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Stochastic methods are a crucial area in contemporary climate research and are
increasingly being used in comprehensive weather and climate prediction mod-
els as well as reduced order climate models. Stochastic methods are used as
subgrid-scale parameterizations (SSPs) as well as for model error representation,
uncertainty quantification, data assimilation, and ensemble prediction. The need
to use stochastic approaches in weather and climate models arises because we
still cannot resolve all necessary processes and scales in comprehensive numeri-
cal weather and climate prediction models. In many practical applications one is
mainly interested in the largest and potentially predictable scales and not neces-
sarily in the small and fast scales. For instance, reduced order models can simulate
and predict large-scale modes. Statistical mechanics and dynamical systems theory
suggest that in reduced order models the impact of unresolved degrees of freedom
can be represented by suitable combinations of deterministic and stochastic com-
ponents and non-Markovian (memory) terms. Stochastic approaches in numerical
weather and climate prediction models also lead to the reduction of model biases.
Hence, there is a clear need for systematic stochastic approaches in weather and
climate modeling. In this review, we present evidence for stochastic effects in labo-
ratory experiments. Then we provide an overview of stochastic climate theory from
an applied mathematics perspective. We also survey the current use of stochas-
tic methods in comprehensive weather and climate prediction models and show
that stochastic parameterizations have the potential to remedy many of the current
biases in these comprehensive models. © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION

The last few decades have seen a considerable
increase in computing power which allows

the simulation of numerical weather and climate
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prediction models with ever higher resolution and the
inclusion of ever more physical processes and climate
components (e.g., cryosphere and chemistry). Despite
this increase in computer power many important
physical processes (e.g., tropical convection, gravity
wave drag, and clouds) are still not or only partially
resolved in these numerical models. Despite the pro-
jected exponential increase in computer power these
processes will not be explicitly resolved in numeri-
cal weather and climate models in the foreseeable
future.1,2 For instance, Dawson et al.3 have demon-
strated using the ECMWF integrated forecast system
that extremely high resolutions (T1279, which corre-
sponds to a grid spacing of about 16 km) are required
to simulate accurately the observed Northern hemi-
spheric circulation regime structure. This resolution,
typical for limited area weather and climate models
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used for short-term prediction, remains unfeasible
for the current generation of high-resolution global
climate models due to computational and data storage
requirements. Hence, these missing processes need to
be parameterized, i.e., they need to be represented in
terms of resolved processes and scales.4 This represen-
tation is important because small-scale (unresolved)
features can impact the larger (resolved) scales5,6 and
lead to error growth, uncertainty, and biases.

At present, these parameterizations are typically
deterministic, relating the resolved state of the model
to a unique tendency representing the integrated effect
of the unresolved processes. These ‘bulk parameteriza-
tions’ are based on the notion that the properties of the
unresolved subgrid scales are determined by the large
scales. However, studies have shown that resolved
states are associated with many possible unresolved
states.7–9 This calls for stochastic methods for numer-
ical weather and climate prediction that potentially
allow a proper representation of the uncertainties, a
reduction of systematic biases, and improved represen-
tation of long-term climate variability. Furthermore,
while current deterministic parameterization schemes
are inconsistent with the observed power-law scaling
of the energy spectrum10,11 new statistical dynamical
approaches that are underpinned by exact stochastic
model representations have emerged that overcome
this limitation. The observed power spectrum struc-
ture is caused by cascade processes. Recent theoretical
studies suggest that these cascade processes can be best
represented by a stochastic non-Markovian Ansatz.
Non-Markovian terms are necessary to model mem-
ory effects due to model reduction.12 It means that
in order to make skillful predictions the model has to
take into account also past states and not only the cur-
rent state (as for a Markov process).

We first review observational evidence of
stochasticity in laboratory geophysical fluid experi-
ments (Section 2), then discuss stochastic climate the-
ory in fast–slow systems (Section 3). In Section 4, we
present statistical physics approaches and, in Section
5, we review the current state of stochastic–dynamic
weather and climate modeling. We close with an
outlook and challenges for the future of weather and
climate modeling (Section 6).

LABORATORY EVIDENCE
OF STOCHASTICITY

Research on the climate system is somewhat hindered
by the obvious difficulties of performing reproducible
experiments on the atmosphere and ocean in different
parameter regimes. For example, an optical physicist
studying the nonlinear response of isolated atoms to

intense electromagnetic waves can easily change the
incident wavelength.13 In contrast, climate scientists
cannot (and arguably should not!) change the rota-
tion rate of the planet or the intensity of the incoming
solar radiation. To some extent, numerical simulations
come to the rescue, by allowing us to perform vir-
tual experiments. However, the grid spacing in climate
models is orders of magnitude larger than the smallest
energized scales in the atmosphere and ocean, intro-
ducing biases.

Fortunately, there is another option available
to us. It is possible to exploit dynamical similarity14

to study analogs of planetary fluid flow in bespoke
laboratory experiments. The traditional set-up is
the classic rotating annulus, which has been used
for decades to study baroclinic instability and other
large-scale phenomena.15 Recent observations of
small-scale inertia–gravity waves embedded within a
large-scale baroclinic wave16–18 have allowed the scale
interactions between these two modes to be studied in
a laboratory fluid for the first time. The experimental
apparatus consists of a two-layer isothermal annulus
forced by a differentially rotating lid, which drives a
shear across the internal interface and represents the
mid-latitude tropospheric wind shear.

The large-scale baroclinic wave in these lab-
oratory experiments exhibits regime behavior,
equilibrating at finite amplitude with a zonal
wavenumber of typically 1, 2, or 3. These simple
wave modes are regarded as prototypes of the more
complicated regime behavior in the atmosphere,
such as mid-latitude blocking.19,20 A notable find-
ing from repeated experiments using this apparatus
is that small-scale inertia–gravity waves can induce
large-scale regime transitions, despite the separation of
wavelengths by an order of magnitude.21 An example
of this process is illustrated in Figure 1. A wavenum-
ber 2 mode without co-existing inertia–gravity
waves (upper row) remains a wavenumber 2 mode
indefinitely, drifting around the annulus with the
zonal-mean flow. In contrast, with the same param-
eter values, a wavenumber 2 mode with co-existing
inertia–gravity waves (lower row) is found to have
a finite probability of transitioning to a wavenum-
ber 1 mode. The amplitude of the inertia–gravity
waves is controlled here without directly affecting the
large-scale mode, by slightly varying the interfacial
surface tension between the two immiscible fluid
layers.

The laboratory transitions discussed above are
reminiscent of noise-induced transitions between
different equilibrium states in a meta-stable
dynamical system.24 To test this interpretation, a
quasi-geostrophic numerical model that captures
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FIGURE 1 | Regime transitions in a rotating two-layer annulus laboratory experiment, viewed from above. Different colors correspond to different
internal interface heights, through the use of a sophisticated visualization technique.22 In the upper row, small-scale inertia–gravity waves are absent
and large-scale regime transitions do not occur. In the lower row, small-scale inertia–gravity waves are present locally in the troughs of the
large-scale wave and a large-scale regime transition does occur (from the laboratory experiments of Williams et al.17,18,21,23).

the meta-stability of the large-scale flow in the
rotating annulus25 was run with and without weak
stochastic forcing added to the potential vorticity
evolution equation for each fluid layer. The stochas-
tic forcing was an approximate representation of
the inertia–gravity waves, which are inherently
ageostrophic and are therefore forbidden from the
quasi-geostrophic model. Consistent with the lab-
oratory experiments, only when the noise term
was activated did the numerical simulations exhibit
large-scale wave transitions in the equilibrated flow.23

In further numerical experiments, the noise was found
to be able to influence wavenumber selection during
the developing baroclinic instability.

In summary, the above laboratory experiments
constitute the first evidence in a real fluid that small-
scale waves may trigger large-scale regime transi-
tions. In a numerical model in which the small-scale
waves were absent, the transitions were captured
through the addition of stochastic noise. Note that

the small-scale waves satisfy the dispersion rela-
tion for inertia–gravity waves and are therefore
coherent in space and time, and yet apparently they
are ‘sensed’ by the large-scale flow as if they were
random fluctuations. These results have led to a pos-
sible interpretation of sudden stratospheric warmings
as noise-induced transitions.26 Furthermore, these
laboratory results help to motivate the development
of stochastic parameterizations in climate models and
a more general development of stochastic climate
theory.

STOCHASTIC CLIMATE THEORY

Climate is a multi-scale system in which different
physical processes act on different temporal and spa-
tial scales.27 For instance, on the micro-scale are tur-
bulent eddies with time scales of seconds to min-
utes, on the meso-scale is convection with time
scales of hours to days, on the synoptic scale are
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mid-latitude weather systems and blocking with time
scales from days to weeks, and on the large-scale are
Rossby waves and teleconnection patterns with time
scales of weeks to seasons. And there is the coupled
atmosphere–ocean system with time scales of seasons
to decades. The crucial point here is that all these pro-
cesses acting on widely different temporal and spatial
scales interact with each other due to the inherent
nonlinearity of the climate system. We have shown
an illustrative laboratory example for this in the
previous section.

For many practical applications, we are only
interested in the processes on a particular scale and
not in the detailed evolution of the processes at smaller
scales. Often the scales of interest are linked to inher-
ently predictable processes, while the smaller scales
processes are unpredictable. For instance, in the above
laboratory experiment we are interested in the regime
behavior and not in the detailed evolution of the
inertia–gravity waves. In numerical simulations, the
fastest scales, which are typically also the smallest
scales, use up the bulk of computing time, slow-
ing down the computation of the processes of actual
interest. In numerical weather and climate prediction,
many of the small-scale processes are currently not
explicitly resolved and will not be in the foreseeable
future. This neglect of these processes can lead to
biases in the simulations. Because of that the unre-
solved processes need to be parameterized as demon-
strated in the previous section.

Stochastic climate theory is based on the concept
of scale separation in space or time. Hasselmann28 was
the first to propose to split the state vector −→z into slow
climate components −→x and fast weather fluctuations −→y
and then to derive an effective equation for the slow
climate variables only. In this equation, the effect of
the now unresolved variables is partially represented
as a noise term. The physical intuition behind this
idea is, e.g., that the aggregated effect of ‘fast’ weather
fluctuations drives fluctuations in the ‘slower’ ocean
circulation. To first order, such a model can explain
the ‘red’ spectrum of oceanic variables.29,30 It has to
be noted that there is no scale separation in the climate
system. This lack of time-scale separation introduces
non-Markovian (memory) effects and complicates the
derivation of systematic parameterizations.

Rigorous mathematical derivations for this
approach have been provided by Gottwald and
Melbourne,31 Khasminsky,32 Kurtz,33 Melbourne and
Stuart,34 Papanicolaou,35 and Pavliotis and Stuart.36

For accessible reviews, see Givon et al.37 and the
text book by Pavliotis and Stuart.36 This approach
has been applied to climate models by Majda and
coworkers.38–47 Climate models have the following

general functional form

d−→z =
[
F̃ + L̃−→z + B̃

(−→z ,−→z )]dt (1)

where F̃ denotes an external forcing, L̃ a linear opera-
tor, and B̃ a quadratic nonlinear operator. Equation (1)
constitutes the form of the dynamical cores of weather
and climate prediction models.

Now splitting the state vector −→z into slow −→x
and fast −→y components (which amounts to assuming
a time scale separation) and assuming that the non-
linear self-interaction of the fast modes B̃

(−→y ,−→y ) can
be represented by a stochastic process39–42 leads to a
stochastic differential equation (SDE). The stochastic
mode reduction approach39–42 then predicts the func-
tional form of reduced climate models for the slow
variable −→x alone:

d−→x =
[
F + L−→x + B

(−→x ,−→x
)
+ M

(−→x ,−→x ,−→x
)]

dt

+ 𝜎Ad
−→
WA + 𝜎M

(−→x)
d
−→
WM (2)

Structurally new terms are a deterministic cubic
term that acts predominantly as nonlinear damping
and both additive and multiplicative (state-dependent)
noise terms. The fundamentals of stochastic processes
and calculus are explained in Box 1. The multiplica-
tive noise and the cubic-term stem from the nonlin-
ear interaction between the resolved and unresolved
modes.39

The above systematic procedure allows also a
physical interpretation of the new deterministic and
stochastic terms.39 The additive noise stems both
from the nonlinear interaction amongst the unresolved
modes and the linear interaction between resolved and
unresolved modes.39

Multiplicative (or state-dependent) noise is
important for deviations from Gaussianity and thus
extremes. The intuition behind multiplicative noise
is as follows: On a windless day, the fluctuations
are very small, whereas on a windy day not only
is the mean wind strong but also the fluctuations
around this mean are large; thus, the magnitude of the
fluctuations is dependent on the state of the system.

The first practical attempts at stochastic climate
modeling were made using Linear Inverse Models
(LIM)52–55 and dynamically based linear models with
additive white noise forcing.56–60 These approaches
linearize the dynamics and then add white noise and
damping54 in order to make the models numerically
stable (i.e., the resulting linear operator should only
have negative eigenvalues to ensure stability and
realizability of the solutions). While these models have
encouraging predictive skill, especially for ENSO, they
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BOX 1

STOCHASTIC PROCESSES

In contrast to deterministic processes, stochastic
processes have a random component. See the
books by Lemons48 and Gardiner49 for intuitive
introductions to stochastic processes. Typically,
stochastic processes are driven by white noise.
White noise is a serially uncorrelated time series
with zero mean and finite variance.49

An SDE is a combination of a determinis-
tic differential equation and a stochastic process.
In contrast to regular calculus, stochastic calculus
is not unique; i.e., different discretizations of its
integral representation lead to different results
even for the same noise realization. The two
most important calculi are Ito and Stratonovich.
See details in the study by Gardiner.49 The physi-
cal difference is that Ito calculus has uncorrelated
noise forcing while Stratonovich allows for finite
correlations between noise increments. Hence,
physical systems have to be typically approxi-
mated by Stratonovich SDEs. However, it is math-
ematically straightforward to switch between
the two calculi. So one only needs to make a
decision at the beginning which calculus is more
appropriate for modeling the system under con-
sideration and can then switch to the mathemat-
ically more convenient form.

SDEs describe systems in a path-wise fash-
ion. The Fokker–Planck equation (FPE) describes
how the probability distribution evolves over
time.49 Thus, SDEs and the FPE offer two dif-
ferent ways at looking at the same system. The
parameters of SDEs and their corresponding FPE
are linked; thus, one can use the FPE to estimate
the parameters of the corresponding SDE.50,51

can only produce Gaussian statistics and, thus, are less
useful for predictions of high impact weather.

Recently, there are encouraging attempts in
fitting nonlinear stochastic models to data. These
include multi-level regression,61,62 fitting the param-
eters via the FPE,50,51 stochastic averaging,63,64

optimal prediction,65,66 or Markov Chains.67 Most
of the previous approaches fitted the parameters
of the stochastic models without taking account
of physical constraints, e.g., global stability. Many
studies linearized the dynamics and then added
additional damping to obtain numerically stable
models.68,69,54,60 Majda et al.47 developed the nonlin-
ear normal form of stochastic climate models and also
physical constraints for parameter estimation. Recent
studies use these physical constraints to successfully

derive physically consistent stochastic climate
models.70–72

Most of the above approaches are based on an
implicit assumption of time-scale separation. How-
ever, the climate system has a spectrum with no clear
gaps which would provide the basis of scale separa-
tion and the derivation of reduced order models. Such
a lack of time-scale separation introduces memory
effects into the truncated description. Memory effects
mean that the equations become non-Markovian and
that also past states need to be used in order to pre-
dict the next state. This can be explained by consider-
ing the interaction between a large-scale Rossby wave
with a smaller scale synoptic wave. At some location,
the Rossby wave will favor the development of the syn-
optic wave. Initially, this synoptic wave grows over
some days without affecting the Rossby wave. Once
the synoptic wave has reached a sufficient large ampli-
tude, it will start affecting the Rossby wave. Now in a
reduced order model only resolving the Rossby wave
but not the synoptic wave this interaction cannot be
explicitly represented. However, because the Rossby
wave initially triggered the synoptic wave which then
in turn affects it some days later, this can be mod-
eled with memory terms which takes into account that
the Rossby wave has triggered at time t0 an anomaly
which will affect it at some time later tn.

Recently, Wouters and Lucarini73 have proposed
to treat comprehensively the problem of model reduc-
tion in multi-scale systems by adapting the Ruelle
response theory74,75 for studying the effect of the cou-
pling between the fast and slow degrees of freedom of
the system. This theory has previously been used in
a geophysical context to study the linear and nonlin-
ear response to perturbations,76,77 which also allows
climate change predictions. This approach is based
on the chaotic hypothesis78 and allows the general
derivation of the reduced dynamics of the slow vari-
ables able to mimic the effect of the fast variables
in terms of matching the changes in the expectation
values of the observables of the slow variables. The
ensuing parametrization includes a deterministic cor-
rection, which is a mean field result and corresponds
to linear response, a general correlated noise and a
non-Markovian (memory) term. These results gener-
alize Eq. (2). In the limit of infinite time-scale separa-
tion, the classical results of the averaging method are
recovered. Quite reassuringly, the same parametriza-
tions can be found using a classical Mori-Zwanzig
approach,12 which is based on projecting the full
dynamics on the slow variables and general math-
ematical results provide evidence that deterministic,
stochastic, and non-Markovian components should
constitute the backbone of parameterizations.79,80
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Recent studies show improvements over approaches
based on time-scale separation.73,79,80

Recent studies have shown that stochastic
approaches are also important for the prediction
of extreme events and tipping points.81–84 Sura84

discusses a stochastic theory of extreme events. He
especially focuses on deviations from a Gaussian
distribution; i.e., skewness and kurtosis, as first mea-
sures of extremes. He shows that multiplicative noise
plays a significant role in causing non-Gaussian dis-
tributions. Franzke81 shows that both deterministic
nonlinearity and multiplicative noise are important in
predicting extreme events.

STATISTICAL PHYSICS APPROACHES
TO STOCHASTIC CLIMATE THEORY

Significant progress has been achieved in the develop-
ment of tractable and accurate statistical dynamical
closures for general inhomogeneous turbulent flows
that are underpinned by exact stochastic models (see
Box 2). For an accessible review, see the text book
by Heinz.85 The statistical dynamical closure the-
ory, pioneered by Kraichnan,86 has been recognized
as a natural framework for a systematic approach
to modeling turbulent geophysical flows. Closure
theories such as the Direct Interaction Approxi-
mation (DIA),86 for homogeneous turbulence and
the Quasi-Diagonal Direct Interaction Approxima-
tion (QDIA),87 for the interaction of mean flows
with inhomogeneous turbulence have exact general-
ized Langevin model representations.88 This means
that such closures are realizable; i.e., they have non-
negative energy.

The first major application of turbulence clo-
sures has been the examination of the predictabil-
ity of geophysical flows. Early approaches applied
homogeneous turbulence models to predicting error
growth89–91 whereas more recent advances by Fred-
eriksen and O’Kane,92 O’Kane and Frederiksen,93

building on the pioneering studies of Epstein94 and
Pitcher,95 have enabled predictability studies of inho-
mogeneous strongly non-Gaussian flows typical of the
mid-latitude atmosphere. Turbulence closures have
also been used for SSP of the unresolved scales, e.g.,
eddies in atmospheric and ocean general circulation
models. As it is generally only possible to represent
the statistical effects of unresolved eddies while their
phase relationships with the resolved scales are lost,96

statistical dynamical turbulence closures are sufficient
to allow SSPs to be formulated in a completely trans-
parent way.87,89,97–101 Insights gained through the
development of inhomogeneous turbulence closure

BOX 2

CLOSURE PROBLEM

In order to describe the statistical behavior of a
turbulent flow, the underlying nonlinear dynam-
ical equations must be averaged. For simplicity,
we consider a generic equation of motion with
quadratic nonlinearity for homogeneous turbu-
lence, in which the mean field is zero, and the
fluctuating part of the vorticity in Fourier space,
𝜁k, satisfies the equation:

𝜕

𝜕t
𝜁k (t) = Kkpq𝜁−p (t) 𝜁−q (t) . (3)

where p and q are the other wave numbers
describing triad interactions, i.e., k= (kx, ky)
where 𝛿(k+p+q)=1 if k+p+q= 0 and 0
otherwise. Here Kkpq are the interaction or
mode coupling coefficients. The correlation
between the eddies can now be represented
by an equation for the covariance (cumulant
in terms of wavenumbers k and l) which is
found to depend on the third-order cumulant in
Fourier space:

𝜕

𝜕t

⟨
𝜁k (t) 𝜁−l

(
t′
)⟩

= Kkpq

⟨
𝜁−p (t) 𝜁−q (t) 𝜁−l

(
t′
)⟩

. (4)

Similarly the third-order cumulant depends
on the fourth order and so on, such that we
see that an infinite hierarchy of moment or
cumulant equations is produced. Statistical tur-
bulence theory is principally concerned with
the methods by which this moment hierarchy
is closed and the subsequent dynamics of the
closure equations. The fact that for homoge-
neous turbulence the covariance matrix is diago-
nal greatly simplifies the problem. The majority
of closure schemes are derived using pertur-
bation expansions of the nonlinear terms in
the primitive dynamical equations. The most
successful theories use formal renormalization
techniques.12,85

theory have motivated the recent development of
general stochastic forms for SSPs for geophysical
flows.102

Statistical Dynamical Closure Theory
The development of renormalized turbulence clo-
sures was pioneered by Kraichnan’s Eulerian DIA86

for homogeneous turbulence. The DIA, so named
because it only takes into account directly interacting
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modes, can be readily regularized to include approx-
imations to the indirect interactions103,104 that are
required to obtain the correct inertial range-scaling
laws. Other homogeneous closures such as Herring’s
self-consistent field theory (SCFT105) and McComb’s
local energy transfer theory (LET),106 were indepen-
dently developed soon after. The DIA, SCFT, and
LET theories have since been shown to form a class
of homogeneous closures that differ only in whether
and how a fluctuation dissipation theorem (FDT, i.e.,
the linear response of a system to an infinitesimal per-
turbation as it relaxes toward equilibrium)86,107–109

is applied. As noted earlier, a consequence of the DIA
having an exact stochastic model representation is
that it is physically realizable, ensuring positive energy
spectra. This is in contrast with closures based on the
quasi-normal hypothesis that require further modi-
fications in order to ensure realizability; an example
of such a closure is the eddy damped quasi-normal
Markovian (EDQNM) closure89,110,111 developed as
a best Markovian fit to the DIA. The EDQNM is
dependent on a choice of an eddy-damping parameter
that can be tuned to match the phenomenology of the
inertial range. This Markovian assumption assumes
that the rate at which the memory integral decays
is significantly faster than the time scale on which
the covariances evolve. The relative success of these
turbulence closures has enabled the further study of
the statistics of the predictability of homogeneous
turbulent flows.89,90,112,113

Frederiksen87 formulated a computationally
tractable non-Markovian (memory effects) closure,
the QDIA, for the interaction of general mean and
fluctuating flow components with inhomogeneous
turbulence and topography. The QDIA assumes that,
prior to renormalization, a perturbative expansion
of the covariances are diagonal at zeroth order. In
general, very good agreement has been found between
the QDIA closure results and the statistics of direct
numerical simulation (DNS).92,103,104

The non-Markovian closures discussed above
are systems of integro-differential equations with
potentially long-time history integrals posing
considerable computational challenges; how-
ever, various ways to overcome these challenges
exist92,93,100,104,109,114–116 and have been general-
ized to allow computationally tractable closure
models for inhomogeneous turbulent flow over
topography to be developed.87,92,104 An alternative
derivation of a stochastic model of the Navier–Stokes
equations has been put forward by Memin.117

It is based on a decomposition of the velocity
fields into a differentiable drift and a stochastic
component.

Statistical Dynamical and Stochastic
Subgrid Modeling
Many subgrid-scale stress models assume the small
scales to be close to isotropic and in equilibrium such
that energy production and dissipation are in bal-
ance, similar to the eddy viscosity assumption of the
Smagorinsky model.118 Using the DIA, Kraichnan86

showed that for isotropic turbulence the inertial trans-
fer of energy could be represented as a combina-
tion of both an eddy viscous (on average energy
drain from retained to subgrid scales) and stochas-
tic back-scatter (positive semi-definite energy input
from subgrid to retained scales) terms. The nonlin-
ear transfer terms represented by eddy viscosity and
stochastic back-scatter are the subgrid processes asso-
ciated with the respective eddy-damping and nonlin-
ear noise terms that constitute the right-hand side of
the DIA tendency equation for the two-point cumu-
lant 𝜕

𝜕t

⟨
𝜁k (t) 𝜁−k

(
t′
)⟩

. Leith89 used the EDQNM clo-
sure to calculate an eddy dissipation function that
would preserve a stationary k−3 kinetic energy spec-
trum for two-dimensional turbulence. Kraichnan98

developed the theory of eddy viscosity in two and
three dimensions and was the first to identify the exis-
tence of a strong cusp in the spectral eddy viscosity
near the cutoff wavenumber representing local interac-
tions between modes below and near the cusp. Rose101

argued for the importance of eddy noise in subgrid
modeling.

O’Kane and Frederiksen100 calculated QDIA-
based SSPS considering observed atmospheric flows
over global topography and quantifying the relative
importance of the subgrid-scale eddy-topographic,
eddy-mean field, quadratic mean, and mean
field-topographic terms. They also compared the
QDIA-based SSPS to heuristic approaches based on
maximum entropy, used to improve systematic defi-
ciencies in ocean climate models.119 While closure
models may be the natural starting place for devel-
oping SSPs, their complexity makes them difficult to
formulate and apply to multi-field models such as
GCMS, even though successful studies exist.102,120

STOCHASTIC PARAMETRIZATION
SCHEMES IN COMPREHENSIVE
MODELS

Climate and weather predictions are only feasible
because the governing equations of motion and ther-
modynamics are known. To solve these equations,
we need to resort to numerical simulations that dis-
cretize the continuous equations onto a finite grid and
parameterize all processes that cannot be explicitly
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FIGURE 2 | Mean systematic error of 500 hPa geopotential height fields (shading) for extended boreal winters (December–March) of the period
1962–2005. Errors are defined with regard to the observed mean field (contours), consisting of a combination of ERA-40 (1962–2001), and
operational ECMWF analyses (2002–2005). (a) Systematic error in a numerical simulation with the ECMWF model IFS, version CY32R1, run at a
horizontal resolution of TL95 (about 210 km) and 91 vertical levels. (b) Systematic error in a simulation with a stochastic kinetic-energy backscatter
scheme. Significant differences at the 95% confidence level based on a Student’s t-test are hatched (after Berner et al.124).

resolved. Such models can be characterized in terms
of their dynamical core, which describe the resolved
scales of motion, and the physical parameterizations,
which provide estimates of the grid-scale effect of pro-
cesses that cannot be resolved by the dynamical core.
This general approach has been hugely successful in
that nowadays predictions of weather and climate are
made routinely. However, exactly through these pre-
dictions it has become apparent that uncertainty esti-
mates produced by current state-of-the-art models still
have shortcomings.

One shortcoming is that many physical parame-
terizations are based on bulk formulae that are based
on the assumption that the subgrid-scale state is in
equilibrium with the resolved state.121 Model errors
might arise from a misrepresentation of unresolved
subgrid-scale processes that can affect not only the
variability, but also the mean error of a model.122,123

An example in a comprehensive climate model is, e.g.,
the bias in the 500 hPa geopotential height pattern,
which is reduced when the representation of the sub-
grid state is refined124 (Figure 2).

In recent years, methods for the estimation
of flow-dependent uncertainty in predictions have
become an important topic. Ideally, uncertainties
should be estimated within the physical parame-
terizations and uncertainty representations should
be developed alongside the model. Many of these
methods are ‘ad hoc’ and added a posteriori to an
already tuned model. Only first steps to develop

uncertainty estimates from within the parameteriza-
tions have been attempted.125,126

The representation of model-error in weather
and climate models falls in one of two major cat-
egories: multi-model approaches and stochastic
parameterizations. In the multi-model approach, each
ensemble member consists of an altogether different
model. The models can differ in the dynamical core
and the physical parameterizations127–129 or use the
same dynamical core but utilize either different static
parameters in their physical parameterizations130 or
altogether different physics packages.131–134 Both
approaches have been successful in improving predic-
tions of weather and climate over a range of scales,
as well as their uncertainty. Multi-model ensem-
bles provide more reliable seasonal forecasts135 and
are commonly used for the uncertainty assessment
of climate change predictions, e.g., as in the Fifth
Assessment Report (AR5) of the Intergovernmen-
tal Panel on Climate Change (IPCC).136 Stochastic
parameterizations are routinely used to improve
the reliability of weather forecasts in the short-131

and medium-range10,137,138 as well as for seasonal
predictions.139–141

In the stochastic approach, the effect of uncer-
tainties due to the finite truncation of the model is
treated as independent realizations of stochastic
processes that describe these truncation uncer-
tainties. This treatment goes back to the idea of
stochastic–dynamic prediction.95,121,142 While the
verdict is still open if subgrid-scale fluctuations must
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be included explicitly via a stochastic term, or if
it is sufficient to include their mean influence by
improved deterministic physics parameterizations,
one advantage of stochastically perturbed models
is that all ensemble members have the same clima-
tology and model bias; while for multi-parameter,
multi-parameterization, and multi-model ensembles
each ensemble member is de facto a different model
with its own dynamical attractor. For operational cen-
ters, the maintenance of different parameterizations
requires additional resources and due to the different
biases makes post-processing very difficult.

Stochastic Parameterizations in Numerical
Weather Prediction
Due to the chaotic nature of the dynamical equations
governing the evolution of weather, forecasts are sen-
sitive to the initial condition limiting the intrinsic
predictability of the weather system.5,143 Probabilis-
tic forecasts are performed by running ensemble sys-
tems, where each member is initialized from a different
initial state and much effort has gone into the opti-
mal initialization of such ensemble systems.128,144,145

Nevertheless state-of-the-art numerical weather pre-
dictions systems continue to produce unreliable and
over-confident forecasts.146 Consequently, the other
source of forecast uncertainty—model error—has
received increasing attention.121,147 Since for chaotic
systems model-error and initial condition error will
both result in trajectories that will diverge from the
truth, it is very difficult to disentangle them.148

The first stochastic parameterization used in an
operational numerical weather prediction model was
the stochastically perturbed physics tendency scheme
(SPPT), sometimes also referred to as stochastic dia-
batic tendency or Buizza–Miller–Palmer scheme.149

SPPT is based on the notion that—especially as
the horizontal resolution increases—the equilibrium
assumption no longer holds and the subgrid-scale
state should be sampled rather than represented by
the equilibrium mean. Consequently, SPPT multiplies
the accumulated physical tendencies of temperature,
wind, and moisture at each grid-point and time step
with a random pattern that has spatial and tempo-
ral correlations. In other words, SPPT assumes that
parameterization uncertainty can be expressed as a
multiplicative noise term. Ensemble systems perturbed
with the SPPT scheme show increased probabilistic
skill mostly due to increased spread in short- and
medium-range ensemble forecasts.149–152

A second successful stochastic parameteriza-
tion scheme, is the so-called stochastic kinetic energy
backscatter scheme (SKEBS) whose origin lies in

large-eddy simulation modeling153 and has recently
been extended to weather and climate scales.11,154 The
key idea is that energy associated with subgrid pro-
cesses is injected back onto the grid using a stochastic
pattern generator. This method has been successfully
used in a number of operational and research fore-
casts across a range of scales.10,131,137,150,155–157 Simi-
lar to the SPPT scheme, ensemble systems with SKEBS
increase probabilistic skill by increasing spread and
decreasing the root-mean-square (RMS) error of the
ensemble mean forecast. First results of these schemes
at a convection-permitting resolution of around 4 km
report also a positive impact on forecast skill, in par-
ticular, more reliable precipitation forecasts.158,159

Stochastic Parameterizations in
Climate Models
The use of stochastic parameterization in climate mod-
els is still in its infancy. Climate prediction uncer-
tainty assessments, e.g., IPCC,160 are almost exclu-
sively based on multi-models, mostly from different
research centers. Part of the problem is that on climate
timescales, limited data for verification exist. A sec-
ond reason is that on longer timescales, bias is a major
source of uncertainty and traditional multi-models are
very efficient at sampling biases, although such an
experiment is poorly designed for an objective and reli-
able uncertainty assessment.

However, in recent years, first studies have
emerged which demonstrate the ability of stochas-
tic parameterizations to reduce longstanding biases
and improve climate variability (see Figure 2 for an
example). Jin and Neelin161 developed a stochas-
tic convective parameterization that includes a ran-
dom contribution to the convective available potential
energy in the deep convective scheme. They find that
adding convective noise results in enhanced eastward
propagating, low-wavenumber low-frequency vari-
ability. Berner et al.124 investigate the impact of SKEBS
on systematic model error and report an improvement
in the representation of convectively coupled waves
leading to a reduction in the tropical precipitation
bias. Furthermore, Majda and colleagues developed
systematic stochastic multi-cloud parameterizations
for organized convection.42,162–164 The multi-cloud
approach is based on the assumption that organized
convection involves three types of clouds and the evo-
lution from one cloud type to another can be described
by a transition matrix.

A longstanding systematic error of climate
models is the underestimation of the occurrence of
Northern Hemispheric blocking. Stochastic param-
eterizations have been demonstrated to be one way
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to increase their frequency,139–141,165 although, e.g.,
increasing horizontal resolution, leads to similar
improvements.3,124 This suggests that while it might
be necessary to include subgrid-scale variability in
some form, the details of this representation might not
matter. On the other side, Berner et al.124 argue that
this degeneracy of response to different subgrid-scale
forcings warrants a cautionary note: namely that a
decrease in systematic error might not necessarily
occur for the right dynamical reasons. The opposite
holds true, as well: due to the necessary tuning of
parameters in the parameterizations of comprehensive
climate models, an improvement in the formulation
of a physical process might not immediately lead to
an improved model performance. A striking example
of compensating model errors is described in Palmer
and Weisheimer,166 who report how an inadequate
representation of horizontal baroclinic fluxes resulted
in a model error that was equal and opposite to the
systematic error caused by insufficiently represented
vertical orographic gravity wave fluxes. Improvements
to wave drag parameterization without increasing res-
olution unbalanced the compensating model errors,
leading to an increase in systematic model bias.

Williams167 studied the effect of including a
stochastic term in the fluxes between the atmo-
spheric and oceanic components in a coupled ocean–
atmosphere model. He reports changes to the
time-mean climate and increased variability of the El
Niño Southern Oscillation, suggesting that the lack of
representation of subgrid variability in air–sea fluxes
may contribute to some of the biases exhibited by
contemporary climate models.

On seasonal timescales where sufficient obser-
vational data for a probabilistic verification exist,
stochastic parameterizations have been reported
to increase predictive skill. For example, ensemble
forecasts of the sea surface temperatures over the
Nino3.4 region showed increased anomaly correla-
tion, decreased bias, and decreased RMS error in
coupled ocean-atmosphere models.139–141

CONCLUSION

We postulate the use of stochastic–dynamical models
for uncertainty assessment and model-error represen-
tation in comprehensive Earth System Models. This
need arises since even state-of-the-art weather and cli-
mate models cannot resolve all necessary processes
and scales. Here, we reviewed mathematical methods
for stochastic climate modeling as well as stochastic
SSPs and postulate their use for a more systematic
strategy of parameterizing unresolved and unrepre-
sented processes.

In the last decade, a number of studies emerged
that demonstrate the potential of this approach, albeit
applied in an ad hoc manner and tuned to specific
applications. Stochastic parameterizations have been
shown to provide more skillful weather forecasts than
traditional ensemble prediction methods, at least on
timescales where verification data exists. In addition,
they have been shown to reduce longstanding climate
biases, which play an important role especially for
climate and climate change predictions.

Here we argue that rather than pushing out the
limit of skillful ensemble predictions by a few days,
more attention should be given to the assessment
of uncertainty (as already proposed, e.g., Smith148).
Ideally, it should be carried out alongside the phys-
ical parameterization and dynamical core develop-
ment and not added a posteriori. The uncertainty
should be directly estimated from within the param-
eterization schemes and not tuned to yield a partic-
ular model performance, as is current practice. For
example, Sapsis and Majda168,169 propose a statistical
framework which systematically quantifies uncertain-
ties in a stochastic fashion.

The fact that according to the last two ARs of
the IPCC (AR4170 and AR5160) the uncertainty in
climate predictions and projections has not decreased
may be a sign that we might be reaching the limit
of climate predictability, which is the result of the
intrinsically nonlinear character of the climate system
(as first suggested by Lorenz143).

Recently Palmer171 argued that due to limited
computational and energy power resources, pre-
dictable scales should be solved accurately, while the
unpredictable scales could be represented inaccu-
rately. This strategy is at the core of the systematic
mode reduction reviewed here, but has only recently
been considered for comprehensive Earth System
Models. Stochastic models focus on the accurate
simulation of the large, predictable scales, while only
the statistical properties of the small, unpredictable,
scales are captured. This has been demonstrated,
e.g, by Franzke and Majda,40 Kravtsov et al.,62 who
successfully applied mode reduction strategies to
global atmospheric circulation models. They showed
that these reduced models consisting of only 10–15
degrees of freedom reproduced many of the impor-
tant statistics of the numerical circulation models
which contained a few hundreds degrees of freedom.
Vanden-Eijnden172 proposed numerical approaches
for multi-scale systems where only the largest scales
are explicitly computed and the smaller scales are
approximated on the fly.

The recent results of Wouters and Lucarini73,80

provide a promising path toward a general theory of
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parameterizations for weather and climate models,
and give theoretical support that parameterization
schemes should include deterministic, stochastic and
non-Markovian (memory) components. Moreover,
Wouters and Lucarini’s results suggest that there is
common ground in developing parameterizations
for weather and climate prediction models. Opti-
mal representations of the reduced dynamics based
on Ruelle’s response theory and the Mori-Zwanzig
formalism coincide, thus, providing equal optimal
representations of the long-term statistical properties
and the finite-time evolution of the slow variables.

One exciting future research area is the use of
stochastic methods for use in data assimilation, which
is already an active field of research.114,115,159,173–176

Stochastic methods have been shown to increase

the ensemble spread in data assimilation, leading
to a better match between observations and model
forecasts.159,174,177 A cutting-edge frontier is the use
of order moments and memory effects in Kalman
filter data assimilation schemes.115 Another emerging
field is the use of stochastic parameterizations in large
climate ensembles, which would allow the comparison
of uncertainty estimates based in multi-models to that
of stochastically perturbed ones.

Our hope is that basing stochastic–dynamic
prediction on sound mathematical and statistical
physics concepts will lead to substantial improve-
ments, not only in our ability to simulate weather
and climate accurately, but even more importantly
to give proper estimates of the uncertainty of these
predictions.

ACKNOWLEDGMENTS

CLEF is supported by the German Research Foundation (DFG) through the cluster of Excellence CliSAP, TJO is
an Australian Research Council Future Fellow, PDW acknowledges a University Research Fellowship from the
Royal Society (UF080256), and VL obtained funding from the European Research Council (NAMASTE).

REFERENCES
1. Palmer TN, Williams PD. Introduction: Stochastic

physics and climate modelling. Phil Trans R Soc A
2008, 366:2421–2427.

2. Williams PD. Modelling climate change: the role
of unresolved processes. Phil Trans R Soc A 2005,
363:2931–2946.

3. Dawson A, Palmer TN, Corti S. Simulating regime
structures in weather and climate prediction models.
Geophys Res Lett 2012, 39:L21805.

4. Stensrud DJ. Parameterization Schemes: Keys to Un-
derstanding Numerical Weather Prediction Models.
Cambridge: Cambridge University Press; 2007, 459.

5. Lorenz EN. Atmospheric predictability as revealed
by naturally occcuring analogues. J Atmos Sci 1969,
26:636–646.

6. Tribbia JJ, Baumhefner DP. Scale interactions and
atmospheric predictability: an updated perspective.
Mon Weather Rev 2004, 132:703–713.

7. Crommelin D, Vanden-Eijnden E. Subgrid-scale
parameterization with conditional Markov chains.
J Atmos Sci 2008, 65:2661–2675.

8. Shutts GJ, Palmer TN. Convective forcing fluctua-
tions in a cloud-resolving model: relevance to the
stochastic parameterization problem. J Climate 2007,
20:187–202.

9. Wilks DS. Effects of stochastic parameterizations in
the Lorenz’96 system. Q J Roy Meteorol Soc 2005,
131:389–407.

10. Berner J, Shutts G, Leutbecher M, Palmer T. A spec-
tral stochastic kinetic energy backscatter scheme and
its impact on flow-dependent predictability in the
ECMWF ensemble prediction system. J Atmos Sci
2009, 66:603–626.

11. Shutts GJ. A kinetic energy backscatter algorithm for
use in ensemble prediction systems. Q J Roy Meteorol
Soc 2005, 612:3079–3102.

12. Chorin AJ, Hald OH. Stochastic Tools in Mathematics
and Science, vol. 208. New York: Springer; 2013.

13. O’Kane TJ, Scholten RE, Walkiewwicz MR, Farrell
PM. Nonlinear interactions of multi-level atoms with
a near resonant standing wave. Phys Rev A 1999,
59:4485–4493.

14. Douglas JF, Gasiorek JM, Swaffield JA, Jack LB. Fluid
Mechanics. 6th ed. Prentice Hall: Harlow; 2011.

15. Hide R, Mason PJ, Plumb RA. Thermal convection
in a rotating fluid subject to a horizontal tempera-
ture gradient: spatial and temporal characteristics of
fully developed baroclinic waves. J Atmos Sci 1977,
34:930–950.

16. Lovegrove AF, Read PL, Richards CJ. Generation of
inertia-gravity waves in a baroclinically unstable fluid.
Q J Roy Meteorol Soc 2000, 126:3233–3254.

17. Williams PD, Haine TWN, Read PL. On the genera-
tion mechanisms of short-scale unbalanced modes in
rotating two-layer flows with vertical shear. J Fluid
Mech 2005, 528:1–22.

Volume 6, January/February 2015 © 2014 John Wiley & Sons, Ltd. 73



Advanced Review wires.wiley.com/climatechange

18. Williams PD, Haine TWN, Read PL. Inertia–gravity
waves emitted from balanced flow: observations,
properties, and consequences. J Atmos Sci 2008,
65:3543–3556.

19. Tian Y, Weeks ER, Ide K, Urbach JS, Baroud CN, Ghil
M, Swinney HL. Experimental and numerical studies
of an eastward jet over topography. J Fluid Mech 2001,
438:129–157.

20. Weeks ER, Tian Y, Urbach JS, Ide K, Swinney HL,
Ghil M. Transitions between blocked and zonal flows
in a rotating annulus with topography. Science 1997,
278:1598–1601.

21. Williams PD, Read PL, Haine TWN. Spontaneous
generation and impact of inertia–gravity waves in a
stratified, two-layer shear flow. Geophys Res Lett
2003, 30:2255.

22. Williams PD, Read PL, Haine TWN. A calibrated,
non-invasive method for measuring the internal inter-
face height field at high resolution in the rotating,
two-layer annulus. Geophys Astrophys Fluid Dyn
2004b, 98:453–471.

23. Williams PD, Haine TWN, Read PL. Stochastic res-
onance in a nonlinear model of a rotating, stratified
shear flow, with a simple stochastic inertia-gravity
wave parameterization. Nonlin Proc Geophys 2004a,
11:127–135.

24. De Swart HE, Grasman J. Effect of stochastic perturba-
tions on a low-order spectral model of the atmospheric
circulation. Tellus A 1987, 39:10–24.

25. Williams PD, Haine TWN, Read PL, Lewis SR,
Yamazaki YH. QUAGMIRE v1.3: a quasi-geostrophic
model for investigating rotating fluids experiments.
Geosci Model Dev 2009, 2:13–32.

26. Birner T, Williams PD. Sudden stratospheric warm-
ings as noise-induced transitions. J Atmos Sci 2008,
65:3337–3343.

27. Klein R. Scale-dependent models for atmospheric
flows. Annu Rev Fluid Mech 2010, 42:249–274.

28. Hasselmann K. Stochastic climate models: part I,
theory. Tellus 1976, 28:473–484.

29. Frankignoul C, Hasselmann K. Stochastic climate
models, part II: application to sea-surface temperature
anomalies and thermocline variability. Tellus 1977,
29:289–305.

30. Imkeller P, von Storch J-S. Stochastic Climate Models.
Birkhäuser; 2001, 398.

31. Gottwald G, Melbourne I. Homogenization for deter-
ministic maps and multiplicative noise. Proc R Soc A
2013, 469:20130201.

32. Khasminsky RZ. Principle of averaging for parabolic
and elliptic differential equations and for Markov
processes with small diffusions. Theory Probab Appl
1963, 8:1–21.

33. Kurtz TG. A limit theorem for perturbed operator
semi-groups with applications to random evolutions.
J Funct Anal 1973, 12:55–67.

34. Melbourne I, Stuart AM. A note on diffusion limits
of chaotic skew-product flows. Nonlinearity 2011,
24:1361–1367.

35. Papanicolaou GC. Some probabilistic problems and
methods in singular perturbations. Rocky Mt J Math
1976, 6:653–674.

36. Pavliotis, GA and AM Stuart, 2008: Multiscale Meth-
ods: Averaging and Homogenization. Springer, 307.

37. Givon D, Kupferman P, Stuart A. Extracting macro-
scopic dynamics: model problems and algorithms.
Nonlinearity 2004, 17:R55.

38. Dolaptchiev SI, Achatz U, Timofeyev I. Stochastic
closure for local averages in the finite-difference dis-
cretization of the forced Burgers equation. Theor
Comp Fluid Dyn 2013, 27:297–317.

39. Franzke C, Majda AJ, Vanden-Eijnden E. Low-order
stochastic mode reduction for a realistic barotropic
model climate. J Atmos Sci 2005, 62:1722–1745.

40. Franzke C, Majda AJ. Low-order stochastic mode
reduction for a prototype atmospheric GCM. J Atmos
Sci 2006, 63:457–479.

41. Majda AJ, Timofeyev I, Vanden-Eijnden E. Models for
stochastic climate prediction. Proc Natl Acad Sci USA
1999, 96:14687–14691.

42. Majda AJ, Timofeyev I, Vanden-Eijnden E. A math-
ematical framework for stochastic climate models.
Comm Pure Appl Math 2001, 54:891–974.

43. Majda AJ, Timofeyev I, Vanden-Eijnden E. A priori
tests of a stochastic mode reduction strategy. Phys D
2002, 170:206–252.

44. Majda AJ, Timofeyev I, Vanden-Eijnden E. Systematic
strategies for stochastic mode reduction in climate.
J Atmos Sci 2003, 60:1705–1722.

45. Majda AJ, Abramov R and Grote M, Information
theory and stochastics for multiscale nonlinear sys-
tems. CRM Monograph Series, American Mathemati-
cal Society, 2005.

46. Majda AJ, Franzke C, Khouider B. An applied mathe-
matics perspective on stochastic modelling for climate.
Phil Trans R Soc A 2008, 366:2429–2455.

47. Majda AJ, Franzke C, Crommelin D. Normal
forms for reduced stochastic climate models. Proc
Natl Acad Sci USA 2009, 106:3649–3653. doi:
10.1073/pnas.0900173106.

48. Lemons DS. An Introduction to Stochastic Processes
in Physics. Baltimore: Johns Hopkins University Press;
2002, 115.

49. Gardiner CW. Handbook of Stochastic Methods.
Berlin: Springer-Verlag; 1985, 442.

50. Berner J. Linking nonlinearity and non-Gaussianity
of planetary wave behavior by the Fokker-Planck
equation. J Atmos Sci 2005, 62:2098–2117.

51. Siegert S, Friedrich R, Peinke J. Analysis of data sets of
stochastic systems. Phys Lett A 1998, 243:275–280.

74 © 2014 John Wiley & Sons, Ltd. Volume 6, January/February 2015



WIREs Climate Change Stochastic climate theory and modeling

52. Penland C, Matrosova L. A balance condition for
stochastic numerical models with application to
the El Nino-Southern Oscillation. J Climate 1994,
7:1352–1372.

53. Penland C, Sardeshmukh PD. The optimal growth of
tropical sea surface temperature anomalies. J Climate
1995, 8:1999–2014.

54. Whitaker JS, Sardeshmukh PD. A linear theory of
extratropical synoptic eddy statistics. J Atmos Sci
1998, 55:237–258.

55. Winkler CR, Newman M, Sardeshmukh PD. A linear
model of wintertime low-frequency variability, part
I: formulation and forecast skill. J Climate 2001,
14:4474–4494.

56. DelSole T, Hou AY. Empirical stochastic models for
the dominant climate statistics of a General Circula-
tion Model. J Atmos Sci 1999, 56:3436–3456.

57. DelSole T. Stochastic models of quasigeostrophic tur-
bulence. Surv Geophys 2004, 25:107–149.

58. Farrell BF, Ioannou PJ. Stochastic dynamics of baro-
clinic waves. J Atmos Sci 1993, 50:4044–4057.

59. Farrell BF, Ioannou PJ. Stochastic dynamics of the
midlatitude atmospheric jet. J Atmos Sci 1995,
52:1642–1656.

60. Zhang Y, Held IM. A linear stochastic model of a
GCM’s midlatitude storm tracks. J Atmos Sci 1999,
56:3416–3435.

61. Kondrashov D, Kravtsov S, Ghil M. Empirical mode
reduction in a model of extratropical low-frequency
variability. J Atmos Sci 2006, 63:1859–1877.

62. Kravtsov S, Kondrashov D, Ghil M. Multilevel regres-
sion modeling of nonlinear processes: derivation and
applications to climatic variability. J Climate 2005,
18:4404–4424.

63. Culina J, Kravtsov S, Monahan AH. Stochastic param-
eterization schemes for use in realistic climate models.
J Atmos Sci 2011, 68:284–299.

64. Monahan AH, Culina J. Stochastic averaging of ideal-
ized climate models. J Climate 2011, 24:3068–3088.

65. Chorin AJ, Hald OH, Kupferman R. Optimal predic-
tion with memory. Phys D 2002, 166:239–257.

66. Stinis P. A comparative study of two stochastic mode
reduction methods. Phys D 2006, 213:197–213.

67. Crommelin D, Vanden-Eijnden E. Reconstruction of
diffusions using spectral data from timeseries. Com-
mun Math Sci 2006, 4:651–668.

68. Achatz U, Branstator G. A two-layer model with
empirical linear corrections and reduced order for
studies of internal climate variability. J Atmos Sci
1999, 56:3140–3160.

69. Achatz U, Opsteegh JD. Primitive-equation-based
low-order models with seasonal cycle, part I: model
construction. J Atmos Sci 2003, 60:465–477.

70. Harlim J, Mahdi A, Majda AJ. An ensemble Kalman
filter for statistical estimation of physics constrained

nonlinear regression models. J Comput Phys 2013,
257:782–812.

71. Majda AJ, Harlim J. Physics constrained nonlinear
regression models for time series. Nonlinearity 2013,
26:201–217.

72. Peavoy D, Franzke C and Roberts G: Systematic
physics constrained parameter estimation of stochas-
tic differential equations. Comp Stat Data Anal
arXiv:1312.1881.

73. Wouters J, Lucarini V. Disentangling multi-level sys-
tems: averaging, correlations and memory. J Stat Mech
2011, 2012:PO3003.

74. Ruelle D. Smooth dynamics and new theoretical ideas
from nonequilibrium statistical mechanics. J Stat Phys
1999, 95:393–468.

75. Ruelle D. A review of linear response theory for
general differentiable dynamical systems. Nonlinearity
2009, 22:855.

76. Lucarini V. Evidence for dispersion relations for the
nonlinear response of the Lorenz 1963 system. J Stat
Phys 2009, 134:381–400.

77. Lucarini V, Sarno S. A statistical mechanic approach
for the computation of the climatic response to general
forcings. Nonlin Proc Geophys 2011, 18:7–28.

78. Gallavotti G, Cohen EGD. Dynamical ensembles in
stationary states. J Stat Phys 1995, 80:931–970.

79. Chekroun M, Liu H, Wang S, On stochastic param-
eterizing manifolds: pullback characterization and
non-Markovian reduced equations. Mem Am Math
Soc 2013, arxiv:1310.3896.

80. Wouters J, Lucarini V. Multi-level dynamical sys-
tems: connecting the Ruelle response theory and
the Mori-Zwanzig approach. J Stat Phys 2013,
151:850–860.

81. Franzke C. Predictability of extreme events in a non-
linear stochastic-dynamical model. Phys Rev E 2012,
85. doi: 10.1103/PhysRevE.85.031134.

82. Franzke C. Predictions of critical transitions with
non-stationary reduced order models. Phys D 2013,
262:35–47.

83. Sura P. A general perspective of extreme events in
weather and climate. Atmos Res 2011, 101:1–21.

84. Sura P. Stochastic models of climate extremes: theory
and observations. In: AghaKouchak A, Easterling D,
Hsu K, Schubert S, Sorooshian S, eds. Extremes in a
Changing World: Detection, Analysis and Uncertainty.
Berlin: Springer; 2013, 432.

85. Heinz S. Statistical Mechanics of Turbulent Flows.
Berlin: Springer; 2003, 215.

86. Kraichnan RH. The structure of isotropic turbulence at
very high reynolds number. J Fluid Mech 1959, 5:497.

87. Frederiksen JS. Subgrid-scale parameterizations of
eddy-topographic force, eddy viscosity, and stochas-
tic backscatter for flow over topography. J Atmos Sci
1999, 56:1481.

Volume 6, January/February 2015 © 2014 John Wiley & Sons, Ltd. 75



Advanced Review wires.wiley.com/climatechange

88. Herring JR, Kraichnan RH. Statistical Models of
Turbulence. Berlin: Springer; 1972.

89. Leith CE. Atmospheric predictability and two-
dimensional turbulence. J Atmos Sci 1971, 28:145.

90. Leith CE, Kraichnan RH. Predictability of turbulent
flows. J Atmos Sci 1972, 29:1041–1058.

91. Lorenz EN. A study of the predictability of
a 28-variable atmospheric model. Tellus 1965,
17:321–333.

92. Frederiksen JS, O’Kane TJ. Inhomogeneous closure
and statistical mechanics for Rossby wave turbulence
over topography. J Fluid Mech 2005, 539:137.

93. O’Kane TJ, Frederiksen JS. A comparison of statistical
dynamical and ensemble prediction methods during
blocking. J Atmos Sci 2008b, 65:426.

94. Epstein ES. Stochastic dynamic prediction. Tellus
1969, 21:739–759.

95. Pitcher EJ. Application of stochastic dynamic predic-
tion to real data. J Atmos Sci 1977, 34:3–21.

96. Hunte MWDA, Johnson C. Conditional mode elimina-
tion and the subgrid-modelling problem for isotropic
turbulence. Phys Fluids 2001a, 13:2030.

97. Frederiksen JS, Davies AG. Eddy viscosity and stochas-
tic backscatter parameterizations on the sphere for
atmospheric circulation models. J Atmos Sci 1997,
54:2475.

98. Kraichnan RH. Eddy viscosity in two and three dimen-
sions. J Atmos Sci 1976, 33:1521.

99. Leslie DC, Quarini GL. The application of turbulence
theory to the formulation of subgrid modelling proce-
dures. J Fluid Mech 1979, 91:65.

100. O’Kane TJ, Frederiksen JS. Statistical dynamical
subgrid-scale parameterizations for geophysical flows.
Phys Scr 2008a, T132:014033.

101. Rose HA. Eddy diffusivity, eddy noise and
subgrid-scale modelling. J Fluid Mech 1977, 81:719.

102. Kitsios V, Frederiksen JS, Zidikheri MJ. Subgrid model
with scaling laws for atmospheric flows. J Atmos Sci
2012, 69:1427.

103. Frederiksen JS, Davies AG. Dynamics and spectra of
cumulant update closures for two-dimensional turbu-
lence. Geophys Astrophys Fluid Dyn 2000, 92:197.

104. O’Kane TJ, Frederiksen JS. The QDIA and regularized
QDIA closures for inhomogeneous turbulence over
topography. J Fluid Mech 2004, 504:133.

105. Herring JR. Self-consistent-field approach to turbu-
lence theory. Phys Fluids 1965, 8:2219.

106. McComb WD. A local energy-transfer theory of
isotropic turbulence. J Phys A 1974, 7:632.

107. Carnevale GF, Frederiksen JS. Viscosity renormaliza-
tion based on direct-interaction closure. J Fluid Mech
1983, 131:289.

108. Deker U, Haake F. Fluctuation-dissipation theorems
for classical processes. Phys Rev A 1957, 6:2043.

109. Frederiksen JS, Davies AG, Bell RC. Closure equations
with non-Gaussian restarts for truncated two-
dimensional turbulence. Phys Fluids 1994, 6:3153.

110. Ogura Y. A consequence of the zero fourth cumulant
approximation in the decay of isotropic turbulence.
J Fluid Mech 1963, 16:33.

111. Orszag SA. Analytical theories of turbulence. J Fluid
Mech 1970, 41:363.

112. Leith CE. Theoretical skill of Monte Carlo forecasts.
Mon Weather Rev 1974, 102:409.

113. Métais O, Lesieur M. Statistical predictability of
decaying turbulence. J Atmos Sci 1986, 43:857.

114. O’Kane TJ, Frederiksen JS. Comparison of statis-
tical dynamical, square root and ensemble Kalman
filters. Entropy 2008c, 10:684–721. doi: 10.3390/
e10040684.

115. O’Kane TJ, Frederiksen JS. The application of statisti-
cal dynamical turbulence closures to data assimilation.
Phys Scr 2010, T142:014042.

116. Rose HA. An efficient non-Markovian theory of
non-equilibrium dynamics. Phys D 1985, 14:216.

117. Memin E. Fluid flow dynamics under location
uncertainty. Geophys Astrophys Fluid Dyn 2014,
108:119–146.

118. Smagorinsky J. General circulation experiments with
the primitive equations, I: the basic experiment. Mon
Weather Rev 1963, 91:99.

119. Holloway G. Representing topographic stress for
large-scale ocean models. J Phys Oceanogr 1992,
22:1033.

120. Zidikheri MJ, Frederiksen JS. Stochastic subgrid
parameterizations for simulations of atmospheric
baroclinic flows. J Atmos Sci 2009, 66:2844.

121. Palmer TN. A nonlinear dynamical perspec-
tive on model error: a proposal for non-local
stochastic-dynamic parameterization in weather
and climate prediction. Q J Roy Meteorol Soc 2001,
127:279–304.

122. Penland C. Noise out of chaos and why it won’t go
away. Bull Am Meteorol Soc 2003, 84:921–925.

123. Sardeshmukh P, Penland C, Newman M. Rossby
waves in a stochastically fluctuating medium. In:
Imkeller P, von Storch J-S, eds. Stochastic Climate
Models. Basel: Birkhäuser; 2001, 384–396.

124. Berner J, Jung T, Palmer TN. Systematic model error:
the impact of increased horizontal resolution versus
improved stochastic and deterministic parameteriza-
tions. J Climate 2012, 25:4946–4962.

125. Cohen BG, Craig GC. Fluctuations in a equilibrium
convective ensemble, part II: numerical experiments.
J Atmos Sci 2005, 63:2005–2015.

126. Plant RS, Craig GC. A stochastic parameterization
for deep convection based on equillibrium statistics.
J Atmos Sci 2008, 65:87–105.

76 © 2014 John Wiley & Sons, Ltd. Volume 6, January/February 2015



WIREs Climate Change Stochastic climate theory and modeling

127. Hagedorn R, Doblas-Reyes FJ, Palmer TN. The ratio-
nale behind the success of multi-model ensembles in
seasonal forecasting—i. basic concept. Tellus 2005,
57A:219–233.

128. Houtekamer PL, Lefaivre L, Derome J, Ritchie
H, Mitchell HL. A system simulation approach
to ensemble prediction. Mon Weather Rev 1996,
124:1225–1242.

129. Krishnamurti TN, Kishtawal CM, Zhang Z, LaRow
T, Bachiochi D, Williford E, Gadgil S, Surendran
S. Multimodel ensemble forecasts for weather and
seasonal climate. J Climate 2000, 13:4196–4216.

130. Stainforth D, Aina T, Christensen C, Collins M, Faull
N, Frame DJ, Kettleborough JA, Knight S, Martin A,
Murphy JM, et al. Uncertainty in predictions of the
climate response to rising levels of greenhouse gases.
Nature 2005, 433:403–406.

131. Berner J, Ha S-Y, Hacker JP, Fournier A, Snyder C.
Model uncertainty in a mesoscale ensemble predic-
tion system: stochastic versus multi-physics represen-
tations. Mon Weather Rev 2011, 139:1972–1995.

132. Eckel FA, Mass CF. Aspects of effective mesoscale,
short-range ensemble forecasting. Wea Forecasting
2005, 20:328–350.

133. Murphy JM, Sexton DM, Barnett DN, Jones GS,
Webb MJ, Collins M, Stainforth DA. Quantification of
modelling uncertainties in a large ensemble of climate
change simulations. Nature 2004, 430:768–772.

134. Stensrud DJ, Bao J-W, Warner TT. Using initial con-
dition and model physics perturbations in short-range
ensemble simulations of mesoscale convective systems.
Mon Weather Rev 2000, 128:2077–2107.

135. Palmer T, Andersen U, Cantelaube P, Davey M,
Deque M, Doblas-Reyes F, Feddersen H, Graham R,
Gualdi S, Gueremy J-F, et al. Development of a Euro-
pean multi-model ensemble system for seasonal to
inter-annual prediction (DEMETER). Bull Am Mete-
orol Soc 2004, 85:853–872.

136. Stocker ETF, Qin D, Plattner G-K, Tignor M, Allen
S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P.
Climate Change 2013: The Physical Science Basis.
Cambridge; New York: Cambridge University Press;
2013.

137. Bowler NE, Arribas A, Beare SE, Mylne KR, Shutts GJ.
The local ETKF and SKEB: upgrades to the MOGREPS
short-range ensemble prediction system. Q J Roy
Meteorol Soc 2009, 135:767–776.

138. Palmer, TN, Buizza R, Doblas-Reyes F, Jung T, Leut-
becher M, Shutts G, Steinheimer M, Weisheimer A.
Stochastic parametrization and model uncertainty.
ECMWF Technical Memorandum No. 598, 2009.
Available at: http://www.ecmwf.int/publications/.

139. Berner J, Doblas-Reyes FJ, Palmer TN, Shutts G,
Weisheimer A. Impact of a quasi-stochastic cellular
automaton backscatter scheme on the systematic error

and seasonal prediction skill of a global climate model.
Phil Trans R Soc A 2008, 366:2559–2577.

140. Doblas-Reyes F, Weisheimer A, Déqué M, Keenlyside
N, McVean M, Murphy JM, Rogel P, Smith D,
Palmer TN. Addressing model uncertainty in seasonal
and annual dynamical seasonal forecasts. Q J Roy
Meteorol Soc 2009, 135:1538–1559.

141. Weisheimer A, Palmer T, Doblas-Reyes F. Assessment
of representations of model uncertainty in monthly
and seasonal forecast ensembles. Geophys Res Lett
2011, 38:L16703. doi: 10.1029/2011GL048123.

142. Epstein ES, Pitcher EJ. Stochastic analysis of meteoro-
logical fields. J Atmos Sci 1972, 29:244–257.

143. Lorenz EN. Deterministic nonperiodic flow. J Atmos
Sci 1963, 20:130–141.

144. Molteni F, Palmer TN. Predictability and finite-time
instability of the Northern winter circulation. Q J Roy
Meteorol Soc 1993, 119:269–298.

145. Toth Z, Kalnay E. Ensemble forecasting at NMC: the
generation of perturbations. Bull Am Meteorol Soc
1993, 74:2317–2330.

146. Buizza R, Houtekamer PL, Toth Z, Pellerini G, Wei M,
Zhu Y. A comparison of the ECMWF, MSC and NCEP
global ensemble prediction systems. Mon Weather Rev
2005, 133:1076–1097.

147. Palmer TN. A nonlinear dynamical perspective on
climate prediction. J Climate 1999, 12:575–591.

148. Smith LA. Disentangling Uncertainty and Error:
On the Predictability of Nonlinear Systems. Berlin:
Springer; 2001.

149. Buizza R, Miller M, Palmer TN. Stochastic represen-
tation of model uncertainties in the ECMWF ensem-
ble prediction system. Q J Roy Meteorol Soc 1999,
125:2887–2908.

150. Berner, J, Smith KR, Ha S-Y, Hacker JP, and Sny-
der C. Increasing the skill of probabilistic forecasts:
model-error representations versus calibration
and debiasing. Mon Weather Rev. Submitted for
publication.

151. Reynolds CA, McLay JG, Goerss JS, Serra EA, Hodyss
D, Sampson CR. Impact of resolution and design on
the U.S. Navy global ensemble performance in the
tropics. Mon Weather Rev 2011, 139:2145–2155.

152. Teixera J, Reynolds CA. Stochastic nature of physi-
cal parameterization in ensemble prediction: a stochas-
tic convection approach. Mon Weather Rev 2008,
136:483–496.

153. Mason P, Thomson D. Stochastic backscatter in
large-eddy simulations of boundary layers. J Fluid
Mech 1992, 242:51–78.

154. Shutts GJ, Palmer TN. The use of high resolu-
tion numerical simulations of tropical circulation
to calibrate stochastic physics schemes. In:
ECMWF/CLIVAR Workshop on Simulation and
Prediction of Intra-seasonal Variability with the

Volume 6, January/February 2015 © 2014 John Wiley & Sons, Ltd. 77

http://www.ecmwf.int/publications/


Advanced Review wires.wiley.com/climatechange

Emphasis on the MJO, ECMWF, 2003, 83–102.
Available at: http://www.ecmwf.int/publications.

155. Bowler NE, Arribas A, Mylne KR, Robertson KB,
Beare SE. The MOGREPS short-range ensemble
prediction system. Q J Roy Meteorol Soc 2008,
134:703–722.

156. Charron M, Pellerin G, Spacek L, Houtekamer
PL, Gagnon N, Mitchell HL, Michelin L. Toward
random sampling of model error in the Canadian
ensemble prediction system. Mon Weather Rev 2010,
138:1877–1901.

157. Sanchez, C, Williams KD, Shutts G, Collins M, Impact
of a stochastic kinetic energy backscatter scheme
across time-scales and resolutions. Q J Roy Meteorol
Soc 2014, 140:577–599. doi:10.1002/qj.2328.

158. Bouttier F, Vié B, Nuissier O, Raynaud L. Impact
of stochastic physics in a convection-permitting
ensemble. Mon Weather Rev 2012, 140:
3706–3721.

159. Romine GS, Schwartz CS, Berner J, Smith KR, Snyder
C, Anderson JL, and Weisman ML: Representing
forecast error in a convection-permitting ensemble
system. Mon Weather Rev. Submitted for publication.

160. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen
SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley
PM. Climate Change 2013: The Physical Science Basis.
Cambridge: Cambridge University Press; 2013, 1535.

161. Lin JWB, Neelin JD. Influence of a stochastic moist
convective parameterization on tropical climate vari-
ability. Geophys Res Lett 2000, 27:3691–3694.

162. Frenkel Y, Majda AJ, Khouider B. Using the stochas-
tic multicloud model to improve tropical convective
parameterizations: a paradigm example. J Atmos Sci
2011, 69:1080–1105.

163. Khouider B, Biello J, Majda AJ. A stochastic multi-
cloud model for tropical convection. Commun Math
Sci 2010, 8:187–216.

164. Majda AJ, Stechmann S. Stochastic models for con-
vective momentum transport. Proc Natl Acad Sci USA
2008, 105:17614–17619.

165. Jung T, Palmer TN, Shutts GJ. Influence of a stochastic
parameterization on the frequency of occurrence of
north pacific weather regimes in the ECMWF model.
Geophys Res Lett 2005, 32:L23811.

166. Palmer TN, Weisheimer A. Diagnosing the causes of
bias in climate models—why is it so hard? Geophys
Astrophys Fluid Dyn 2011, 105:351–365.

167. Williams PD. Climatic impacts of stochastic fluc-
tuations in air-sea fluxes. Geophys Res Lett 2012,
39:L10705. doi: 10.1029/2012GL051813.

168. Sapsis T, Majda AJ. A statistically accurate modified
quasilinear Gaussian closure for uncertainty quantifi-
cation in turbulent dynamical systems. Phys D 2013a,
252:34–45.

169. Sapsis T, Majda AJ. Statistically accurate low-order
models for uncertainty quantification in turbulent
dynamical systems. Proc Natl Acad Sci USA 2013b,
110:13705–13710.

170. Solomon SE, Qin D, Manning M, Chen Z, Marquis M,
Averyt K, Tignor M, Miller H. Climate Change 2007:
The Physical Science Basis. New York: Cambridge
University Press; 2007, 996.

171. Palmer T. More reliable forecasts with less precise
computations: a fast-track route to cloud-resolved
weather and climate simulators? Phil Trans R Soc A
2014, 372:20130391.

172. Vanden-Eijnden E. Numerical techniques for
multi-scale dynamical systems with stochastic effects.
Commun Math Sci 2003, 1:385–391.

173. Gottwald G, Harlim J. The role of additive and
multiplicative moise in filtering complex dynamical
systems. Proc R Soc A 2013, 469:20130096.

174. Ha, S-Y, J Berner, and C Snyder: Model error repre-
sentation in mesoscale wrf-dart cycling. Mon Weather
Rev. Submitted for publication.

175. Isaksen, L, Fisher M, Berner J. Use of analysis ensem-
bles in estimating flow-dependent background error
variances. In: Proceedings of ECMWF Workshop on
Flow Dependent Background Errors ECMWF, Read-
ing, UK, 11–13 June, 2007, 65–86.

176. Miller RN, Carter EF, Blue ST. Data assimila-
tion into nonlinear stochastic models. Tellus 1999,
51A:167–194.

177. Mitchell L, Gottwald GA. Data assimilation in
slow-fast systems using homogenized climate models.
J Atmos Sci 2012, 69:1359–1377.

FURTHER READING
Franzke C, Majda AJ, Branstator G. The origin of nonlinear signatures of planetary wave dynamics: mean phase space

tendencies and contributions from non-Gaussianity. J Atmos Sci 2007, 64:3987–4003. doi: 10.1175/2006JAS2221.1.

Kraichnan RH. Test-field model for inhomogeneous turbulence. J Fluid Mech 1972, 56:287.

Shutts G, Allen T, Berner J. Stochastic parametrization of multiscale processes using a dual-grid approach. Phil Trans R Soc A
2008, 366:2623–2639.

78 © 2014 John Wiley & Sons, Ltd. Volume 6, January/February 2015

http://www.ecmwf.int/publications

