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its variants. These modern filtered leapfrog schemes have previously been shown
to improve numerical simulations made using both simple conceptual models
and comprehensive general circulation models. However, their performance in
standard benchmark experiments has not previously been assessed. Here we
evaluate these filtered leapfrog schemes in four classic benchmark experiments:
linear scalar advection; a nonlinear density current in the quasi-compressible
equations; a nonlinear rising warm bubble in the fully compressible equations;
and the linked behaviour of nonlinear twin tropical cyclones in the rotat-
ing shallow-water equations. For a given time-step size, the filtered leapfrog
schemes are found to compare favourably with the third-order Runge-Kutta
(RK3) scheme. They are also less computationally expensive than RK3, at
roughly one-third to one-half the cost per time step. For a given computational
expenditure, the filtered leapfrog schemes are found to produce smaller errors
with respect to the analytical solution (wWhere available) than RK3. Furthermore,
the filtered leapfrog schemes are found to be numerically stable, even when the
discretisation method splits the slow advection and diffusion modes from the
fast acoustic and gravity-wave modes. Given that implementing filter upgrades
requires only minimally invasive changes to an existing computer code, our
results provide support for the continued use of filtered leapfrog schemes in
atmosphere and ocean models.
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1 | INTRODUCTION (RA) filter, has been widely used for weather prediction

and climate simulation in atmosphere and ocean numeri-
For most of the past five decades, the leapfrog  cal models. The RA filter was introduced by Robert (1966)
time-stepping scheme, stabilised with a Robert-Asselin  to reduce time splitting of solutions at odd and even time
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steps with the leapfrog scheme. Asselin (1972) showed
that the filter effectively controls numerical instabili-
ties by substantially damping the 2At computational
mode. Unfortunately, the RA filter’s non-zero damping
of the lower-frequency physical modes reduces the for-
mal time-stepping accuracy of the leapfrog scheme from
second order to first order. (Hereafter, unless otherwise
stated, order-of-accuracy refers to the effects of temporal
truncation errors on the amplitude of linear oscillations.)
Another way to control time splitting is to periodically
restart the solution every few time steps with one of the
forward schemes. While effective at temporarily remov-
ing the computational mode, this approach can result in
undesirable computer code changes, and it also reduces
the overall formal accuracy to first order.

Because methods for controlling the computational
mode of the leapfrog scheme without reducing the over-
all O(2) accuracy have historically been lacking, many
weather forecasting centres now use alternatives to the
leapfrog scheme. Some of the most popular alternatives are
discussed by Durran (1991) and include the O(2) and O(3)
Adams-Bashforth schemes (e.g. Deardorff, 1980; Dur-
ran, 1991), the Crowley schemes (Smolarkiewicz, 1982;
Schlesinger, 1985; Tremback et al., 1987; Wicker and Ska-
marock, 2002), the O(2) and O(3) Runge-Kutta schemes
(RK2, RK3: Wicker and Skamarock, 1998; 2002), and vari-
ants of these (Shu, 1988; Shu and Osher, 1988; among
others). Durran (1999) proposed combining the O(2)
Adams-Bashforth and O(3) Adams-Moulton schemes to
produce a predictor-corrector scheme. More recently,
Wicker (2009) demonstrated the stability and use of this
Adams-Bashforth-Moulton predictor-corrector scheme
for integrations using split fast modes (sound and gravity
waves) and slow modes (advection and turbulence), as pro-
posed by Klemp and Wilhelmson (1978) and Skamarock
and Klemp (1992), if the available computational memory
is sufficient. Nevertheless, the leapfrog scheme remains
popular in climate models. The Robert-Asselin—Williams
(RAW) filter is a generalisation of the RA filter with
increased accuracy (Williams, 2009; 2011; 2013). The
RAW-filtered leapfrog schemes all possess O(2) phase
errors, but the improved O(3)-O(7) amplitude errors may
be beneficial in simulations whose overall numerical accu-
racy is limited by temporal differencing rather than spatial
differencing.

Higher-order temporal and spatial differencing
schemes have been shown, both theoretically and numer-
ically, to profoundly affect the accuracy of simulated
atmospheric and oceanic phenomena, including those
on the storm scale, mesoscale, synoptic scale, and plan-
etary scale. Over the past few years, the fortunes of the
leapfrog scheme have been revived by a series of pro-
posed measures for damping the computational mode
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while preserving the O(2) accuracy of the physical mode.
Williams (2009; 2011; 2013), Moustaoui et al. (2014),
Li and Trenchea (2014), and Maurya et al. (2019) have
each demonstrated how various time-filtered leapfrog
schemes with O(3)-0O(7) amplitude errors can be devel-
oped while retaining the O(2) phase error. These modified
leapfrog schemes all have O(2) overall errors. For example,
Williams (2009) developed the RAW filter to prevent the
amplitude error reduction associated with the RA filter.
Subsequently, Williams (2011) tested the RAW filter in
semi-implicit systems, while Williams (2013) proposed
and tested a family of schemes from combinations of O(2)
and O(4) temporal filters. Using these filters allows for
a family of leapfrog schemes with O(3), O(5), and O(7)
amplitude errors to be formed, as predicted theoretically,
depending on the values of three filter parameters. Finally,
Babarsky and Sharpley (1997) developed time-centred
advection schemes with up to fourth-order accuracy in
space and time, but they employed the RA filter in some
of their numerical tests, which likely degraded the order
of the time accuracy in the numerical solutions.

It has been shown with three-dimensional prediction
models that the RAW-filtered leapfrog scheme improves
the skill of medium-term weather forecasts and ocean
simulations (Amezcua et al., 2011; Young et al., 2014;
Amezcua and Williams, 2015). The RAW-filtered leapfrog
scheme is now the default time-stepping scheme in the
Taiwanese ocean model (Young et al, 2012). Ren and
Leslie (2011) found good performance of the RAW-filtered
leapfrog scheme in an ice sheet model. Also, Mous-
taoui et al. (2014) demonstrated improved performance
of a fourth-order, implicitly time-filtered leapfrog scheme,
with an improved Courant-Friedrich-Lewy (CFL) crite-
rion, compared to the RA-filtered leapfrog scheme and
RK3 scheme for the nonlinear Lorenz (1963) system, a
linear shallow-water problem, and twin tropical cyclones
straddling the Equator in a global shallow-water model. Li
and Trenchea (2014) developed a higher-order RA-filtered
leapfrog scheme, which achieved O(3) errors with spe-
cific smoothing parameters. Finally, Maurya et al. (2019)
developed a family of stable high-order optimised hybrid
RA-type time filters for leapfrog schemes, which strongly
damp the computational modes without significantly
damping the physical modes. The leapfrog schemes pro-
posed by Maurya et al. (2019) have CFL criteria that are at
least as permissive as the RK3 schemes.

Despite clear theoretical and numerical evidence that
modern filtered leapfrog schemes deliver increased accu-
racy, what is hitherto lacking is a quantitative assessment
of the performance of these schemes in standard linear
and nonlinear multidimensional benchmark experiments.
Previous studies of filtered leapfrog schemes have gen-
erally employed idealised nonlinear problems, as well as
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statistics from comprehensive general circulation mod-
els, with relatively little research activity in the middle
of the model complexity hierarchy. For example, there is
a gap in knowledge of how the schemes perform with
scalar advection by idealised kinematic flow fields such as
solid-body rotation. In addition, it is unknown how the
schemes perform with more complex nonlinear flows that
are not complicated by physics parametrizations of turbu-
lence, friction, microphysics, and radiation. Problems of
this sort include two-dimensional density currents (Straka
et al., 1993), three-dimensional warm thermals (Carpen-
ter et al., 1990; Tripoli, 1992; Bryan and Fritsch, 2002),
and the linked behaviour of twin tropical cyclones in
the two-dimensional shallow-water equations (Ferreira
et al., 1996; Moustaoui et al., 2002; 2014) and other vor-
tex interactions such as binary vortices (Holland and
Dietachmayer, 1993). Finally, the performance of modern
filtered leapfrog schemes has not previously been stud-
ied for geophysical systems solved with time-split inte-
grations (Klemp and Wilhelmson, 1978; Skamarock and
Klemp, 1992) involving split slow modes (advection, tur-
bulence, gravity waves, and physical processes) and fast
modes (pressure gradients, divergence, sound waves, and
in some cases gravity waves).

The present study aims to address the above omis-
sions and provide support for the continued use of fil-
tered leapfrog models, especially the RAW-filtered leapfrog
schemes that are minimally invasive compared to the RA
filter and require only trivial code changes. The study
has various specific goals. First, we aim to show that
the RAW-filtered leapfrog schemes - hereafter referred to
as the Williams filtered leapfrog (WFL) schemes - can
achieve accurate solutions without the excessively small
time steps required by the RA-filtered leapfrog scheme.
Second, we aim to show that the temporal truncation error
of the WFL schemes and the RA-filtered leapfrog scheme
for advection becomes increasingly important compared to
diffusion tendencies (solved with an O(1) forward-in-time
operator). This can be shown by examining pure advection
problems, as well as using problems where both advec-
tion and diffusion tendencies are important and decreas-
ing the eddy mixing coefficient. Third, we aim to show
that the WFL schemes can be stably integrated in addi-
tive fast-slow mode-split models following methods used
for leapfrog models. Fourth, we aim to show that the total
energy and total mass are better conserved with the WFL
schemes than the RA-filtered leapfrog scheme.

The layout of the present study is as follows. Section 2
summarizes the RA-filtered leapfrog scheme as well as the
WFL schemes. The O(3) Runge-Kutta schemes (Shu, 1988;
Shu and Osher, 1988; Wicker and Skamarock, 2002)
are summarised as well, as they are used for refer-
ence solutions when analytical solutions are lacking. The

results of the numerical experiments are presented in
Section 3. The advection of a cone in two-dimensional
solid-body rotation is used to evaluate the effects of
time integration schemes for a pure advection problem
(Section 3.1). The two-dimensional quasi-compressible
equations are integrated for a dry density current problem
(Section 3.2). The three-dimensional fully compressible
equations are integrated for a dry rising warm plume
(Section 3.3). The divergence-permitting two-dimensional
shallow-water equations with full Coriolis force are inte-
grated for the problem of the nonlinear interaction of twin
tropical cyclones (with opposite signs of rotation) strad-
dling the Equator (Section 3.4). The results from each of
the experiments are compared to analytical or nearly con-
verged numerical solutions. The conclusions of this study,
which show accurate and stable solutions for the family of
WFL schemes, are summarised in Section 4.

2 | TIMEINTEGRATION SCHEMES
This section will briefly review the finite-difference
approximations that are associated with the various
time-stepping schemes used in this study. Some of their
properties are listed in Table 1.

2.1 | The RA-filtered leapfrog scheme
The RA filter is effective in keeping the leapfrog scheme
stable and is trivial to incorporate. The prediction of a
dependent variable, A, in time can be written as:

dA
rri fA), ey

or in finite-difference form using the unfiltered leapfrog
scheme as:

A = ATV 4 2ALf (AT, ()

where superscript n is the time index and subscript i is a
spatial index. The RA filter can be written as:

A=Al +v (A7 247 + AT 3

and the RA-filtered leapfrog scheme becomes:
A= AT 1 2ALf (A7), 4)
where asterisks denote filtered values. Use of this
second-order filter leads to an amplitude-damped O(1)

leapfrog scheme that significantly degrades physical
modes (Schlesinger et al, 1983; Williams, 2009). Only
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Properties of the numerical time-stepping schemes used in this study, listing the order of accuracy of the amplitude and

phase errors, the temporal filter order (where applicable), the number of function evaluations per time step, and the filter parameter

values (where applicable). The amplitude and phase error orders are for linear oscillations, unless they appear in parentheses, in which

case they are for nonlinear oscillations

Amplitude Phase

Scheme error error
RA (Robert-Asselin) 1 2
RK3 (Runge-Kutta) 3(2) 3(2)
W03 (Williams) 3 2
WG3 (Williams) 3 2
W33 (Williams) 3 2
W43 (Williams) 3 2
W05 (Williams) 5 2
WGS5 (Williams) 5 2
W55 (Williams) 5 2
W77 (Williams) 7 2

Note: Apart from RK3, these are all leapfrog-based schemes.

one evaluation of f(A) is required per time step. The RA
filter along with divergence damping (Skamarock and
Klemp, 1992) for integration of fluids problems with the
leapfrog scheme provides computational stability when
incorporated in split fast- and slow-mode integrations. A
smooth—de-smooth approach could be used in an attempt
to recover the amplitude (Shuman, 1957; Shapiro, 1970;
Perkey and Kreitzberg, 1976).

2.2 | The Williams filtered leapfrog
(WFL) schemes

The RAW filter (Williams, 2009; 2011; 2013) is a sim-
ple modification to the RA filter procedure to reduce the
amplitude error. First, the prediction of a dependent vari-
able, A, in time can be written in finite difference form as:

A= AT oA [rf (AF) + A= nf (AD)]. (5)

Here, the single and double asterisks denote values that
have been filtered once and twice, respectively, using
either the O(2) or O(4) filters defined below. A modi-
fication to the RA filter can be written using two O(2)
temporal filters:

AT = AT (AT 24T A (6)
and:
AI’H-I* _ An+1 _ V(]‘ — a) (An—l** _ 2An>|< +An+l) (7)
i ] 5 i i i :

Filter Function Filter parameters
order evaluations (v, a,7)

2 1 01, — —

— 3 —_—,—

2 1 0.1,0.5,0

2 1 0.1,0.5,1

2 2 0.1, 0.5,0.5

4 1 0.1,0,1

4 1 0.1,0.5,0

4 1 0.1,0.5,1

2 2 0.1,0.5, (3—v)/(4—v)
4 2 0.1, 0.5, (5-9v)/[2 (4—7v)]

Importantly, this modification can be applied with very
little additional coding and essentially no change in mem-
ory requirements or computational expense in existing
models. Replacing the O(2) temporal filters with O(4)
temporal filters (which invoke a longer time history)
leads to:

_ —3x —2
Al = AT+ va (Al — 447072
HFOAITI — 44T + AT (8)

and:

A;'l+1>k =A;‘1+1 _ V(l _ a)
% (A?—S** _ 4Ain—2>k* + 6A;1—1** _ 4Aln* +A;’l+1) .

©)

The order of accuracy for amplitude errors of O(3) to
O(7) is achieved by particular choices of «, y, and v and
the choice of an O(2) or O(4) temporal filter, as shown
in Table 1. The phase error is O(2) for all WFL schemes,
making the overall formal accuracy of the WFL schemes
0O(2). Only one computation of f(A) is required per time
step if y = 0 or y = 1, otherwise two computations of f(A)
are required. In practice, the O(2) temporal filter would
be used for the first few time integration steps, until fil-
tered values are available as far back as the n—3rd time
step, when the O(4) temporal filter can be introduced and
used for subsequent steps. Mode splitting with the WFL
schemes can be accomplished exactly the same as it is
with the RA-filtered leapfrog scheme (Skamarock and
Klemp, 1992).
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2.3 | The third-order Runge-Kutta
schemes

The O(3) Runge-Kutta or RK3 scheme (Wicker and
Skamarock, 2002; called the “Linear-Case RK3” by Bal-
dauf, 2008; 2010) has become increasingly popular in
atmospheric numerical modelling. It is somewhat simi-
lar to the O(3) Runge—Kutta Total Variation Diminishing
(TVD) scheme (Shu, 1988; Shu and Osher, 1988) that
is popular in some areas of computational fluid dynam-
ics. The popularity of the strong-stability RK3 scheme
owes in part to it being a forward-in-time scheme with-
out a computational mode, having lower computational
memory requirements, and having an improved stabil-
ity regime based on the CFL criterion, such that the
time step requirement is cAt/Ax<1.73 in one dimen-
sion (Wicker and Skamarock, 2002) and cAt/Ax < 1.73/ \/ 2
and cAt/Ax< 1.73/\/3 in two and three dimensions,
respectively. The RK3 schemes have O(3) errors in
time for linear problems, but O(2) errors for nonlinear
problems (Baldauf, 2008; 2010). These schemes require
three functions to be computed per time step. Follow-
ing Wicker and Skamarock (2002), the RK3 scheme is
written as:

; 1
A=A+ gAtf(Alf‘), (10)
A :Ai"+§Atf(Al.), (11)
A= AT+ ALf (A7) (12)

The O(3) Runge-Kutta TVD3 scheme (Shu and
Osher, 1988) is also a three-stage scheme and is given by:

A = A"+ Atf (A7), (13)

A" = JAT+ AT+ AL (A7), (14
1 2 e, 2

A = FAT+ SAT + AL (Ar). (15)

It can be rewritten starting each stage at time n for mode
splitting:

Af = A+ Atf (A7), (16)

A=A+ %Atf (A7) + %Atf (A7), 17)

A=A+ %Atf(Alf’) + %Atf(A;‘) + %Atf (Ar).
(18)

Mode splitting of O(2) and O(3) Runge-Kutta schemes has
been discussed by Wicker and Skamarock (1998; 2002)
and Baldauf (2002; 2010). Both RK3 and TVD3 require
divergence damping for stability when implemented with
mode splitting. The RK3 scheme is used to produce the
high-resolution reference solutions in this study because
its order of accuracy is higher than that of the RA scheme.
Specifically, RK3 is second-order accurate in time for
nonlinear problems and third-order accurate in time for
linear problems. Furthermore, RK3 is increasingly used
in atmospheric science. With sufficient temporal and
spatial resolution, RK3 is capable of providing nearly
grid-converged solutions (as are all the schemes that are
stable and consistent).

3 | RESULTS

Results from numerical simulations are shown in this
section to assess the behaviour of the WFL schemes for
two-dimensional linear and two- and three-dimensional
nonlinear dry fluid flow problems. For each experiment,
the numerical and physical details are summarised in
Table 2. The WFL schemes that are tested include the
one- and two-function O(3) and O(5) versions and the
two-function O(7) version, made with combinations of
two O(2) and two O(4) temporal filters, where the order
achieved is the theoretical amplitude order of error for lin-
ear oscillations. Reference solutions are obtained using the
O(1) RA-filtered leapfrog scheme and the RK3 scheme.
The TVD3 schemes (Shu, 1988; Shu and Osher, 1988) were
also used to obtain reference solutions, but for the time
steps employed in this study the RK3 and TVD3 solu-
tions were very similar, and so the TVD3 solutions are not
shown.

In the last three problems of Table 2, the forward-
backward time-split scheme for velocity and pressure is
implemented partly following Mesinger (1977) and Klemp
and Wilhelmson (1978). First, the advection, diffusion,
buoyancy, and filtering tendencies are computed using the
long time step and stored. Next, the stored velocity ten-
dencies are added linearly to the velocity fields on each
small time step when the pressure gradient acceleration
is integrated using the latest value of pressure. Then, the
stored pressure tendencies are added to the pressure field
on each small time step when the divergence term in the
pressure equation is integrated using the latest velocity
fields. This process is repeated for the required number of
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small steps, which is 12 for the leapfrog schemes and six
for RK3.

3.1 | Two-dimensional cone advection
The various time-stepping schemes are compared by using
a series of two-dimensional numerical simulations of
passive scalar advection. A cone of height 1 m and radius
8 m is linearly advected by an analytical wind field cor-
responding to solid-body rotation, where the cone centre
is offset from the axis of rotation of the wind field. Equiv-
alently, the system can be thought of as representing the
advection of a passive tracer, whose non-dimensional con-
centration increases conically from zero outside a circle of
radius 8 m to unity at the centre of the circle. This problem
is known as rotational translation (Smolarkiewicz, 1982;
Schlesinger, 1985; Tremback et al., 1987; Smolarkiewicz
and Grabowski, 1990; Blossey and Durran, 2008). Other
tests that were performed include linear translation, defor-
mation, and a combination of rotational deformation and
convergence. However, results from these tests are not
shown for the sake of brevity, as they all behaved similarly
to the rotational translation example (except for the defor-
mation test, for which all schemes used herein performed
poorly unless monotonic solutions were enforced by the
spatial discretisation scheme or by an adjustment).

The analytical (exact) solution for the rotational trans-
lation of a cone is known, so that some exact error mea-
sures can be computed. The performance measures that
will be used to assess the simulated cone height field
include the domain-wide maximum and minimum scalar
values from the numerical solution, the domain-wide
root-mean-square error in the numerical solution rela-
tive to the exact solution, the dispersion and dissipa-
tion errors (which split up the domain-wide mean-square
error into contributions from dispersion and dissipation;
Takacs, 1985), and the domain-wide L* error norm (i.e. the
maximum absolute error in the numerical solution relative
to the exact solution). The [1-XA2/XAy?| error measure
will also be used (Tremback et al., 1987), where A is the
scalar cone height field, A is the exact solution, and both
summations are taken over the entire simulation domain.

The domain extends fromx=0tox =L, = 112m and
fromy =0toy = L, = 112m. The advective flow consists
of clockwise rotation about the centre of the domain (i.e.
x =y = 56m). The initial condition is that the centre of
the cone is located at x =x, =84m and y =y, = 56 m at
t = 0. The analytical cone returns to its original location
after each complete rotation period, which is 20z s. For
the basic experiments, the grid spacing is Ax= Ay =2m
and the time step is At = 10n/628 s. The effect of the time
step is determined by using time steps of 2, 4, 8, 16, and 32

times smaller than the time step used for the basic exper-
iments (i.e. At = 57/628, 2.57/628, 1.257/628, 0.6257/628,
and 0.31257/628 s). In addition, a smaller grid spacing of
Ax= Ay = 1 m with time steps of 2 and 4 times smaller
than the time step used in the basic experiments is also
considered.

For the spatial differencing, the main experiments
use the tenth-order constant grid flux scheme (Tremback
et al., 1987). However, similar results were found for the
tenth-order integrated flux scheme (not shown), although
the results are slightly more accurate for the constant grid
flux scheme. The tenth-order constant grid flux scheme
collapses to the tenth-order advection scheme when the
flow and grid spacing are constant (Tremback et al., 1987).
The simulations shown and analysed here employ the con-
stant grid flux scheme. Using a high-order spatial discreti-
sation helps ensure that the numerical errors are mostly
due to temporal differencing rather than spatial differenc-
ing. Since the cone stays away from the domain bound-
aries, open boundaries are used without any problems
(noting that analytical wind components are available out-
side the domain). No spatial diffusion or numerical filters
are used in the simulations shown and analysed here. Tests
were made with fourth-, sixth-, eighth-, and tenth-order
spatial filters, including both non-monotonic formulations
(Shapiro, 1970; Purser, 1987) and a monotonic formula-
tion (Xue, 2000). These results are not shown, as it was
found that these filters had little effect on the general inter-
pretation of the results, except (depending on the amount
of smoothing) to produce slightly smoother solutions and
better controlled Gibbs phenomena.

For both staggered and non-staggered grids, the val-
ues of the velocity components are needed at the edge of
each grid zone for flux computations. These values may
be obtained by averaging the velocities or by using the
exact analytical velocities. The results presented herein
are all produced using the averaging approach, which is
common in atmosphere and ocean models. The averaging
degrades the formal spatial accuracy to second order. It is
logical that one should use spatial interpolation with an
equivalent high-order scheme to match the spatial differ-
encing scheme, in order to produce a formally high-order
solution [personal communication, Bengt Fornberg, Uni-
versity of Colorado (2019) and Chi-Wang Shu, Brown Uni-
versity (2020)]. However, some tests (not shown) and some
results shown in this article lead to the conclusion that this
approach does not always appreciably change the numer-
ical solutions. This finding is probably due, at least in
part, to the smooth (constant-in-time) flow fields consid-
ered with the cone rotation tests herein. Importantly, the
interpolation order-of-accuracy effects appear to become
more important with the cone problem using smaller time
steps when smaller changes are resolved. Additionally, in
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cases with uneven and stretched grids (not shown), it has
been found that it is important to use at least second-order
spatial interpolation and not averages.

Figure 1 shows the simulated cone height field after
exactly 12 complete rotations, made with the RA and
RK3 temporal schemes and all the even-order constant
grid flux schemes from second- to tenth-order, each using
Ax= Ay = 2m and At = 0.6251/628 s. Comparison with
the analytical solution shows that the O(10) spatial dif-
ferencing largely eliminates the spatial finite-difference
truncation errors from the solution. As expected, the solu-
tions for both RA and RK3 improve as the order of accuracy
of the flux approximations is increased, with a cone height
amplitude after 12 rotations (whose analytical value at
any time is 1 m) of 0.77 and 0.81 m for the RA and RK3
eighth-order flux solutions and 0.82 and 0.88 m for the
RA and RK3 tenth-order flux solutions. The RA and RK3
second-order flux simulations show little skill in the cone’s
location, shape, and amplitude retention after the first few
rotations, and essentially no skill after eight rotations (not
shown). There are still noticeable errors using the fourth-
and sixth-order flux schemes. The cone shape appears only
slightly distorted for the eighth- and tenth-order flux com-
putations. There is no meaningful improvement found for
twelfth- to sixteenth-order flux computations (not shown).
From this set of experiments, it is concluded that O(10)
flux computations limit the spatial differencing trunca-
tion errors sufficiently (with the temporal and spatial
resolution employed for this problem) that the focus for
all subsequent experiments (which will use O(10) flux
computations) can be on the temporal differencing and
time-step size.

A comparison of cone heights after exactly 12 com-
plete rotations is shown in Figure 2 for the RA, RK3, and
WFL (W03, WG3, W33, W43, W05, WG5, W55, and W77)
schemes, each using Ax = Ay =2 m. Included are examples
produced using the RA scheme with five different time
steps, ranging from At = 10n/628s to At = 0.62571/628s.
The solutions for all the non-RA schemes are obtained
using the largest RA time step (At = 101/628s). It is
seen that as the time step gets smaller, the RA solutions
converge to a nearly round cone. However, even with
At = 0.3125n/628 s (not shown), the amplitude of the
cone height with the RA scheme (0.86 m) is not as well
preserved as it is with the RK3 and WFL schemes with
At = 107/628 s (all 0.87 m), despite their time step being
32 times as large. Moreover, the shape of the cone is well
preserved with the RK3 and all the WFL schemes for all
temporal resolutions considered. As Af gets very small,
the RA cone shape only slowly approaches that produced
by the RK3 and WFL schemes. In summary, minimal
shape distortion is not attainable with RA unless the time
step is reduced by a factor of at least 16, and even then,
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the amplitude preservation is still comparatively poor. On
the other hand, even for the largest time steps, the WFL
schemes produce only minor shape distortions that com-
pare favourably with those produced by the RK3 scheme,
with amplitude preservation that is as good as RK3,
and all at one-third to two-thirds of the computational
floating-point cost of RK3 for the same time-step size.

Various error measures for the cone height field after
exactly 12 rotations are shown in Table 3 for the RA, RK3,
W03, and W77 schemes. The W03, and W77 error mea-
sures are representative of the results from all the WFL
schemes tested. The error measures for these two WFL
schemes are very close, even with 64-bit computations.
Note that in these cone advection simulations (but not in
general) the L*® error norm is exactly equal to 1 m minus
the maximum cone height value, because the maximum
value and maximum error both occur at the grid point of
the maximum value in the analytical solution. While all
the WFL L* error norms in Table 3 are generally accept-
able, the best is obtained with the W77 scheme (although
W33 is even better; not shown). The L® error norms
improve with the RA scheme as the time step is reduced.
The RK3 L* error norm is very similar to those from the
WFL schemes. The root-mean-square errors and disper-
sion and dissipation errors all behave similarly to the L*®
error norms for all schemes tested. The dispersion error
exceeds the dissipation error for each scheme. For the RA
solutions, the dispersion and dissipation errors are com-
parable in magnitude for the longest time step, but they
grow an order of magnitude apart for the shortest time
step. For the RK3 solution they are four orders of magni-
tude apart, and for the WFL solutions they are five orders
of magnitude apart.

Figure 3 shows time series of the error measure
I11-XA%/2A¢?| for the cone height field up to 12 rotations.
The RA solution with the longest time step is strongly
damped in time, with the error measure reaching values of
order unity after 12 rotations. Reducing the RA time step
partly alleviates the damping, but even a time-step reduc-
tion by a factor of 16 does not prevent RA from having the
largest errors of all the schemes studied. The RK3 solu-
tion has the next-largest errors and is also slightly damped,
with the error measure continuing to grow up to and
beyond 12 cone rotations. Each of the WFL schemes per-
forms better than RA and RK3, with significantly smaller
errors and error growth rates. In particular, the W55,
W77, and WGS5 solutions show no detectable error growth
between the first and 12th rotations, with the error mea-
sure after 12 rotations being an order of magnitude smaller
than RK3. The values of |1-XA%/XA,?| for the pure (unfil-
tered) leapfrog scheme are also essentially unchanged for
1-12 and even 24-36 rotations (not shown). The error mea-
sures for W55, W77, and WG5 can therefore be considered
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FIGURE 1 Cone height (m) after 12
rotations for RA with v = 0.1 (left column) and
RK3 (right column) made using the O(2, 4, 6, 8, 10)
constant grid flux schemes (top to bottom rows).
Values of Ax = Ay = 2m and At = 0.6251/628 s are
used to minimize the time truncation error. The
maximum value (MAX), minimum value (MIN),
and contour interval (CI = 0.1 m) are stated on
each plot. The thin, solid contours indicate positive
and zero values, and the thin, dashed contours
indicate negative values. The thick, dashed
contours are the superimposed analytical solution
at 0.1, 0.5, and 0.9 m. Wind vectors are plotted at
every second gridpoint. Only the sub-domain from
X = 68-100 m and y = 40-72 m is shown [Colour
figure can be viewed at wileyonlinelibrary.com]
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Cone height (m) after 12 rotations for all the schemes tested (RA, RK3, W03, WG3, W33, W43, W05, WG5, W55, W77). The
RA solutions are made using At = 101/628, 51/628, 2.5n/628, 1.251/628, and 0.6257/628 s. All other solutions are made using At = 101/628s.
All solutions use Ax = Ay = 2 m. The maximum value (MAX), minimum value (MIN), and contour interval (CI = 0.1 m) are stated on each
plot. The thin, solid contours indicate positive and zero values; there are no negative contours with the chosen contour interval. The thick,
dashed contours are the superimposed analytical solution at 0.1, 0.5, and 0.9 m. Wind vectors are plotted at every second grid-point. Only the
sub-domain from x = 68-100 m and y = 40-72 m is shown [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 3

Values of various error measures for the cone height after 12 rotations, each rounded to three significant figures

Scheme

RA (Af= 10n/628s)
RA (At=2.51/628s)
RA (At=0.6251/628 s)
RK3 (At=107/6285s)
W03 (At=10n/628s)
W77 (At= 10n/628 s)

Maximum and
minimum values (m)

0.476, —1.00 x 102
0.702, —1.28 x 102
0.823, —2.74x 1072
0.874, —4.62 x 1072
0.870, —6.17 X 1072
0.872, —6.63 X 1072

L> RMS Dissipation and

error (m) error (m) dispersion errors (m?)
0.524 2.49x 1072 2.27x1074,3.93x 1074
0.298 1.19x 102 4.35%107°,9.79x 1073
0.176 7.04x1073 4.05%x107%,4.55x 1073
0.126 7.03x1073 6.76 X 107%, 4.94 x 1073
0.130 9.32x1073 1.61x107%,8.70x 1075
0.128 9.91x1073 9.51%x1071°,9.83x10~°

Note: All solutions use Ax = Ay =2 m.
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FIGURE 3 Time series of an error measure for the cone

height field in the RA, RK3, W33, W55, W77, W03, WG3, and WG5
schemes. The error measures are evaluated once per complete
rotation, from the start of the simulations up to 12 rotations. The
error measure plotted is the absolute value of 1-XA?/%A,?, where A
is the scalar cone height field, A is the exact solution, and both
summations are taken over the entire simulation domain. The RA
solutions are made using At = 10n/628, 2.51/628 (labelled At/4),
and 0.6251/628 s (labelled At/16). All other solutions are made
using At = 101/628 s. All solutions use Ax = Ay =2m

essentially constant up to and beyond 12 cone revolu-
tions using 32-bit computations, closely mimicking the
behaviour of the pure leapfrog scheme. The best WFL
scheme appears to be W33, in which the error measure
actually decreases with time over the first 10 rotations,
reaching a value nearly three orders of magnitude smaller
than the RK3 value.

Figure 4 shows additional simulations made with the
RK3, RA, W03, and W77 schemes at higher spatial and
temporal resolutions. Halving both the grid length and
time step (to preserve the Courant number) improves the

solutions for all the schemes, as expected. Halving the time
step again (but now at fixed grid length) does not appre-
ciably improve the RK3 or WFL simulations any further,
but it does lead to further improvements in the RA sim-
ulations, which are still far from being converged. Note
that all simulations have varying degrees of problems with
the cone shape when coarser resolutions are used. These
shape errors improve with finer spatial resolution and (to
a lesser degree) with finer temporal resolution. The RA
scheme is by far the worst performer, and the RK3 and
WFL schemes are the best, even at the highest spatial and
temporal resolutions analysed.

Since two-dimensional cone advection is the only
problem in the present article to have an analytical solu-
tion, we take the opportunity to explore the systematic
relationships between time-step size, numerical error, and
computational cost. We explore these relationships using
simulations in which the spatial error is converged and
the temporal error dominates. Figure 5 shows how the
I11-XA%/2A?| cone height error measure after 12 rota-
tions varies with the time step. All simulations were run
on the same computer using the same compiler with
the same compilation options. The RA scheme is clearly
non-competitive, with errors that are orders of magnitude
larger than any of the other schemes. The RA scheme also
has poor (linear) convergence, as expected for a scheme
with first-order formal accuracy. The RK3 scheme exhibits
cubic scaling down to the smallest time step when dou-
ble precision and tenth-order interpolation of the wind
are used, as expected for a scheme with third-order for-
mal accuracy (for linear systems; see Table 1). However,
when the precision and order of interpolation of the wind
are reduced, the RK3 error saturates before the smallest
time step is reached, indicating that the computations can
no longer resolve further error decreases, and that round-
ing errors from finite numerical precision now dominate
the error measure. For the range of time steps over which
temporal truncation errors dominate over rounding errors,
the WFL schemes generally perform at least as well as
RK3, with errors that are typically an order of magnitude
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FIGURE 4 Cone height after 12 rotations for the RK3, RA, W03, and W77 schemes (top to bottom rows) with different time steps and
spatial resolutions (left to right columns). The solutions were made using At = 101/628 s and Ax = Ay = 2 m (left column), At = 51/628 s and
Ax = Ay =1 m (middle column), and At = 2.51/628 s and Ax = Ay = 1 m (right column). The maximum value (MAX), minimum value
(MIN), and contour interval (CI = 0.1 m) are stated on each plot. The thin, solid contours indicate positive and zero values; there are no
negative contours with the chosen contour interval. The thick, dashed contours are the superimposed analytical solution at 0.1, 0.5 and 0.9 m.
Wind vectors are plotted at every second gridpoint. Only the sub-domain from x = 68-100 m and y = 40-72 m is shown [Colour figure can be
viewed at wileyonlinelibrary.com]
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Variation of cone height error with time step after 12 rotations. The error measure plotted is the absolute value of

1-XA?/XA?, where A is the scalar cone height field, A4, is the exact solution, and both summations are taken over the entire simulation
domain. The six time-step sizes used (At = 107/628, 51/628, 2.51/628, 1.251/628, 0.6251/628, and 0.31257/628 s) are indicated with vertical
lines. All solutions used Ax = Ay = 2m. Identical RK3 curves are shown on both panels for reference, with two additional schemes requiring

a single function evaluation per time step shown on the left panel (RA and WG3) and two additional schemes requiring two function

evaluations per time step shown on the right panel (W33 and W55). The simulations were run using either single-precision (32-bit)
calculations (SGL) or double-precision (64-bit) calculations (DBL). The simulations used either second-order (02I) or tenth-order (101)
interpolation of the wind. All simulations used the 10th-order constant grid flux scheme (10F). Both axes are logarithmic, and the reference
lines labelled O(1), O(2), and O(3) indicate linear, quadratic and cubic scaling

(or more) smaller than RK3 at the largest time steps
considered, even though their convergence is quadratic
rather than cubic. Note that RK3 uses more computations
than the WFL schemes - three times as many as WG3 and
1.5 times as many as W33 and W55 - and this increase
in computations causes the error saturation to some
degree.

Figure 5 gives useful insights into the empirical orders
of accuracy of the schemes. However, a limitation of the
figure is that the errors calculated for each time step are
not controlled for computational expense. This limita-
tion prevents us from using the figure to ascertain which
schemes deliver the best accuracy for a given computa-
tional expenditure. To investigate this question, Figure 6
shows parametric plots of computational cost against error
as the time-step size varies, allowing us to compare the
computational costs of the schemes at given attained accu-
racies. The RA scheme costs many times more than any of
the other schemes for any specified accuracy, making it a
poor use of computational resource. For the range of time
steps over which temporal truncation errors dominate over

rounding errors, the second most expensive scheme is
RK3, with the WFL schemes requiring the least compu-
tational effort to achieve the same accuracy. For example,
for a specified tolerable error of 1074, the WFL schemes
(W03, W33, WG3, W55, W05, WG5, W77) cost up to 70%
less than RK3, making them the best use of computational
resources.

To summarise, for the problem of pure linear advec-
tion of a scalar by a constant solid-body rotation flow,
the RK3 and WFL schemes have comparable errors for
any given time-step size. RK3 and WFL each significantly
outperform the O(1) RA scheme, probably because (for
linear problems) their orders of accuracy are O(3) and
0(2), respectively. Note, however, that RK3 is more com-
putationally expensive than the WFL schemes for a given
time-step size. When this factor is controlled for in the
comparisons, we find that all the WFL schemes deliver
better accuracy (i.e. smaller errors) than RK3 for a given
computational expenditure. No particular WFL scheme
notably outperforms any of the other WFL schemes,
perhaps because these schemes are all inherently O(2).
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FIGURE 6 Variation of computational expense with cone height error for six different time-step sizes after 12 rotations. The cone

height error measure, six time-step sizes, and horizontal resolution are the same as in Figure 5. In all cases plotted here, the numerical

precision is single (32-bit), the wind interpolation is second order, and the constant grid flux is 10th order. Identical RK3 and RA curves are

shown on both panels for reference, with four additional schemes using second-order temporal filters shown on the left panel (W03, WG3,
W33, and W55) and four additional schemes using fourth-order temporal filters shown on the right panel (W05, WG5, W77, and W43). The
computational expense is measured by a Central Processing Unit (CPU) factor, which is defined as the total number of floating-point

operations required to simulate 12 cone rotations (taking into account the relative costs of addition, subtraction, multiplication, and division)

normalized by that of the RA scheme at the longest time step

The RA scheme, with its O(1) overall temporal errors,
exhibits the worst performance.

3.2 | Two-dimensional density current
This section describes the use of the quasi-compressible
fluid equations to simulate a nonlinear two-dimensional
dry density current, with a constant O(2) eddy diffusion
coefficient (K, = 75 m?-s71; Straka et al., 1993; Straka and
Anderson, 1993). The goals are to examine how the WFL
schemes perform for a more complicated (but still ide-
alised) flow and how stable the WFL schemes are with
mode splitting. The initial conditions include a cold ellip-
tical fluid region, with horizontal radius 4km and ver-
tical radius 2km, containing a cosine-squared potential
temperature anomaly of minimum value —15°C at the
centre of the ellipse. The cold ellipse is released from
rest, with its centre initially 3km above a lower bound-
ary and halfway across a horizontally periodic domain of
horizontal extent 51.2km. There is an upper boundary
6.4 km above the lower boundary. As time increases, the
cold region descends to the lower boundary under grav-
ity, and then spreads out symmetrically in both horizontal
directions along the boundary as a density current.

When selecting boundary conditions to impose at the
upper and lower boundaries in two-dimensional density
current simulations, many previous studies (e.g. Straka
et al., 1993) have chosen to set du/dz = dw/dz = df#/dz =0
for the horizontal velocity component u, vertical veloc-
ity component w, and potential temperature . However,
a few studies (e.g. Klemp and Wilhelmson, 1978) have

chosen to effectively set the vertical diffusion to zero, by
applying d?u/dz? = d*w/dz? = d*6/dz* = 0. To facilitate
comparisons with the widest possible range of previous
studies, here we choose to impose the former (Straka
et al., 1993) boundary conditions at the upper and lower
boundaries, because they seem to be more commonly used
in the existing literature.

In contrast to the linear cone advection problem,
there is no analytical solution for the nonlinear den-
sity current problem. Therefore, we must resort to using
a high-resolution numerical simulation as the reference
solution. Furthermore, a rigorous assessment of numeri-
cal convergence is more difficult with the staggered C-grid
(as used here) than with the non-staggered A-grid used by
Straka et al. (1993). Flow features, including their maxima
and minima, are found in different locations for different
resolutions and schemes, meaning that the computation of
errors against a high-resolution reference solution requires
one of the solutions to be interpolated. We find that inter-
polating either solution gives essentially the same tempo-
ral and spatial derivative convergence rates as in Straka
et al. (1993) (their figure 5) for the perturbation poten-
tial temperature simulated using the RA scheme, and
therefore these results are not shown. Instead, perturba-
tion potential temperature field differences are evaluated
with respect to a high-order temporal scheme (here, RK3)
with the same time step and spatial resolution as the test
schemes. The maxima and minima of perturbation poten-
tial temperature relative to the RK3 reference solution
with high spatial resolution can also be compared. Finally,
changes in the total energy and total mass in each simula-
tion since t = 0 are analysed (Bryan and Fritsch, 2002), as
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FIGURE 7
density current after 900 s, obtained using the RK3 scheme with

At =0.0078125s and Ax = Az = 12.5m. Plotted from top to bottom
are the perturbation potential temperature (T—Tb in K), horizontal

Reference solution for the two-dimensional

velocity (U in m-s~1), vertical velocity (W in m-s~!), and
perturbation pressure (P—Pb in mb (hPa)). The maximum value
(MAX), minimum value (MIN), and contour interval (CI) are stated
on each plot. The thin, solid contours indicate positive values, and
the thin, dashed contours indicate negative values. There is no zero
contour in the perturbation potential temperature plot, because
there are no positive values and the maximum value is slightly less
than zero. The zero contours are omitted from the other three plots
to keep them uncluttered. The thick, dashed contour is the
perturbation potential temperature at —0.75K to indicate the bulk
location of the density current. Wind vectors are plotted every 800 m
horizontally and 400 m vertically. Only part of the lower-left
quadrant of the domain from x = 6.4-25.6 km and z = 0-3.2 km is
shown [Colour figure can be viewed at wileyonlinelibrary.com]

well as the domain-wide X6’?/26’,2 error measure for the
perturbation potential temperature, where the subscript
0 here refers to ¢t = 0 rather than to a reference solution
(Tremback et al., 1987).

Figure 7 shows the high-resolution RK3 reference solu-
tion after 900s, by which time the cold anomaly has
descended to the lower boundary and begun spreading out
horizontally. The time step for this reference solution is
At =0.0078125 s and the grid spacing is Ax = Az =12.5m.
Similar solutions with the same high spatial and tem-
poral resolution using RA, WG3, and W77 (not shown)
appear very similar to the RK3 reference solution. The

maximum and minimum values differ between these four
solutions by around 0.2% for the horizontal velocity, 0.4%
for the vertical velocity and perturbation pressure, and
less than 0.001% for the perturbation potential temper-
ature. This level of agreement is expected for a nearly
converged solution using a large eddy diffusion coeffi-
cient (K, = 75m?-s7!) and high resolution in both space
and time. In addition, these solutions are all produced
with the same spatial differencing routines and pressure
solvers. In contrast, most of the solutions presented in
Straka et al. (1993) were made using multiple models with
various advection and pressure solvers.

Figure 8 shows the perturbation potential tempera-
ture fields obtained with the RK3, RA, and WFL schemes
using At = 0.0625s (although this time step was reduced
by 25% to ensure stability for the W43 scheme) and
Ax = Az = 100m. Unexpectedly, the various solutions
are all very similar to each other, perhaps partly because
we used half the time step used by Straka et al. (1993).
(The present solutions are produced with tenth-order spa-
tial differences, reducing the maximum stable Courant
number to around 0.5383 times its value for second-order
spatial differences; Straka and Anderson, 1993.) More
importantly, the diffusion term, which is integrated with
a time-lagged forward-in-time scheme for stability in the
RA and WFL solutions, has a significant impact on the
solutions (see below). In most cases, similar perturbation
potential temperature fields (with differences less than
0.2K) can be obtained with At = 0.4 s, the exceptions being
that RK3 can use At > 1.0s, but W05, WG5, W43, and W77
all need to use At <0.125s.

Figure 9 shows the temporal evolution of the total (i.e.
kinetic plus potential) energy and the total fluid mass in
the RK3, RA, and W77 simulations. The other WFL simu-
lations are omitted, because they behave nearly identically
to W77. Although the analytical solution for this problem
does not exist, we do know that it must conserve the total
energy and mass exactly, and so it is useful to test whether
the numerical solutions also respect these conservation
properties. In general, all the schemes perform quite well,
conserving the initial energy and mass to within around
1072% over the first 900s (as well as up to 3,600s; not
shown). However, when examining differences relative to
RK3, W77 gains an order of magnitude less energy than RA
loses. The total mass for all schemes oscillates spuriously
with a period of around 40s, as wave emission associ-
ated with the adjustment to the unbalanced initial condi-
tion challenges the numerical schemes. Superimposed on
these high-frequency oscillations is a longer-term varia-
tion, in which (again relative to RK3) W77 loses an order
of magnitude less mass than RA gains. We conclude that
each numerical scheme tested delivers acceptable energy
and mass conservation, with the WFL schemes generally
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Perturbation potential temperature (K) for the two-dimensional density current after 900 s, obtained using the RK3, RA,

and eight WFL schemes. All simulations use At = 0.0625 s (except that W43 uses three-quarters of this value) and Ax = Az = 100 m. The first
plot shows RK3 and the subsequent plots show differences with respect to RK3. The maximum value (MAX) and minimum value (MIN) of
the test simulations are stated on each plot. The thin, solid contours indicate positive values and the thin, dashed contours indicate negative
values. The thick, dashed contours are the superimposed RK3 solution at —0.75 K to indicate the bulk location of the density current. Wind
vectors in the RK3 simulation are plotted every 800 m horizontally and 400 m vertically. Only part of the lower-left quadrant of the domain
from x = 6.4-25.6 km and z = 0-3.2 km is shown [Colour figure can be viewed at wileyonlinelibrary.com]

performing much better than the RA scheme compared to

the RK3 reference solution.

To explore the impacts of diffusion, additional simula-

tions were run with the wind and perturbation pressure
set to zero, leaving diffusion of potential temperature
as the only process operating. Two different values of
the eddy diffusion coefficient (K, = 75 and 30 m?.s7!)
were used. All 10 schemes listed in Table 1 were tested,
using At = 0.0625s (reduced by 25% for W43) and
Ax = Az = 100m, and the quantitative diagnostics that
will be discussed here were similar across the schemes.
These simulations are not shown graphically, but they
allow the inference that diffusion is important in chang-
ing the potential temperature fields, with the values of
20'%/50'3* at t = 900s being around 0.86 (i.e. a 14%
reduction since t = 0) and 0.94 (a 6% reduction) when

K =75and 30 m?-s~}, respectively. However, the full sim-
ulations show that there are much larger changes when
advection and diffusion are coupled together, with the val-
ues of X0'2/20'y* at t = 900s being around 0.34 (a 66%
reduction) and 0.43 (a 57% reduction) when K, = 75 and
30 m2-s71, respectively. Whether diffusion acts alone or is
coupled with advection, the impacts on potential tempera-
ture are less when Ky, is reduced, as expected. When Ky, is
reduced from 75 to 30 m?2-s~1, the ratio of the domain-mean
absolute advection tendency to the domain-mean absolute
diffusion tendency at t = 900s approximately doubles
for each of ¢’, u, and w, indicating that the advection
becomes increasingly important when the diffusion is
reduced.

In summary, the two-dimensional density current
simulations are diffusion-limited by design (Straka
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FIGURE 9 Time series of total energy (left column) and fluid mass (right column) for the first 900 s of the two-dimensional density

current simulations, using the RK3, RA, and W77 schemes with At = 0.0625s and Ax = Az = 100 m. The upper row shows errors, which are
defined as the percentage change in each simulation since ¢t = 0. The lower row shows the corresponding error differences in RA and W77
with respect to RK3 [Colour figure can be viewed at wileyonlinelibrary.com]

et al., 1993). Therefore, the numerical solutions have sim-
ilar errors regardless of the temporal integration scheme.
The use of a collapsing flux stencil as the vertical bound-
aries are approached also could be a factor controlling or
limiting the spatial and temporal accuracy, as could the
O(1)-in-time and O(2)-in-space approximations for the
diffusion and the O(2)-in-time and O(2)-in-space approx-
imations for the pressure gradient and divergence. All
the schemes tested conserve energy and mass to within
around 1072%, but the WFL schemes are an order of mag-
nitude closer than the RA scheme to the high-resolution
RK3 reference solution. Importantly, our results show that
each of the WFL schemes appears to be stable when using
split fast and slow modes. However, the WFL schemes
that employ fourth-order temporal filters require smaller
time steps to remain stable with mode splitting.

3.3 |
plume

Three-dimensional rising warm

A nonlinear warm thermal current (i.e. rising warm bub-
ble) with constant eddy diffusion coefficient (K, = 2.0
to 7.5m?-s71) is used to examine the behaviour of the

WFL schemes in a three-dimensional, fully compressible
model. Unlike the density current experiments, the rising
plume set-up avoids the complications of the main fea-
ture of interest interacting with an impermeable boundary
(Carpenter et al., 1990; Tripoli, 1992; Wicker and Ska-
marock, 1998; Bryan and Fritsch, 2002). The initial con-
ditions include a warm plume of radius 2km in x and
Z, which contains a cosine-squared potential tempera-
ture anomaly of maximum value +2°C at the centre of
the plume. The warm plume is released from rest in the
middle of a doubly periodic horizontal domain measur-
ing 12km by 12 km, with its centre initially 2 km above
the lower boundary. As time increases to 1,000s, the
warm plume deforms and develops a rotor as it ascends
towards (but by 1,000s does not reach) the upper bound-
ary, which is at a height of 10km. The evolving warm
plume is quasi-two-dimensional (with infinite radius in
y) to facilitate comparisons with previous work, but the
model equations being numerically integrated are fully
three-dimensional.

Figure 10 shows the numerical solutions at 1,000 s for
the RK3, RA, W03, WG3, W33, W05, WG5, W55, and
W77 schemes. These solutions were made using an eddy
diffusion coefficient of K, = 7.5m?.s7!, which is large
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FIGURE 10 The three-dimensional rising warm plume after 1,000, simulated using the RK3, RA, W03, WG3, W33, W05, WG5, W55,
and W77 schemes. The first three panels show the radial velocity (U in m-s~1), vertical velocity (W in m-s~!), and perturbation potential
temperature (T—Tb in K) in the high-resolution RK3 reference solution, made using Ax = Ay = Az =25m and At = 0.1 s. The following
panels show the perturbation potential temperature (T—Tb in K) in the test solutions, made using Ax = Ay = Az =100m and At =0.4s
(except that W05, WG5, and W77 use At = 0.05s). The simulations use an eddy diffusion coefficient of K, = 7.5 m?-s~!. The maximum value
(MAX), minimum value (MIN), and contour interval (CI) are stated on each plot. The thin, solid contours indicate positive values, and the
thin, dashed contours indicate negative values. The thick, solid contours in the first two panels indicate the zero values, which are omitted
from the subsequent panels to keep them uncluttered. The thick, dashed contours are the superimposed perturbation potential temperature
in the high-resolution RK3 reference solution at 0.1, 0.6, and 1.1 X to indicate the bulk location of the plume. Wind vectors are plotted every
400 m horizontally and vertically. Only the sub-domain from x = 6-10km and z = 2-10km at y = 6 km is shown [Colour figure can be viewed

at wileyonlinelibrary.com]|

enough to dampen the formation of shear instabilities =~ Ax = Ay = Az = 100m and mostly using At = 0.4s.
at the top and sides of the plume (Grabowski and  However, a smaller time step of At = 0.05s was found
Clark, 1991; Tripoli, 1992). The solutions were made using necessary to ensure stability for the WFL schemes that
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incorporate fourth-order temporal filters (W05, WG5, and
W77). The radial overturning circulation, which results
from stronger convection at the centre of the plume than
the edges, and which thereby leads to the rotor forma-
tion, is clearly visible in Figure 10. In the absence of an
analytical solution, a high-resolution RK3 simulation with
Ax = Ay = Az=25m and At = 0.1 s is used as a reference
solution for comparison.

The rotors seen in Figure 10 are handled well (com-
pared to the RK3 reference solution) by most of the
schemes, and perhaps best by the RK3 and W33 test solu-
tions. The maximum perturbation potential temperatures
are systematically 6-12% higher in the RK3, RA, and WFL
test solutions than the RK3 reference solution. Addition-
ally, the maximum vertical velocities are 8-10% stronger
for most of the test solutions (not shown). In Figure 10, the
negative perturbation potential temperatures seen in the
ambient fluid surrounding the plume are unrealistic arte-
facts of purely numerical origin. They occur largely due
to spatial truncation errors, and they are around 10 times
smaller in amplitude in the RK3 reference solution.

Figure 11 shows simulations made using a smaller
eddy diffusion coefficient (K, = 2.0m?-s7!) and finer
numerical resolution (Ax = Ay = Az = 50m, At = 0.25),
resulting in somewhat different dynamical behaviour at
1,000, which is described in detail by Grabowski and
Clark (1991) and Tripoli (1992). The feedback associ-
ated with the dynamical instability can be seen in all
the state variables for the high-resolution RK3 reference
simulation (Ax = Ay = Az = 25m and At = 0.1s) and in
the perturbation potential temperature field for the test
solutions made using the RK3, and RA schemes and the
four WFL schemes that incorporate second-order tem-
poral filters (W03, WG3, W33, and W55). The use of a
smaller eddy diffusion coefficient allows for advection to
become increasingly important, and for shear instabilities
to become more prominent, owing to sharper temperature
and velocity gradients. For the perturbation potential tem-
perature field, the test solutions that appear most similar
to the high-resolution RK3 reference solution include the
W55 scheme and perhaps the RK3 scheme, especially in
the regions of developing instabilities on the leading edge
of the plume. The maximum values of the perturbation
potential temperature are 2-7% too high in all the test
solutions compared to the reference solution. The posi-
tions of the structures on the leading edge of the plume
in the high-resolution RK3 reference solution are similar
to those in the W55 test solution, although the maximum
perturbation potential temperature in the W55 solution
is slightly higher. Reducing the time step of the test solu-
tions to one-eighth of the value used above results in a
substantial increase in the plume structure on its leading
edge (not shown).

The results shown here for the rising warm plume
indicate that the largest differences seem to be associated
with the temporal order of accuracy of the schemes that
are used. The differences using different time-stepping
schemes become more apparent with higher spatial and
temporal resolution when diffusion becomes increasingly
less important and advection becomes increasingly more
important. Here, diffusion is advanced with a first-order
forward-in-time finite difference, whereas advection is
integrated with second-order centred-in-time differences
(except that they are first-order for RA). Further reduc-
tion of the eddy diffusion coefficient, or using a weak
tenth-order spatial filter, along with smaller spatial reso-
lutions, results in even more enhanced shear instabilities
and even more differences (consistent with Grabowski and
Clark (1991) and Tripoli (1992)) when compared to the
solutions shown here.

3.4 | Two-dimensional twin tropical
cyclones

The final set of benchmark experiments considers a
large-scale atmospheric problem, in which the Coriolis
force is critical. The problem is the linked behaviour
of twin tropical cyclones (Moustaoui et al., 2002) mod-
elled using the two-dimensional rotating shallow-water
equations cast on a p-plane (Ferreira et al., 1996; Mous-
taouietal., 2002;2014). In the absence of the Coriolis force,
if the two binary vortices are close enough together and
strong enough, then they can interact via the Fujiwhara
effect. In the presence of the Coriolis force, however, the
twin cyclones can mutually and symmetrically affect each
other, with the anticlockwise cyclone initialised north of
the Equator moving to the northwest and the clockwise
cyclone initialised south of the Equator moving to the
southwest. This type of coupled cyclone motion results
from a secondary asymmetric circulation, which is linked
directly to the meridional gradient of planetary vorticity
(i.e. the p-effect). Without the Coriolis force, or on an
f-plane rather than a -plane, this deviate motion does not
occur.

The numerical model used here is based on rotat-
ing shallow-water equations that permit divergence and
that include the full, un-approximated latitudinal varia-
tion of the Coriolis force (Anthes and Hoke, 1975; Ferreira
et al., 1996; Moustaoui et al., 2002; 2014). The simulation
domain is 9,600 km wide zonally and meridionally, centred
on the Equator. Vorticity centres with opposite signs are
initialised at 7°N and 7°S (i.e. around 780 km either side
of the Equator), with rotational speeds decaying exponen-
tially with increasing radius from their maximum value
of 30 m-s~!. The simulations are run for 4 days (with tests
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FIGURE 11  The three-dimensional rising warm plume after 1,000s, simulated using the RK3, RA, W03, WG3, W33, and W55
schemes. The top row shows the radial velocity (U in m-s~1), vertical velocity (W in m-s~!), and perturbation potential temperature (T—Tb in
K) in the high-resolution RK3 reference solution, made using Ax= Ay = Az=25m and At = 0.1 s. The following panels show the
perturbation potential temperature (T—Tb in K) in the test solutions, made using Ax= Ay = Az = 50m and At = 0.2 s. The simulations use an
eddy diffusion coefficient of K, = 2.0 m?-s~!. The maximum value (MAX), minimum value (MIN), and contour interval (CI) are stated on
each plot. The thin, solid contours indicate positive values, and the thin, dashed contours indicate negative values. The thick, solid contours
in the first two panels indicate the zero values, which are omitted from the subsequent panels to keep them uncluttered. The thick, dashed
contours are the superimposed perturbation potential temperature in the high-resolution RK3 reference solution at 0.1, 0.6, and 1.1 K to
indicate the bulk location of the plume. Wind vectors are plotted every 400 m horizontally and vertically. Only the sub-domain from

x =6-10km and z = 2-10km at y = 6 km is shown [Colour figure can be viewed at wileyonlinelibrary.com]
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in larger domains up to 12 days). A reference solution is
made with the RK3 scheme, using temporal and spatial
resolutions of Ax = Ay = 20km and At = 7.5s, whereas
the test solutions are made using Ax = Ay = 40km and
At = 15s. The smaller time step allows for stable simula-
tions for all schemes.

The solutions are shown in Figure 12 and indicate
that the cyclones migrate westward and move further
apart over the first 4days. Although there is a known
weak instability with forward-type schemes (such as
forward explicit Euler, RK3, TVD, Lax-Wendroff, etc.:
Gadd, 1980; Wicker and Skamarock, 2002), no such insta-
bilities are detected here in the high-resolution refer-
ence solution when advancing the Coriolis terms with
the RK3 scheme, whether using a forward-in-time or
forward-backward-in-time operator for the fast (gravity
wave) modes. The other schemes tested at a coarser res-
olution (RK3, RA, W03, WG3, W33, W05, WG5, W55,
W77) each performed remarkably well compared to the
reference solution after 4 days (96 hr) of integration, in
terms of the maxima and minima of the vertical vortic-
ity and zonal and meridional winds. The extent to which
the simulations agree is dependent on the coefficient of
the sixth-order filter that is employed, with older stud-
ies using second-order filters but more recent studies
using sixth-order filters. Longer simulations, up to 12 days,
also produce remarkably good scheme-to-scheme solution
appearance and errors (with respect to the maximum and
minimum values of all fields), as well as good qualitative
comparisons with the results of Moustaoui et al. (2014) at
50 and 100 hr of simulation.

4 | SUMMARY AND DISCUSSION

The stabilisation of the leapfrog time-stepping scheme
provided by the RA filter has enabled large volumes of
productive atmospheric and oceanic research and decades
of successful weather and climate prediction outcomes.
However, by spuriously damping the physical mode of
the leapfrog scheme, our results show that the RA fil-
ter can unphysically distort dynamical fields and that
it violates conservation of energy and mass more egre-
giously than the RK3 and WFL schemes. Only very small
time steps reduce the distortion and non-conservation
to acceptable levels. The distortion is particularly pro-
nounced when the advection tendency plays an impor-
tant role, such as in the linear two-dimensional cone
rotation experiments. It is also particularly pronounced
when weak eddy diffusion (either physical or numeri-
cal) is used in more complex nonlinear models, such as
the density current and rising warm plume experiments,
especially when centred-in-time differences are used for

advection and forward-in-time differences are used (as
required for stability) for diffusion. For example, we find
that the O(2) RK3 and WFL solutions are somewhat bet-
ter than the O(1) RA-filtered leapfrog solutions for the
two-dimensional density current (with an eddy diffusion
coefficient of K, = 75m?-s7!) and the three-dimensional
rising warm plume (with K, = 7.5m?-s7!). When Ky, is
reduced by a factor of around two or more, which allows
the advection to become more important compared to the
diffusion, we find that the problems in the RA-filtered
leapfrog scheme worsen when compared to RK3 and WFL.

The results presented in this article confirm that the
WFL schemes that were formally shown to be linearly sta-
ble by Williams (2009; 2011; 2013) are each stable for more
complex two- and three-dimensional systems of nonlinear
equations for quasi-compressible and fully compressible
fluid flows. Furthermore, the WFL schemes remain stable
even when the discretisation method splits the slow advec-
tion and diffusion modes from the fast acoustic modes. The
time-step size, spatial filtering, and divergence damping
requirements of the WFL schemes that use second-order
filters are generally similar to those of the RA scheme
(although divergence damping is not necessarily needed
for time-filtered schemes for the simulations in this arti-
cle). Importantly, the total energy errors and total mass
errors are much smaller in magnitude (and consistent with
the RK3 scheme) for all the WFL schemes than for the
RA-filtered leapfrog scheme. The simplicity of the WFL
schemes - being explicit rather than implicit - is attrac-
tive from the scalability point of view for future exa-scale
weather and climate simulations.

As noted by Williams (2009; 2011; 2013), simple code
modifications (to only a handful of lines) allow an O(1)
amplitude error and O(1) overall error RA-filtered leapfrog
code to be upgraded to an O(3) amplitude error and O(2)
overall error WFL code. Such upgrades eliminate many of
the problems of the RA-filtered leapfrog scheme and incur
trivial additional computational cost and storage require-
ments, especially if the one-function WFL schemes are
used. The two-function WFL schemes require more code
modifications, but not prohibitively. The two-function
WFL schemes may further improve simulations, especially
for pure (or nearly pure) advection problems, depend-
ing on the order of accuracy of the WFL scheme used.
Exploitation of variables while they are in the fastest lay-
ers of computer cache to the largest extent possible can
improve computational efficiency more than expected.
When large diffusion overwhelms any temporal trunca-
tion error improvement, such as in the present density cur-
rent simulations, the two-function WFL schemes appear
to provide no additional significant improvement beyond
that provided by either the one-function W03 or WG3
schemes. However, the two-function schemes do provide
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FIGURE 12 The two-dimensional twin tropical cyclones after 4 days, simulated using the RK3, RA, W03, WG3, W33, W05, WG5, W55,
and W77 schemes. The top row shows the vertical vorticity (VORZ in 10~* s~1), zonal velocity (U in m-s™!), and meridional velocity (V in
m-s~1) in the high-resolution RK3 reference solution, made using Ax = Ay =20 km and At = 7.5 s. In the vertical vorticity plot for the reference
solution, the solid lines indicate the cyclone tracks since ¢ = 0. The following panels show the vertical vorticity (VORZ in 10~ s7!) in the test
solutions, made using Ax = Ay = 40 km and At = 15s. The maximum value (MAX), minimum value (MIN), and contour interval (CI) are
stated on each plot. The solid contours indicate positive and zero values, and the dashed contours indicate negative values. The zero contours
are omitted from the zonal and meridional velocity plots to keep them uncluttered. Wind vectors are plotted every 160 km zonally and
meridionally. Only the sub-domain from x = +2,400 km and y = +2,400 km is shown [Colour figure can be viewed at wileyonlinelibrary.com]
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additional improvements when diffusion is not as impor-
tant, as in the present rising warm plume experiments.

The one-function WFL schemes incur about one-third
of the computational cost of the RK3 scheme per time step
for the same time-step size, and yet they have a similar
accuracy profile. However, the one-function WFL schemes
(especially those using a fourth-order temporal filter)
require a smaller maximum time step and use more mem-
ory. Nevertheless, even with the 73% longer time step per-
mitted by the RK3 scheme compared to the pure leapfrog
scheme (Durran, 1991), the one-function WFL schemes
may still be more cost-effective overall, given the reduced
computational expense per time step. The two-function
WFL schemes cost more than the one-function WFL
schemes per time step, but they are still only about
two-thirds of the cost of the RK3 scheme per time step
for the same time-step size. Note also that in the leapfrog
(RA and WFL) schemes with mode splitting, the small step
sequence is looped through once per time step (with N
small steps per time step). On the other hand, the RK3
scheme loops through the small step sequence three times
per time step (with N/3, N/2, and N small steps). For
example, when N = 12, there are a total of 22 small step
calculations per time step for RK3, compared to only 12 for
the leapfrog schemes. However, when N = 12 is used for
the centred schemes, N = 6 can be used for RK3 (because
it is a forward scheme), so there could be a total of only 11
small step calculations per time step.

When obtaining mode-split numerical solutions, the
WFL schemes that use a fourth-order temporal filter were
found to require reduced time steps to remain stable,
compared to the WFL schemes that use a second-order
temporal filter. This restriction was not found when the
fourth-order temporal filter WFL schemes were used to
obtain non-mode-split solutions, such as in the case of
pure advection of a cone. This restriction is irrelevant for
all WFL schemes when fast and slow modes were not split
and integrated explicitly. Fortunately, it has been found
that this problem can be alleviated in time-split simula-
tions by integrating the velocity advection terms using the
smaller time step, as has been done previously for the
Crowley scheme (Tremback et al., 1987; Walko and Avis-
sar, 2008), making the integration of many scalar variables
efficient (because they do not need the reduced step) when
the fourth-order temporal filter WFL schemes are used.
In particular, the Walko and Avissar (2008) procedure per-
mits stable and long integrations (longer than 4 days) as
described with the twin tropical cyclones and other sim-
ulations not shown in this article. The reasons for the
reduced time step requirements of the fourth-order tempo-
ral filter are unknown and warrant further investigation.

The comparisons presented in this article allow some
provisional recommendations to be made regarding the

most suitable WFL schemes for various purposes. For
flows in which the diffusion is relatively small or zero,
such as the advection-dominated flow above the plane-
tary boundary layer in the free atmosphere, our linear
advection and rising warm plume experiments suggest
that the two-function W33 and W55 schemes deliver the
best performance. In contrast, for diffusion-dominated
flows, such as deep convection or the turbulent flow
within the planetary boundary layer, our density current
experiments suggest that the one-function W03 and WG3
schemes are sufficient. Our time-split experiments sug-
gest that W05, WG5, W43, and W77 may be poorly suited
to high-resolution non-hydrostatic simulations, because
these schemes have limited stability with split modes.
One of the limitations of this study is that the more
complex simulations are run for relatively short inte-
gration periods, compared to the typical usage of an
atmosphere or ocean model. Consequently, it remains
unclear if the WFL schemes are more suited to short-and
medium-range numerical weather prediction forecasts or
long-term climate projections. Longer simulations might
produce more degradation of the RA-filtered leapfrog solu-
tion compared to the WFL and RK3 solutions, as seen in
the two-dimensional cone advection simulations. Another
limitation is that the results do not include comparisons
to the filtered leapfrog schemes proposed by Moustaoui
et al. (2014) or Maurya et al. (2019), or to the forward
temporal treatments used in the higher-order Crowley
schemes (Tremback et al, 1987). The stability of the
mode-split WFL schemes also remains to be formally
shown. We call for future work to address these omissions.
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