1
i )) + d̂β

j
i

= Q1/2
[

bτQ1/2HTR−1(yn − h(x
j−1
i )) + ξ̂

j
i

]
(A11)
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and hence Q−1 can also be removed when calculating p(x
j
i|xj−1

i ), at

the cost of additionally generating bτQ1/2HTR−1(yn − h(x
j−1
i )).

The product of Eq. (A8), or alternatively the sum of the
exponents, must be stored for all but the last time step to give

ŵn−1
i =

n−1∏
j=1

p(x
j
i|xj−1

i )

q(x
j
i|xj−1

i , yn)
. (A12)

A2. Equivalent-weights proposal density

Including the weights ŵn−1
i from the model prior Eq. (A12) in

the full weight of a particle in the posterior gives

wn
i ∝ p(yn|xn

i )
p(xn

i |xn−1
i )

q(xn
i |xn−1

i , yn)
ŵn−1

i . (A13)

The final proposal density q(xn|xn−1
i , yn) can be used to set

p(yn|x∗
i )p(x∗

i |xn−1
i )ŵn−1

i = wtarget, (A14)

where wtarget is a target weight to be determined. For Gaussian
likelihood and model error, this is equivalent to solving the
quadratic expression for x∗

i :

1

2
(yn − Hx∗

i )TR−1(yn − Hx∗
i )

+ 1

2
(x∗

i − f (xn−1
i ))TQ−1(x∗

i − f (xn−1
i ))

− log(ŵn−1
i ) = − log(wtarget).

If the model error or likelihood are not Gaussian, then this
equation will change. Provided that it is still possible to evaluate a
sample from the chosen density, however, then this equation can
still be solved, although iterative methods may be required. The
value of wtarget can be found by first establishing the maximum
weight it is possible for each particle to achieve through

wmax
i = ŵn−1

i exp

[
−1

2

(
yn − Hf (xn−1

i )
)T

× (
HQHT + R

)−1 (
yn − Hf (xn−1

i )
)]

. (A15)

These maximum weights can then be ranked from highest to
lowest. The target weight is chosen equal to the percentage chosen
lowest maximum weight. For example, if 80% of particles are
required then the weight closest to 80% down the list of ranked
weights should be chosen as the target weight. For clarity, it should
be noted here that a linear H or a linearization of a nonlinear
h is being used. If h is nonlinear then iterative methods will be
required for the solution of these equations.

Once wtarget is chosen, then one possible solution to Eq. (A15)
for each particle is given by

x∗
i = f (xn−1

i ) + αiK(yn − Hf (xn−1
i )), (A16)

where K = QHT(HQHT + R)−1 and

αi = 1 +
√

1 − bi/ai, (A17)

in which bi = 0.5dT
i R−1di − log(wtarget) − log(ŵn−1

i ), ai =
0.5dT

i R−1HKdi and di = yn − Hf (xn−1
i ) (see Ades and Van

Leeuwen (2013) for details). This choice for x∗
i can again be

used to remove Q−1 in Eq. (A15) through the Q included in K.
This is a purely deterministic solution of Eq. (A15), which leads

to a proposal transition density q(xn
i |xn−1

i , yn) given by a delta
function. A proposal transition density given by a delta function

can be zero where the model transition density is non-zero,
leading to division by zero as can be seen in Eq. (A13). Hence
the final step in the equivalent-weights proposal density is to add
some random error to the deterministic state:

xn
i = f (xn−1

i ) + αiK(yn − Hf (xn−1
i )) + d̂β

n
i

= x∗
i + Q1/2ξ n

i . (A18)

If ξ n
i ∼ N(0, I) then the random error is Gaussian. Unfortunately,

it can be shown that adding Gaussian random error in Eq. (A18)
can lead to filter degeneracy (Ades and Van Leeuwen, 2013).
Ideally the random error would not move the deterministic
state far from x∗

i and would avoid filter degeneracy by ensuring
the weights of the particles remain close to equivalent. One
distribution that would satisfy these criteria is the uniform
distribution over a small interval. A sample from a k-dimensional
multivariate uniform distribution can be defined as

ξ n
i ∼ Ũk(0, γU ) 
⇒ ξ n

i,j ∼ U[−γU , γU ], ∀j = 1, . . . , k,

(A19)

where ξ n
i,j represents the jth element of the vector ξ n

i . So each
element of ξ n

i is picked from the standard uniform distribution

U[−γU , γU ] =
{

1
2γU

if ξ n
i,j ∈ [−γU , γU ],

0, otherwise,

with a width determined by γU . Keeping the parameter γU

small ensures that each uniform distribution has a small non-
zero interval. Since each element of ξ n

i is independent, the
probability of a sample p(ξ n

i ) coming from Ũk(0, γU ) is given by
p(ξ n

i ) = p(ξ n
i,1)p(ξ n

i,2) . . . p(ξ n
i,k) and hence

Ũk(0, γU ) =
{

1
(2γU )k if ξ n

i,j ∈ [−γU , γU ], ∀j = 1, . . . , k,

0, otherwise.

The vector ξ n
i is still multiplied by Q1/2 to introduce covariances

between these now uniformly distributed elements.
In order to calculate the final weights, we are interested in the

proposal density q(xn|xn−1
i , yn). The transformation of probability

densities,

pz(z) = px(x(z))

∣∣∣∣dx

dz

∣∣∣∣ , (A20)

can be used to establish q(xn|xn−1
i , yn), where pz(z) represents the

probability density function of variable z over the space spanned
by z and similarly for px(x(z)). Hence

p(ξ n) = q(xn|xn−1
i , yn)

∣∣∣∣∂(x∗
i + Q1/2ξ n)

∂ξ n

∣∣∣∣
= q(xn|xn−1

i , yn)
∣∣Q1/2

∣∣

⇒ q(xn|xn−1

i , yn) = 1∣∣Q1/2
∣∣p(ξ n). (A21)

Choosing q(xn|xn−1
i , yn) as a uniform density, however, will again

lead to division by zero, given that the model transition density
p(xn|xn

i ) is Gaussian. The solution is to generate a sample ξ n
i from

a mixture density

ξ n
i ∼ (1 − ε)Ũk(0, γU ) + εN(0, γN I). (A22)

Using a mixture density means the error is drawn from
a combination of a uniform distribution and a Gaussian
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distribution, with the proportion controlled by the value of
ε. Choosing ε to be small ensures that in general ξ n

i are picked
from the part of the proposal where the uniform distribution is
non-zero. In particular, relating ε to the size of the ensemble, for
example ε = 0.001/N, means that drawing ξ n

i from the Gaussian
tails is very unlikely even as the ensemble size increases and hence
equivalent weights can be assured for all particles. However,
unlike the use of a purely uniform distribution, the possibility
of picking from the Gaussian tails ensures continuous support
across the entire space of xn

i .

A3. Overview of the equivalent-weights particle filter

To conclude this appendix, the full equivalent-weights particle
filter scheme is summarised here.

(1) The prior pdf p(x0) is represented by N individual model
states or particles.

(2) Each particle is run forward to time n − 1 (the time
step immediately preceding the next available observation
vector) using the relaxation transition density. If it is
assumed that the proposed relaxation model error is
additive and Gaussian, at each time step this relates to
the following steps.
(a) Establishing the new model states using

x
j
i = f (x

j−1
i ) + B(τ )(yn − h(x

j−1
i )) + d̂β

j
i, (A23)

where d̂β
j
i = Q̂1/2̂ξ

j
i ∼ N(0, Q̂).

(b) Calculating the corresponding weights associated with
time step j according to

w
j
i ∝ exp

[
−1

2

(
bτQ1/2HTR−1(yn − h(x

j−1
i )) + ξ̂

j
i

)T

×
(

bτQ1/2HTR−1(yn − h(x
j−1
i )) + ξ̂

j
i

)
+1

2
(̂ξ

j
i )T(̂ξ

j
i )

]
. (A24)

The product of these weights up to time step n − 1 is stored
for use as ŵn−1

i at the new observation time:

ŵn−1
i =

n−1∏
j=n−r+1

w
j
i. (A25)

(3) The particles are moved forward to the new observation
time n in the last time step according to the equivalent-
weights proposal density. The actual steps to calculate the
model state for each particle at time n are as follows.
(a) Calculate the maximum weight it is possible for each
particle to achieve via

wmax
i = ŵn−1

i exp

[
−1

2

(
yn − Hf (xn−1

i )
)

×(HQHT + R)−1
(
yn − Hf (xn−1

i )
)]

. (A26)

(b) Order the maximum weights for all the particles and
then choose wtarget such that a certain percentage of particles
can achieve it.
(c) For the chosen percentage of particles where wmax

i ≥
wtarget, select the deterministic model state according to

x∗
i = f (xn−1

i ) + αiK(yn − Hf (xn−1
i )), (A27)

where αi is defined according to Eq. (A17) and K =
QHT(HQHT + R)−1. Otherwise the model state is given
by

x∗
i = f (xn−1

i ). (A28)

(d) Add stochastic error Q1/2ξ n
i to the deterministic model

state x∗
i to find the final particle model state xn

i at time n.
This error comes from the mixture density given by

q̂(ξ n|x∗
i ) = (1 − ε)Ũk(0, γU ) + εN(0, γ 2

N I). (A29)

To sample from the mixture density, a value u is sampled
from u ∼ U[0, 1]. If u < ε then ξ n

i ∼ N(0, γ 2
N I), otherwise

ξ n
i ∼ Ũk(0, γU ).

(e) The final weight of each particle is then calculated
according to

wn
i = ŵn−1

i p(xn
i |xn−1

i )p(yn|xn−1
i )

q(xn
i |xn−1

i , yn)
, (A30)

where

ŵn−1
i p(xn

i |xn−1
i )p(yn|xn−1

i )

= ŵn−1
i exp

[
−1

2

×
(
αiQ

1/2HT(HQHT + R)−1(yn − Hf (xn−1
i )) + ξψ̂

)T

×
(
αiQ

1/2HT(HQHT + R)−1(yn − Hf (xn−1
i )) + ξψ̂

)
−1

2

(
yn − Hxn

i

)T
R−1

(
yn − Hxn

i

)]
(A31)

and

1

q(xn
i |xn−1

i , yn)
=

[
1 + ε

(1 − ε)

(
2

π

)k/2
γ k

U

γN

× exp

(
−1

2
ξ n

i
T(γ 2

N I)−1ξ n
i

)]−1

(A32)

if −γU ≤ ξi,j ≤ γU , ∀j = 1, . . . , k and

1

q(xn
i |xn−1

i , yn)
=

[
ε

(1 − ε)

(
2

π

)k/2
γ k

U

γN

× exp

(
−1

2
ξ n

i
T(γ 2

N I)−1ξ n
i

)]−1

(A33)

otherwise. The factor of |Q1/2| necessary in the conversion
from q̂(ξ n

i |x∗
i ) to q(xn

i |xn−1
i , yn), as well as the common

normalization factor

(1 − ε)

(2γU )k
, (A34)

are not required in the calculations, since they are present
in the weight of every particle and hence would cancel in
the following step.

(4) The weights of the particles are normalized by the sum of all
particle weights. The ensemble of particles, together with
their weights, now represents the posterior pdf p(xn|yn).

(5) Finally, the particles are resampled so that they once again
all have weight equal to 1/N. This step is required, since
only the percentage of particles that are able to achieve
the target weight will have almost equal weights under the
equivalent-weights step. The particles evolved according
to Eq. (A28) will have smaller weights and so will be
resampled as duplicate copies of the equivalently weighted
particles. The resampled ensemble of particles can now be
run forward to the next observation vector in time.
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