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Abstract
With the advent of improved aircraft situational awareness and the need for air-
lines to reduce their fuel consumption and environmental impact whilst adhering to 
strict timetables, fixed-time, fuel-optimal routing is vital. Here, the aircraft trajec-
tory planning problem is addressed using optimal control theory. Two variants of a 
finite horizon optimal control formulation for fuel burn minimization are developed, 
subject to arrival constraints, an aerodynamic fuel-burn model, and a data-driven 
wind field. In the first variant, the control variable is expressed as a set of posi-
tion-dependent aircraft headings, with the optimal control problem solved through 
a reduced gradient approach at a range of fixed airspeeds. The fuel optimal result 
is taken as the lowest fuel use recorded. In the second variant, both heading angle 
and airspeed are controlled. Results from three months of simulated flight routes 
between London and New York show that permitting optimised en-route airspeed 
variations leads to fuel savings of 0.5% on an average day (and up to 4% on certain 
days), compared with fixed airspeed flights. We conclude that significant fuel sav-
ings are possible if airspeeds are allowed to vary en route to take optimal advantage 
of the wind field.
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1 Introduction

With airlines,  Air Navigation Service Providers (ANSPs), and the International 
Civil Aviation Organisation (ICAO) all keen to reduce the environmental impact 
of commercial flight (ICAO 2020; Molloy 2020; AirlinesUK 2019), it has been 
shown that Trajectory Based Operations (TBO) provide the key to improving 
overall efficiency (Wickramasinghe et  al. 2012; García-Heras et  al. 2014). This 
approach focuses on designing individual flight routes accounting for weather 
conditions in order to optimize efficiency with regard to a number of different 
factors. For long haul flights, such as those between London Heathrow Airport 
(LHR) and John F. Kennedy Airport in New York (JFK), for which the cruise 
phase makes up around 92% of the ground distance of the flight (as shown in 
Wells et al. 2021), TBO promises the greatest rewards (Girardet et al. 2014).

Time optimal routing has been shown to reduce fuel burn when altitude and 
airspeed are fixed, compared to the tracks provided across the North Atlantic by 
NATS and NAV CANADA (Wells et al. 2021). However, this option is not neces-
sarily the most practical for airlines and airports. For operational and financial 
reasons airlines also need to adhere to their published timetables. Flights arriv-
ing early create additional costs, through extra fuel burned in holding patterns, 
missed connecting flights, blocked gates and additional crew time. Customer dis-
satisfaction is also a key issue for airlines when delays occur. If flight trajectories 
are planned to ensure a fixed flight time, whilst minimising fuel burn, then the 
additional costs to both the airlines and the environment associated with early 
arrival can be saved.

Optimal control theory (Kirk 1970; Macki and Strauss 1982; Bressan and Piccoli 
2007) is applied here to formulate a problem leading to fixed time fuel minimal tra-
jectories subject to arrival constraints, an aerodynamic fuel-burn model and a data-
driven wind field. The fuel usage of trajectories generated by two finite horizon opti-
mal control formulations are compared. In the first, a single control variable is given 
as a set of position-dependent aircraft headings. The second formulation varies both 
the headings and the airspeed of the aircraft. Fuel consumption is modelled with 
a new physics-driven fuel burn function, which is aircraft type specific (Poll and 
Schumann 2021a, b). Optimal trajectories are found numerically using a reduced 
gradient approach.

Long range cruise trajectories minimising fuel for a fixed mass aircraft have pre-
viously been researched by others using control variables of thrust and flight path 
angle (Schultz and Zagalsky 1972; Speyer 1973) or lift and thrust (Schultz 1974; 
Menon 1989), but these have not accounted for the wind field. In these papers the 
fuel flow is minimised for a set distance of flight. Wind has been factored into fixed 
range cruise calculations which compare fixed and free thrust as airspeed varies 
(Erzberger and Lee 1980), but here a direct operating cost is minimised, with this 
cost dependent on both time of flight and fuel use. Similar comprehensive research 
into trajectory optimisation for hybrid UAVs, incorporating weather data and opti-
mising for energy has been completed recently, but these routes are time variable 
(Dobrokhodov et al. 2020).
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Fixed time trajectories minimising direct operating cost have also been designed, 
but unlike the current research, the optimal control model is set up with a free final 
time (Sorensen and Waters 1981; Burrows 1983). The trajectory best fitting the 
imposed arrival time constraint is then selected. Other methods have been used to 
solve a minimum fuel cruise at constant altitude with fixed arrival time (García-
Heras et  al. 2014; Franco and Rivas 2011), but these either did not consider the 
effect of wind at all or simplified the wind fields. Optimal routes through realistic 
wind fields are often very different from their wind-free equivalents (Girardet et al. 
2014).

The minimum fuel optimisation problem for a fixed time journey has, therefore, 
been examined previously. The novelty in the approach shown here lies in:

– Applying a recently developed, novel, analytic aerodynamic fuel-burn model 
(Poll and Schumann 2021a, b) that is quicker and easier to use in complex 
computation schemes than the standard EUROCONTROL Base of Aircraft 
Data (García-Heras et al. 2014; Wickramasinghe et al. 2012; Soler et al. 2020; 
Yamashita et  al. 2021; Matthes et  al. 2021; Yamashita et  al. 2020). This new 
method is open source and fully transparent.

– A numerical assessment across 91 days, covering the entire winter period from 
1st December, 2019 to 29th February, 2020, using real atmospheric data.

This paper is set out in five sections. In Sect. 2, the system dynamics, a description 
of the optimal control formulation and an outline of the approximate synthesis of 
optimal trajectories are discussed. Section 3 contains model data specific to the the 
data-driven wind field and the fuel burn function. In Sect. 4 fuel savings by incor-
porating both heading angle and airspeed control, rather than just heading angle, are 
quantified and the effect of differing wind fields on results is analysed. Finally, the 
results are summarised and discussed in Sect. 5.

2  Mathematical modelling for trajectory planning

In this section the dynamical system governing the trajectory of an aircraft is pre-
sented. An optimal control formulation is stated to minimize fuel burn along a fixed 
time horizon with a fixed departure point. The destination target comprises all points 
within 1 km of the point (�dest,�dest) . Two different optimal control formulations are 
presented, representing fixed and variable airspeed models.

We then redefine this continuous system as a set of discrete paths, making 
a piecewise continuous route, in order to render the solution more practical in an 
operational sense. The numerical method applied to provide an approximate solu-
tion to this discrete problem is then discussed. The nomenclature for variables used 
throughout the paper is defined in Table 1.
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2.1  System dynamics for the trajectory of an aircraft

A simplified model for the trajectory of an aircraft is considered. The model is a varia-
tion of Zermelo’s navigation problem transformed conformally onto a sphere, but here 
the objective is to minimise fuel burn rather than flight time (Zermelo 1930). The air-
craft travels the surface of a spherical shell with the same radius as the Earth. Although 
the aircraft will actually travel at a fixed altitude h above this shell, as h ≪ R this can 
be approximated by R in line with previous research (Arrow 1949; Jardin and Bryson 
2012; Ng et al. 2014; Kim et al. 2016; Williams 2016). The aircraft trajectory, is char-
acterised by longitude, � , latitude, � , and mass, M, at any time t. The rate of change 
of these states depends both on airspeed and wind speed. The aircraft is controlled 
through its heading angle, � , and its airspeed, V. By varying these quantities, the path 
of the aircraft will be altered, thus resulting in different regions of winds being encoun-
tered. The airspeed V will determine which winds it is possible to access within the 
given fixed time of flight. This initial continuous problem assumes that: 

1. The aircraft’s heading angle and airspeed are varied continuously.
2. Airspeed will remain within operational bounds throughout the flight.

The equations of motion for the controlled aircraft are given by:

Table 1  Nomenclature

� Latitude in radians
�dept Latitude in radians of departure airport
�dest Latitude in radians of destination airport
� Longitude in radians
�dept Longitude in radians of departure airport
�dest Longitude in radians of destination airport
M Mass of aircraft in kg
Mdept mass of aircraft in kg at start of trajectory
Mref Scaling constant based on nominal aircraft take-off mass 235 113 kg
� Heading angle in radians
u Zonal (eastward) wind in m s−1

v Meridional (northward) wind in m s−1

R Radius of Earth ≈ 6 371 000 m
h Altitude of aircraft above Earth in m (h ≪ R)

V Airspeed in m s−1

Vref Scaling constant based on nominal cruise airspeed 240 m s−1

t Time in s
tf Final time in s
g Fuel burn in kg s−1

d Distance around the sphere between (�dest,�dest) and (�(tf ),�(tf )) in m
�dest Radius of target around destination airport in m
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Equation (1) is derived from the zonal components of both airspeed and wind speed, 
mapped conformally onto a sphere. Equation (2) is the sum of the meridional com-
ponents of airspeed and wind speed, again multiplied by the correct transformation 
factor to allow for all (�,�) co-ordinate pairs to lie on a spherical shell. Equation (3) 
is the rate of decrease of fuel over time, according to fuel burn rate function g which 
is discussed in detail in Sect. 3.2. However, in order to avoid scaling issues, as the 
state variables are of very different orders, it is necessary to non-dimensionalise 
this dynamical system. Of the state variables, only M, the mass of the aircraft has 
a dimension, as angle measures are considered dimensionless. In the same way air-
speed, V, time, t, fuel burn rate, g, zonal wind speed, u and meridional wind speed, v 
must be similarly scaled. The following definitions will be used:

leading to the non-dimensionalised dynamical system of:

(1)�̇� =
1

R cos𝜙(t)
(V(t) cos𝜓(t) + u(𝜆(t),𝜙(t)))

(2)�̇� =
1

R
(V(t) sin𝜓(t) + v(𝜆(t),𝜙(t)))

(3)Ṁ = −g(𝜆(t),𝜙(t),M(t),V(t))

(4)M∗ =
M

Mref

(5)V∗ =
V

Vref

(6)t∗ =
Vref t

R

(7)g∗ =
Rg

Mref Vref

(8)u∗ =
u

Vref

(9)v∗ =
v

Vref

(10)
��

�t∗
=

1

cos�(t∗)
(V∗(t∗) cos�(t∗) + u∗(�(t∗),�(t∗)))
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This describes a continuous problem, but operationally the trajectory is viewed as a 
piecewise continuous route. It comprises rhumb-line tracks, the paths with constant 
heading angle around the globe between two given points, between waypoints cor-
responding to the start and end of equal time intervals. We now discuss this discrete 
optimal control formulation and its approximate synthesis.

2.2  Optimal control formulation and approximate synthesis

The objective of the dynamic optimization procedure is to compute the airspeeds and 
headings that will ensure fuel burn across the trajectory is minimized. At first, the con-
trol variables are not constrained. However, it is assumed that airspeed, where this is 
allowed to vary, will lie within a specified operational range.

In formulating the optimal control problem a constant altitude flight is consid-
ered, starting from the initial position, (�dept,�dept) at a time t = 0 to a final target that 
encompasses all points within a certain distance, �dest , of (�dest,�dest) at a final time of 
t = tf  , with a fixed time of flight.

An aircraft arriving within �dest = 1000 m of the destination airport is assumed to 
have completed its journey successfully. This terminal constraint is based on the Haver-
sine formula (Veness 2019):

where atan2 is the four-quadrant inverse tangent of the two real values in the func-
tion bracket, d is the spherical distance to the destination airport in metres and R is 
the radius of the Earth.

The mass, M(t) is not constrained, but is assumed to lie between the start of cruise 
mass (taken to be 97.5% of the take-off mass and denoted here as SOCM) and the oper-
ational empty mass, (OEM). At t = 0 , M(0) = Mdept which is the SOCM. For a Boeing 
777-236ER aircraft, this is calculated as 221 826 kg flying East and 235 112 kg flying 
West, using the method developed in Poll and Schumann (2021b).

The formulation involving two control variables is referred to subsequently as 
OCP2. The first control is the heading angle in radians, measured anti-clockwise from 
due East, in line with the original derivation of the dynamical system in Zermelo 
(1930). The true airspeed, V(t), is the second control and is assumed to stay within the 
operational boundaries of 199 to 252 m s−1 . (This corresponds to a Mach number range 
of 0.58 to 0.73.) A second formulation, referred to as OCP1, is a simplified version of 
OCP2, involving just a single control variable, the heading angle �(t) . In both cases, as 

(11)
��

�t∗
= V∗(t∗) sin�(t∗) + v∗(�(t∗),�(t∗))

(12)
�M∗

�t∗
= −g∗(�(t∗),�(t∗),M∗(t∗),V∗(t∗))

(13)
a = sin2(��dest − �(tf )�∕2) + cos(�dest) cos(�(tf )) sin

2(��dest − �(tf )�∕2)

d = 2Ratan2(
√
a,
√
1 − a)
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flights progress, at each time step mass will be reduced by the amount of fuel burned 
during the preceding time interval.

In the continuous problem with two control variables, outlined in Sect. 2.1, the opti-
mal heading angle �(t) and airspeed V(t) are found by minimising the cost functional:

where g(�,�,M,V) is the physics-driven fuel burn function discussed further in 
Sect. 3.2, and subject to Eqs. (1)–(3).

In the case of OCP1, where a single variable only is applied, the system dynamics 
remain as described in Eqs. (1)–(3), but taking a constant airspeed, i.e. V(t) = V . The 
cost functional now becomes:

However, for operational applicability, we do not wish to solve this continuous prob-
lem, but the corresponding discrete problem.

The construction of a nonlinear optimization approach continues with the discretiza-
tion in time of the system dynamics. A uniform temporal grid with N time steps of size 
�t is set. The spatial states at the start and end of each time interval are considered as 
waypoints in the flight and the temperature and wind conditions at each of these N + 1 
waypoints are used in updating the dynamical system as the trajectory progresses. The 
third state, the mass of the aircraft at the start of each time interval is used in evaluat-
ing the fuel burn across each time interval. This is done using a Runge-Kutta 4th order 
method with fixed time step for Eqs. (1)–(3), providing a set of discrete state variables 
{�(i�t∗),�(i�t∗),M(i�t∗)}N

i=0
 , which we denote by (�(i),�(i),M(i)) . This leads to the 

following nonlinear optimization problem for the non-dimensionalised system:

(14)J∗ = min
�(⋅),V(⋅)

tf

∫
0

g(�(t),�(t),M(t),V(t)) dt ,

(15)J∗ = min
�(⋅)

tf

∫
0

g(�(t),�(t),M(t),V) dt

(16)J∗
�t∗

= min
�(⋅),�(⋅),M∗(⋅)∈ℝN

�t∗
N∑

i=1

g∗
(
�(i),�(i),M∗(i),V∗(i)

)
,

(17)
subject to:

�(i + 1) = �(i) + �t∗��(�(i),�(i),M
∗(i),�(i),V∗(i),�t∗) ,

(18)�(i + 1) = �(i) + �t∗��(�(i),�(i),M
∗(i),�(i),V∗(i),�t∗) ,

(19)
M

∗(i + 1) = M
∗(i) + �t∗�

M∗ (�(i),�(i),M∗(i),�(i),V∗(i),�t∗) ,

i = 0…N ,
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The function � denotes an explicit RK4 time integration expressed as a single-stage 
update. Controls are considered as piecewise constant, as across each 100  s time 
step controls and atmospheric conditions are taken to be constant. This is a justifi-
able assumption, as a 100 s time step is small in comparison to the whole journey 
of about six hours flying East and eight hours flying West. The last two equations of 
this program include operational constraints on the aircraft mass and airspeed.

There are different numerical optimization solvers which can deal with the solu-
tion of the nonlinear programming problem (16)–(23). We chose not to use a spe-
cialised commercial solver here, but rather one widely used throughout the scien-
tific community to allow for easier replication of results, with the data, formulae 
and processes all in the public domain. In this paper Matlab’s fmincon solver was 
used within the multistart solver from Matlab’s Global Optimization Toolbox (Waltz 
et al. 2006; Byrd et al. 1999, 2000; Ugray et al. 2007). The multistart solver gener-
ates a specified number of starting points randomly within the bounds of the given 
problem structure. It then filters to feasible points before running these through the 
fmincon function, as a local solver. Once all points have been run, the local solver 
output with the lowest cost is found. Fmincon uses an interior point algorithm to 
alter heading angles and airspeeds at each iteration to ensure that the cost function is 
reduced. This continues until either the step tolerance or the optimality tolerance fall 
below given bounds. Step tolerance is a relative bound which compares the size of 
a control value to the size of the previous one. Optimality tolerance is a measure of 
how the objective function is varying in all feasible directions. Its value is taken as 
the infinity norm of the sum of the partial derivatives of J∗ with respect to the con-
trol variables at each timestep i = 1, 2,…N:

However, gradients of J∗ are computed using finite differences, avoiding an explicit 
numerical calculation of gradients for the wind field and the fuel burn model. This 
is a standard procedure, as encountering objective functions where the evaluation of 
derivatives is not practical is not unusual in real-world systems (Colson and Toint 
2001; Naresh Kumar et al. 2018). As fmincon finds local minima of a problem, there 

(20)(�(0),�(0),M∗(0)) =

(
�dept,�dept,

Mdept

Mref

)
,

(21)d ≤ �dest ,

(22)M∗(i) ∈

[
OEM

Mref

,
SOCM

Mref

]

(23)V∗(i) ∈

[
Vmin

Vref

,
Vmax

Vref

]
.

(24)
i=N∑

i=1

�J∗

��(i)
+

i=N∑

i=1

�J∗

�V∗(i)
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is no guarantee that results will be globally optimal, but by using fmincon within the 
multistart solver the method becomes more robust.

3  Weather data and fuel burn modelling

In order to solve the discrete problem described in Eqs. 16–23, data regarding zonal 
(eastward) and meridional (northward) winds and temperatures from daily aver-
aged re-analysis data is needed, in addition to a model for the aerodynamic fuel burn 
function. These are detailed fully in this section.

3.1  Data‑driven wind and temperature fields

The use of realistic atmospheric data in these simulations is critical in ensuring their 
relevance to improving trajectory-based operations. Plots of two sample wind fields 
are shown in Fig. 1.

Determination of fuel burn rate used in Eq.  (3) is dependent on temperature at 
any point along a trajectory, the mass of the aircraft and also on the airspeed of the 
aircraft. The temperature is required in the calculation of both the Mach number 
and the dynamic viscosity of the air, both of which values are used to find the cur-
rent fuel efficiency of the aircraft at any point on a trajectory. Numerical solution of 
Eqs. (1)–(2), necessitates obtaining speeds for the zonal and meridional winds at any 
point across the North Atlantic. Thus both records of wind speed and temperature 
are needed in order to find admissible trajectories. Contour plots of the two tempera-
ture fields corresponding to the wind fields in Fig. 1 are shown in Fig. 2.

In this research all atmospheric data has been downloaded from the re-analysis 
data set provided by the National Center for Atmospheric Research (Kalnay et al. 
1996). This comprises an atmospheric model and a large array of observations 
combined via data assimilation to produce a weather hindcast. Wind velocity and 
temperature values are given for a global grid of resolution 2.5◦ as daily averages. 
Linear interpolation is then applied to obtain wind components and temperature at 
specific points in a trajectory. This approach is justified as long haul flight routes 
have been shown to be largely insensitive to the resolution of weather data (Lunnon 
and Mirza 2007) and the evolution of the jet stream at this altitude shows little vari-
ation across a 24-hour period (Mangini et al. 2018). The use of daily wind data is 
in line with methods used in previous transatlantic trajectory research (Wells et al. 
2021; Kim et al. 2020; Williams 2016; Mangini et al. 2018).

Wind fields can be considered to be smooth, as there are no flow discontinuities 
in the atmosphere. Molecular viscosity prevents discontinuities from occurring by 
smoothing them out over the Kolmogorov scale (which is typically a few millim-
eters). There are no flow fluctuations smaller than this scale.
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Fig. 1  Contour plots showing strength of winds in m s−1 across the North Atlantic on 1st December, 
2019 and 9th February, 2020. Behind these contour plots is a quiver plot of the same winds to show the 
direction of flow. These two wind fields are representative of the winter period. The positions of LHR 
and JFK are represented by red stars
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Fig. 2  Contour plots showing temperature variation in degrees K across the North Atlantic on 1st 
December, 2019 and 9th February, 2020. These two temperature fields correspond to the wind fields 
shown in Fig. 1. The positions of LHR and JFK are represented by red stars
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3.2  Fuel burn model

In the vast majority of research relating fuel burn to aircraft trajectories, EURO-
CONTROL’s Base of Aircraft Data Version 4 (BADA) method is used to model 
aircraft fuel flow (EUROCONTROL 2021). This is true for recent papers looking 
for climate optimized trajectories (Matthes et al. 2020, 2021; Yamashita et al. 2020, 
2021) as well as previous research into fuel-optimal routing (García-Heras et  al. 
2014; Wickramasinghe et al. 2012; Soler et al. 2020). However, we have chosen to 
use a new analytic method for estimating the fuel burn rate of commercial passenger 
aircraft due to Poll and Schumann (2021a, b). This method is more ideally suited 
to our research, being quicker and easier to use than BADA as part of a complex 
computation scheme. As the method is open source, there is no need for a licence 
to access it and there are no restrictions on its use. The derivation of the method has 
been set out in refereed journals, ensuring that its validity has received appropriate 
endorsement.

The fuel burn rate (in  kg s−1 ) can be expressed as:

where W is the weight of the aircraft in N, V denotes the airspeed in  m s−1 , LCV is 
the lower calorific value of aircraft fuel (43 M J kg−1 for kerosene) and �0

L

D
 is the 

maximum value of overall efficiency of the propulsion system, multiplied by the lift-
to-drag ratio.

Obtaining the fuel burn rate for each step of a trajectory depends on aircraft 
specific parameters and International Standard Atmosphere parameters. Here it is 
assumed that a Boeing 777-236ER aircraft is used, as this is the model currently 
flown most frequently in transatlantic routes between London Heathrow Airport 
and John F. Kennedy Airport in New York (Flightradar24 2020). In addition, the 
fuel burn is also dependent, at each point along a trajectory, on the altitude and air-
speed of the aircraft, and on the environment temperature T = T(�,�) . The term 
�0(L∕D) = �0(L∕D)(T) has a nonlinear physical dependence on the temperature 
field, which has been modelled in Poll and Schumann (2021a, b).

The aircraft are assumed to fly along the 250 hPa isobar, which corresponds to an 
altitude of approximately 34 000 feet. This is close to the average cruise altitude for 
flights across the North Atlantic and the flight level at which the organised track sys-
tem is currently calculated (Mangini et al. 2018). Aircraft on this route rarely change 
altitude and so this is an acceptable simplification.

The fuel burn rate can be seen in Fig. 3 for a range of airspeeds and temperatures. 
The airspeeds are determined by the model of aircraft flown, in this case the Boe-
ing 777-236ER, and the temperatures are representative of those recorded across the 
North Atlantic during the winter period from 2019 to 2020.

Where both heading angle and airspeed are controlled, fuel burn rate will vary 
with airspeed, mass and temperature, whereas in the second case, where airspeed 
remains constant, fuel burn rate will vary only due to the mass of the aircraft and 
the temperature encountered along the route, which can be seen to be a small effect.

(25)
g =

VW(
�0

L

D

)
LCV
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4  Results

In this section, the particular parameters for the numerical models used are specified 
and then results, given the relevant weather data, are presented and discussed.

4.1  Parameters of the system

Trajectories are modelled between LHR (51.5◦ N, 0.5◦ W) and JFK (40.6◦ N, 73.8◦ 
W) both eastbound and westbound. This particular route has been chosen as it is not 
only one of the busiest, but goes through the slowly evolving background wind field 
provided by the jet stream, the prevailing eastbound nature of which causes the chal-
lenges of flying in each direction to be quite different.

All flights modelled occur between 1st December, 2019 and 29th February, 2020. 
This allows the full range of winter weather systems to be considered (Irvine et al. 
2013), as the North Atlantic Oscillation has been shown to cause transatlantic routes 
to vary strongly (Woollings and Blackburn 2012; Kim et al. 2016). In the future it is 
expected that cruise level winds in this region will increase in speed due to climate 
change (Irvine et al. 2016; Williams 2016; Simpson 2016; Kim et al. 2020), so their 
inclusion in routing calculations seems set to become increasingly important.

Fig. 3  Surface plot showing fuel burn rate variation with airspeed and temperature. The range of air-
speeds shown are those practical for a Boeing 777-236ER flying at a cruise altitude of 34 000 ft. The 
temperatures cover a realistic range for the winter season over the North Atlantic
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Further model parameters include time step length, number of time steps in each 
direction, search algorithm tolerances, chosen airspeeds for the initialization of the 
OCP2 formulation, the fixed airspeed for OCP1 and the initial estimate for the head-
ing angle at each time step for both OCP1 and 2.

The time step length was chosen following a sensitivity analysis and a time step 
of �t = 100 s allows a stable and consistent application of the numerical method, 
whilst not unduly increasing truncation errors. This also, in practice, allows time for 
adjustments to heading and airspeed to be made. Having a practical knowledge of 
the situation under consideration is vital in choosing a reasonable time step (Rump-
fkeil and Zingg 2010).

Travelling from LHR to JFK against a headwind, the fixed final time is set to 
29  000  s, giving N = 290 , whilst in the opposite direction this is reduced to just 
22  000  s, with N = 220 . These times have been chosen following research into 
time optimal routes across the same winter period (Wells et al. 2021). They allow 
flights on all days enough time to reach their destination, whilst also lying between 
the longest and shortest scheduled flight times given by the airlines for this route 
between 1st December, 2019 and 29th February, 2020.

For the interior point algorithm the step tolerance was set to 1 × 10−6 , and the 
optimality tolerance to 1 × 10−3 . These values were shown to allow efficient conver-
gence across all wind fields considered.

Given the time restriction on trajectories, the fixed airspeed yielding the mini-
mum fuel use will depend on the daily wind field. For this reason, fuel use for tra-
jectories flown at all airspeeds in increments of 1 m s−1 , within the operational con-
straints, was calculated and the trajectory results for the airspeed associated with the 
lowest fuel use for each day adopted. In some cases, this was the lowest airspeed 
allowing the trajectory to reach the destination target, whereas on days where winds 
were more favourable, the airspeed chosen depended on the most efficient airspeed 
for the model of aircraft used.

The initial airspeed across each time interval in the numerical model for OCP2, 
V(t), was chosen to be the airspeed obtained from OCP1, but by using the multistart 
solver, a range of other initial airspeeds was also applied. In the original formula-
tion of OCP2, the airspeed is assumed to be V(t) ∈ ℝ . However,there are obvious 
boundaries to an aircraft’s airspeed in the practical setting. In order to apply the fuel 
function based on the work of Poll and Schumann (2021a, b) across the range of 
temperatures recorded across the North Atlantic at cruise altitudes, it was necessary 
to have V(t) ∈ [199, 252] . This control constraint was applied in judging if a feasi-
ble solution had been found. In the case of westbound flights, optimised airspeeds 
varied between 199 and 242 m s−1 and for eastbound flights this range was from 199 
to 240 m s−1 , so in all cases a vector of feasible airspeeds was retrieved from the 
numerical optimisation.

In solving both OCP1 and OCP2 an initial vector of heading angles is required 
to produce the first trajectory. The GCR is now considered for the journey between 
the airports. The GCR between the departure and destination airports is divided into 
N equal length intervals for flights and the rhumbline angle that would take an air-
craft from the start to the end of each interval in a no-wind scenario is calculated. 
(Rhumbline angles provide a single heading on which to travel between two points 
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on the surface of a sphere and are calculated here using the Matlab mapping tool-
box.) These angles form the estimate for �.

4.2  Daily results from each numerical model

Results for the numerical solution shown in Sect. 2 are obtained as a vector of opti-
mal headings and a value for the fuel used along the trajectory for each of the 91 
days from 1st December, 2019 to 29th February, 2020. The headings are used to 
generate the states. The area spanned by these states and eight example routes can 
be seen for all days in Figs. 4 and 5. The shaded area shows the extent of the most 
extreme trajectory positions across the time period; not all points within this area 
will have formed part of a trajectory. Westbound flight routes obtained using just 
the heading angle as a control cover an area that stretches further South than those 
where time of arrival can be guaranteed by changes to both airspeed and heading 
angle. The extent of flight routes with varying airspeed also covers an area further 
North at the start of the flight, benefiting from the variable airspeed to allow a devia-
tion into lower headwind regions. Eastbound flights with variable airspeed can be 
seen to avoid diversions to both North and South as they approach LHR. However, 
the area spanned by the trajectories is very similar whether just heading angle or 
heading angle and airspeed vary.

Percentile plots, shown in Figs. 6 and 7, display the percentage of flights passing 
to the South of each particular area of the North Atlantic. Outlying waypoints, those 
that have longitudes passed through by fewer than three of the flights, are shown as 
yellow crosses. All but one or two flights stayed within a longitude range of 1 − 73 ◦

W.
These graphs are created by taking longitudes between the maximum and mini-

mum longitudes of all flight trajectories generated in 1 ◦ increments and then inter-
polating to find the corresponding latitudes for each daily trajectory. Percentiles for 
the latitudes at each longitude are found and these are plotted. This demonstrates the 
distribution of latitude positions across all routes and allows for easier comparison 
between the trajectories resulting from OCP1 and 2.

Flying West (Fig. 6) it can be seen that the range of latitudes at each longitude is 
wider for OCP1, but that the interquartile ranges are very similar. More of the OCP2 
flights tend to fly further North across the middle of the Atlantic as they can vary 
their airspeed to counter headwinds and then slow down in more favourable regions 
of the wind field in order to adhere to the fixed journey time and save on fuel. The 
1% percentile for the OCP1 flights demonstrates that at all latitudes certain journeys 
must go very far south to avoid headwinds to balance the need for both a prompt 
arrival at the target and a low fuel burn rate.

Figure  7 shows that the vast majority of flights going East follow a path very 
close to the GCR. Using two controls allows a small percentage of flights to go fur-
ther North or South than the flights constrained by a fixed airspeed. The interquartile 
range of latitudes is also wider for flights with variable airspeed.
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Fig. 4  Plots showing region spanned by all fuel optimal trajectories across the North Atlantic for 1st 
December, 2019 to 29th February, 2020 found from the solution of OCP1, with 8 example routes in each 
direction shown. The shaded area shows the extent of trajectories, but not all points within the area are 
part of a route
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Fig. 5  Plots showing region spanned by all fuel optimal trajectories across the North Atlantic for 1st 
December, 2019 to 29th February, 2020 found from the solution of OCP2, with 8 example routes in each 
direction shown. The shaded area shows the extent of trajectories, but not all points within the area are 
part of a route
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Fig. 6  Plots showing percentiles of latitude positions for a set of integer longitude positions ranging 
between the furthest easterly and westerly points in the westbound trajectories obtained from OCP1 and 
2. Waypoints at longitudes not accessed by all flights are shown in yellow
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Fig. 7  Plots showing percentiles of latitude positions for a set of integer longitude positions ranging 
between the furthest easterly and westerly points in the westbound trajectories obtained from OCP1 and 
2. All longitudes were accessed by all flights
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4.3  Comparison of fuel use between OCP1 and OCP2

If airspeed is fixed at a level that allows all daily flights to arrive at the target in 
the appropriate fixed time, then clearly more fuel will be used than by flights with 
a variable airspeed. In this case the highest airspeed used by any of the eastbound 
flights in the OCP1 formulation was 240 m s−1 and for the westbound flights it was 
241 m s−1 . Interestingly the most efficient fixed airspeed for the fixed time crossing 
between the two airports in a zero wind field, with a constant International Standard 
Atmosphere temperature of 221◦K , would be 252 m s−1 flying East in the 22 000 s 
time window and 200 m s−1 flying West in a fixed time of 29 000 s. Given that one 
of the key defining points of this research is to create trajectories with a fixed time 
across an entire winter season, these results demonstrate the importance of adapt-
ing to the daily wind field within this system. If, instead of varying the OCP1 air-
speed on a daily basis, the maximum OCP1 airspeeds were used for all days in the 
2019 -2020 winter season, by comparison the variable airspeed model used in OCP2 
would save an average of 8% of the fuel. However, this can be viewed as unneces-
sarily high, as the fixed airspeed in OCP1 can be lowered to navigate the wind field 
specific to the day of flight. By analysing data from the solution of the approximate 
numerical methods for both OCP1 and OCP2, we can provide an estimate of the 
improvement in fuel efficiency when comparing the most efficient fixed airspeed 
flights each day to the corresponding most efficient variable airspeed flights.

Comparing results from the solution of OCP1 and OCP2, relative differences of 
0.5% across the winter period are possible. On particular days, these savings are just 
under 4%. Figure 8 shows the percentage fuel saving made each day by using both 
airspeed and heading angle as control variables in each direction rather than just 
heading angle. The savings vary on a daily basis, so it is clear that the wind field 
is instrumental in dictating the importance of varying the airspeed for a fixed time 
flight.

When viewed as a box and whisker plot, Fig. 9, the distribution of savings can 
be compared across the eastbound and westbound routes. Whilst median values are 
similar, the range of eastbound savings is smaller (excluding outliers) as is expected 
from a route that is most often benefiting from tailwinds, rather than fighting 
headwinds.

Figure 10 shows the distribution of actual fuel savings made each day by using 
both airspeed and heading angle. Here it can be seen that in absolute terms the 
median fuel saving of eastbound flights is lower than that of westbound flights.

Flying West just under 23 tonnes of fuel could be saved over the 91 days, whilst 
flying East fuel savings amount to over 15 tonnes. This gives a total fuel savings 
across the winter period for nineteen flights in each direction per day of 723 tonnes. 
These savings are a clear indication that when planning fixed time trajectories, vary-
ing the airspeed and the heading angle will give more efficient results in terms of 
fuel usage and thus emissions reduction, than controlling heading angle alone.

A comparison of routes generated from the time optimal model used in Wells 
et al. (2021), the fixed time fuel optimal model with both a single control variable 
and with two control variables developed in this paper and actual flight routes flown 
on the 12th December, 2019 is shown in Fig.  11. The 12th December, 2019 was 
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Fig. 8  Bar charts to show percentage of fuel from using the single control variable of heading angle 
saved by using two control variables, both heading angle and airspeed
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Fig. 9  Box and whisker plot to compare distribution of percentage savings made by using OCP2 as the 
problem formulation rather than OCP1, for all 91 days of the winter of 2019 to 2020, for both eastbound 
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Fig. 11  Route maps showing constant airspeed time optimal trajectory (Wells et al. 2021), constant air-
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route (GCR) and actual flights for the 12th December, 2019
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chosen as a typical day on which a large number of flights were scheduled. From 
these plots it appears that most airlines prefer to use a path close to the time optimal 
route and the fuel optimal route, based on two controls. The fuel optimal route which 
depends purely on altering the heading angles can be seen to be very different from 
these. In this simplified model, if strong tailwinds are encountered the aircraft must 
deviate from a more direct path to avoid an early arrival at the destination airport, as 
the airspeed is fixed throughout the trajectory. These trajectories are representative 
of those obtained across the winter season considered. Airlines currently try to mini-
mise their operating cost, which is made up of both fuel and time factors. However, 
trying to adhere to the timetable is also important. On this day 14 of the 19 west-
bound flights were more than 15 minutes early, with 10 of these being more than 
30 minutes early and 3 being more than 45 minutes early. Eastbound all 18 flights 
were more than 45 minutes early, with 13 being over an hour early and 1 arriving 
an hour and a half early. Although airlines prefer to be early than late, such early 
arrival times can lead to added costs. Often aircraft are slowed and stacked as they 
approach the airport or extra waiting time is spent on the tarmac before accessing a 
gate, which is unpopular with customers and can lead to compensation claims (John 
2020). From an operations point of view it can lead to blocked gates and ground 
crew, baggage handlers and fuel bowsers being in the wrong place.

The time optimal routes are simulated as flown at 250 m s−1 . The fuel optimal 
routes with fixed airspeed are simulated as flown at 238 m s−1 going West and 204 
m s−1 going East, which are the most fuel efficient airspeeds for a fixed time flight 
from the OCP1 formulation on that day. All simulated routes are considered at a 
fixed altitude of approximately 34  000  feet, with a variable mass. The fuel opti-
mization is calculated for a Boeing  777-236(ER). However, the actual flights are 
not fixed time, mass, altitude or airspeed and use a variety of aircraft. They are, 
though, restricted to the organised track system across the North Atlantic, so the 
flight path taken does not always reflect the airline’s chosen route. At a particular 
flight time, aircraft are given waypoints across the North Atlantic, which must define 
their routes, in order to maintain a safe separation between all aircraft in the vicin-
ity, given the limited situational awareness before the advent of the new satellite 
communications. These waypoints can lead to aircraft following less time and fuel 
efficient routes (Wells et al. 2021).

4.4  Effect of wind field on optimised airspeed

As the airspeed control allows quite significant fuel savings on some days compared 
to optimization by controlling heading angle alone, but far smaller savings on other 
days, a link between daily wind conditions and airspeed variation is sought. Whilst it 
is true that mass and airspeed are also connected, with airspeed reducing with mass 
across a single trajectory in the absence of winds, this pattern is accounted for in the 
averaging of daily airspeed in the current analysis.

The winds along the GCR are used as a measure of likely headwinds and tail-
winds experienced during a flight. These are calculated by splitting the GCR 
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between LHR and JFK into 290 intervals for a westbound flight and 220 intervals 
for an eastbound flight. The rhumbline angle, � , needed to fly directly between each 
pair of waypoints is calculated. The wind field for each day is interpolated to give 
zonal and meridional winds, u and v, at each waypoint. The sum of the components 
of these lying along the rhumbline angle for each interval of the GCR gives the tail-
wind, � at each waypoint.

By plotting airspeed for the OCP1 simulations and average airspeed for the OCP2 
simulations each day against average daily tailwind, the effect of the wind field on 
the airspeed can be seen.

For westbound flights, shown in Figs.  12a and c, as the headwind strengthens, 
the aircraft must fly faster to make up time, so there is a negative correlation at the 
5% significance level, with a product moment correlation coefficient of −0.8. For 
eastbound flights, shown in Figs. 12b and d, there is a similar negative correlation at 

(26)� =
[
u v

] [cos �
sin �

]
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Fig. 12  Scatter graphs to show variation of OCP1 trajectory airspeed and average OCP2 trajectory air-
speed each day with average tailwind along the GCR. Least squares regression line is shown with a 5% 
confidence interval
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the 5% significance level, but with product moment correlation coefficients of −0.9. 
This shows that the aircraft fly more slowly as they have a set time to reach their 
destination and the tailwind can help to minimise fuel burn, by avoiding the need for 
higher, less fuel efficient airspeeds.

The variation in airspeeds along a trajectory is also considered. However, as can 
be seen in Fig. 13 there is not enough evidence to say whether a link exists between 
the range of airspeeds and GCR average wind speed or not.

The airspeed changing along a trajectory in the context of a fixed time flight, 
has been shown to be a result of the winds encountered at each time step of the 
journey. To illustrate this effect further, the variation in airspeeds used along 
each daily fuel optimal trajectory is considered. Flying East on the 28th Janu-
ary, 2020 this variation is at its smallest and on the 25th January, 2020 it is at its 
most. On the 8th December, 2019 the westbound route has the largest variation 
in airspeeds, with the smallest variation on the 12th February, 2020.

In Figs. 14a and b the eastbound trajectories are shown, colour coded for air-
speed, against a quiver plot of the wind field. On the 28th January, 2020, the 
route largely follows the wind direction from the middle of the North Atlantic, 
so airspeed can be reduced as the flight moves closer to LHR. However, at the 
start of the trajectory a higher airspeed is needed to fly perpendicular to the 
wind. This can be reduced as the route and the winds begin to come more into 
line between longitudes of 60◦ W and 50◦ W. On the 25th January, 2020 a smaller 
range of airspeeds is used as the flight is almost always flying in a direction that 
is not parallel to the wind vectors shown. This means that to arrive promptly, 
the aircraft must use higher airspeeds throughout. The only noticeable slowing 
occurs between the longitudes of 25◦ W and 10◦ W when the aircraft uses the 
vertical component of the wind to increase its latitude ready for the approach 
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into LHR. This reinforces the previous finding, that stronger winds in the correct 
direction do mean that it is most efficient to use a larger range of airspeeds.

We now compare the westbound trajectories in Figs.  14c and d, on the 8th 
December, 2019 and the 12th February, 2020. During the first of these flights, 
a large range of airspeeds is used as the aircraft is able to fly further North and 
thus reach a patch of very weak winds for the majority of the flight. Having 
made good time across this central section, the aircraft can then slow down as 
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Fig. 14  Fuel optimal trajectory maps showing airspeed change, in m s−1
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it reaches the US coast. On the 12th February, 2020 the headwinds are stronger 
both as the aircraft leaves LHR and as it approaches JFK. This means that even 
across the centre of the North Atlantic a high airspeed must be maintained. 
From these examples the pattern from Fig. 13 is evident, with higher headwinds 
around the GCR leading to a smaller range of airspeeds being used to ensure 
fuel optimality.

5  Conclusions

In this paper a method is created to optimize fuel burn across a deterministic wind 
field for a fixed time of flight, using a novel fuel burn function. The time of flight 
is discretised into time steps. The altitude of the aircraft is assumed to be constant. 
This method involves controlling just the heading angle of the aircraft, or both the 
heading angle and the airspeed.

Flights are between LHR and JFK, with fixed times chosen to be slightly longer 
than the longest time optimal flight in each direction between these airports. The 
whole trajectory is assumed to be completed in cruise phase, as this makes up the 
vast majority of all transatlantic flights.

The fuel burn rate is calculated using a new physics based method (Poll and 
Schumann 2021a, b) and the flights are assumed to move through the determin-
istic wind fields supplied by the NCAR re-analysis data. Wind and temperature 
data at each time step is found by linearly interpolating the grid of weather data, 
which is at a 2.5◦ resolution.

Results show that by including true airspeed as a second control up to 4% less 
fuel is used than when the flight is flown at constant airspeed. Over the course of 
all 91 days of the winter period, if nineteen flights were made each day (as was 
the case in 2019 to 2020), then just under 723 tonnes of fuel could be saved.

Links between airspeeds obtained from the fuel optimization using both head-
ing and airspeed as controls and the daily wind conditions are established. Daily 
wind conditions are used to generate an average tailwind speed along the GCR. It 
is seen that as this tailwind increases, the average airspeed used falls. Although 
the range of airspeeds used along a trajectory is not strongly linked to the average 
tailwind around the GCR, there is a weak positive correlation which is further 
demonstrated using airspeed patterns for four example days.

Airspeed use along a flight path is plotted for the days with the highest and 
lowest standard deviations of airspeed flying both East and West. These flights 
are considered against the backdrop of the day’s wind field to show how the air-
speed is adapted to make the best use of available winds.

As the time of flight is fixed for an entire season, on some days it will be far 
longer than for the corresponding time optimal trajectory. This means that despite 
using more fuel efficient airspeeds, fixing the time of flight will consume more 
fuel over all, than using a time optimal route. This does assume, however, that 
time optimal flights are able to land and passengers disembark immediately they 
arrive at their destination, which in practice is not always the case. As tarmac 



1085

1 3

The role of airspeed variability in fixed‑time, fuel‑optimal…

delays are treated identically for late and early arrivals at an airport, arriving too 
early can also be costly for airlines.

Future research should incorporate more diverse routes and aircraft models, 
as well as turbulence avoidance, given the projected increase in more severe tur-
bulence with climate change (Williams and Joshi 2013; Williams 2017; Storer 
et  al. 2017; Lee et  al. 2019). The use of dynamic programming to ensure suffi-
cient conditions for an optimal route is also of interest as the current method, uses 
a numerical global search function and so cannot guarantee optimality.
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