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ABSTRACT

This paper describes laboratory observations of inertia–gravity waves emitted from balanced fluid flow.
In a rotating two-layer annulus experiment, the wavelength of the inertia–gravity waves is very close to the
deformation radius. Their amplitude varies linearly with Rossby number in the range 0.05–0.14, at constant
Burger number (or rotational Froude number). This linear scaling challenges the notion, suggested by
several dynamical theories, that inertia–gravity waves generated by balanced motion will be exponentially
small. It is estimated that the balanced flow leaks roughly 1% of its energy each rotation period into the
inertia–gravity waves at the peak of their generation.

The findings of this study imply an inevitable emission of inertia–gravity waves at Rossby numbers similar
to those of the large-scale atmospheric and oceanic flow. Extrapolation of the results suggests that inertia–
gravity waves might make a significant contribution to the energy budgets of the atmosphere and ocean. In
particular, emission of inertia–gravity waves from mesoscale eddies may be an important source of energy
for deep interior mixing in the ocean.

1. Introduction

Inertia–gravity waves are observed ubiquitously
throughout the stratified parts of the atmosphere (e.g.,
Eckermann and Vincent 1993; Sato et al. 1997; Dalin et
al. 2004) and ocean (e.g., Thorpe 2005). Orthodox
mechanisms for inertia–gravity wave generation in-
clude dynamical instability (e.g., Kelvin–Helmholtz
shear instability; Chandrasekhar 1961), which is a
known source of atmospheric gravity waves (Fritts
1982, 1984). Another possible mechanism is the inter-
action between the flow and a physical obstruction
(e.g., generation in the wake of a ship; Lighthill 1978),
which is the mechanism by which mountains generate
atmospheric gravity waves (Hines 1989). Direct forcing
of the ocean by the atmosphere is a known source of

oceanic gravity waves (Wunsch and Ferrari 2004). Fi-
nally, inertia–gravity waves are also radiated during the
geostrophic adjustment of a hypothetical fluid (Rossby
1938), in which geostrophic balance is approached from
an unbalanced initial condition.

Despite the above insights, our understanding of the
sources of inertia–gravity waves remains incomplete. In
particular, Ford (1994) showed that even balanced
flows may undergo a generalized adjustment that is ac-
companied by the emission of inertia–gravity waves. By
“balance” we refer here in a generic way to a dynamical
relationship that allows the fluid state to be diagnosed
through potential vorticity inversion. In contrast to geo-
strophic adjustment, the Ford (1994) mechanism in-
volves (weak) departures from balance that arise spon-
taneously as the flow evolves (Ford et al. 2000; Viúdez
and Dritschel 2006), and not those that arise from
ageostrophic initial conditions. It is proving extraordi-
narily difficult to determine whether or not this mecha-
nism is a significant source of inertia–gravity waves in
real geophysical flows, however (McIntyre 2001). This

Corresponding author address: Paul Williams, Department of
Meteorology, University of Reading, P.O. Box 243, Earley Gate,
Reading RG6 6BB, United Kingdom.
E-mail: p.d.williams@reading.ac.uk

NOVEMBER 2008 W I L L I A M S E T A L . 3543

DOI: 10.1175/2008JAS2480.1

© 2008 American Meteorological Society

JAS2480



hinders the development of parameterizations of the
waves in general circulation models (Kim et al. 2003).

The generation of inertia–gravity waves is intimately
related to the concept of the slow manifold, which was
introduced by Leith (1980) and Lorenz (1980). The
slow manifold is a putative, invariant submanifold of
phase space, upon which the fluid remains devoid of
fast inertia–gravity waves. The strict existence of the
slow manifold, and hence the possibility of a flow evolv-
ing without emitting inertia–gravity waves, has long
been debated (e.g., Lorenz 1986; Lorenz and Krishna-
murthy 1987; Jacobs 1991; Lorenz 1992). The slow
manifold breaks down in the numerical experiments of
Yavneh and McWilliams (1994). Moreover, the formal
nonexistence of the slow manifold is apparently implied
by the spontaneous emission of Ford et al. (2000), al-
though in that study the Rossby number is assumed to
be greater than unity, which is not appropriate for
large-scale geophysical flows (Saujani and Shepherd
2002; Ford et al. 2002).

A reasonably defined slow manifold may persist even
when inertia–gravity waves are energized (Warn et al.
1995; Vallis 1996; Wirosoetisno et al. 2002). Further-
more, the waves may be sufficiently weak that they
merely perturb the slow manifold into a fuzzy manifold
(Warn and Menard 1986), which retains many of its
useful properties. The amplitude of inertia–gravity
waves and its dependence on the bulk flow properties
are therefore of great interest. Despite general agree-
ment that the amplitude should decrease with decreas-
ing Rossby number, Ro, there is much debate about the
quantitative variation for Ro K 1. In an asymptotic
expansion of the governing equations, ageostrophic ef-
fects appear at first order in Ro (Pedlosky 1987), so we
might expect the inertia–gravity wave amplitude to
scale as Ro� for � � 1. In contrast, other theories sug-
gest that the amplitude should scale as Ro�1/2 exp(��/
Ro) (Vanneste and Yavneh 2004), with � � �/2
(Plougonven et al. 2005, 2006), or as Ro�2 exp(��/Ro)
(Vanneste 2004). Thus, it remains unclear whether the
fuzzy manifold is algebraically or exponentially thin in
Rossby number. These two possibilities have poten-
tially very different implications for the fundamental
dynamical concepts of balance and potential vorticity
inversion.

Despite their importance, the above theoretical
Rossby number scalings have never been tested experi-
mentally. Laboratory experiments are not subject to
the ad hoc approximations of idealized theoretical and
numerical analyses, and they therefore provide the
ideal arena in which to investigate this problem. Love-
grove et al. (1999, 2000) first reported the systematic
generation of inertia–gravity waves at the interface in a

rotating two-layer annulus experiment. The fluid in the
experiment was rendered baroclinically unstable by an
imposed vertical shear. The amplitude of the large-
scale baroclinic wave periodically grew and decayed,
and the shorter-scale inertia–gravity waves appeared
once each life cycle. The short-scale waves were dem-
onstrated to be inertia–gravity waves by showing that
their observed intrinsic frequency was consistent with
that predicted by the theoretical inertia–gravity wave
dispersion relation. The inertia–gravity waves were so
short that they did not satisfy the hydrostatic long-wave
limit. In further experiments with the same apparatus,
Williams et al. (2003) found that the inertia–gravity
waves’ back-reaction on the large-scale baroclinic wave
was generally weak, except near transitions between
different large-scale baroclinic modes.

The mechanism by which the laboratory inertia–
gravity waves are generated was studied by Williams et
al. (2005, hereafter WHR05). Because the waves con-
tinue to be generated long after the start of the experi-
ments, generation by initial-condition adjustment could
be ruled out. Because the measurement technique used
is noninvasive, generation by a physical obstruction
could also be ruled out. Using data from a quasigeo-
strophic numerical model of the large-scale flow (Wil-
liams et al. 2004b), five different indicators of inertia–
gravity wave generation were examined by WHR05.
The shear instability indicators, including the Richard-
son number, were shown to be inconsistent with the
generation observed in the laboratory. Ford (1994) de-
rived an indicator for the spontaneous emission of in-
ertia–gravity waves in rotating shallow water. Sponta-
neous emission here refers to wave excitation in the
sense of Lighthill (1952), in which nonlinear interac-
tions of the basic state energize linear wave modes with
only weak back-reaction on the basic state itself.
WHR05 showed that Ford’s indicator was qualitatively
consistent with the observed laboratory inertia–gravity
wave generation.

This laboratory experiment thus provides the first
opportunity to test, in a real fluid, the above theoretical
predictions about inertia–gravity wave generation.
WHR05 did not study the inertia–gravity waves’ depen-
dence on Rossby number. However, Fig. 1 shows raw
laboratory images from the WHR05 experiments at two
extremes of Rossby number (0.16 and 0.45). Different
colors correspond to different heights of the internal
interface in the two-layer fluid. Both images show a
wavenumber-2 baroclinic wave with a coexisting train
of inertia–gravity waves in each trough. Crude exami-
nation by eye gives the first hint that the inertia–gravity
waves’ amplitude variation with Rossby number is
weak, a finding we pursue in this paper, although cau-
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tion is required in the interpretation of Fig. 1 because
the relationship between color and interface height is
nonlinear (Williams et al. 2004a).

This study is a further analysis of the WHR05 experi-
ments and their fluid dynamics. Our aims are to docu-
ment some of the properties of the observed inertia–
gravity waves and to speculate about the consequences
for the atmosphere and ocean. Specifically, we wish to
quantify the variation of inertia–gravity wave ampli-
tude with Rossby number in the laboratory experi-
ments, over as wide a range of Rossby numbers as pos-
sible. To our knowledge, this is the first study in which
inertia–gravity waves are quantified in terms of their
Rossby number scaling in a real fluid. We also wish to
quantify the leak of power from the large-scale bal-
anced flow into the inertia–gravity waves.

The layout of this paper is as follows. Section 2 sum-

marizes the main features of the laboratory apparatus
and the method by which we have calibrated it to ob-
tain interface height measurements from the color im-
ages. Section 3 describes our methodology for quanti-
fying the inertia–gravity wave activity in any given labo-
ratory image. Section 4 estimates the energy flux from
the balanced flow into the inertia–gravity waves. Sec-
tion 5 quantifies the variation of inertia–gravity wave
activity with Rossby number. We speculate about the
consequences for geophysical flows in section 6, and we
conclude with a summary and discussion in section 7.

2. Laboratory experiment

Figure 2 shows a schematic cross section through the
rotating two-layer annulus apparatus used by Love-
grove et al. (1999, 2000), Williams et al. (2003),
WHR05, and in the present study. The annulus has an
inner sidewall of radius 62.5 mm, an outer sidewall of
radius 125.0 mm, and a total depth of 250.0 mm. The
annulus gap width is thus L � 62.5 mm, and the two
immiscible fluid layers have equal resting depths of
H � 125.0 mm. The base and lid are both horizontal
and the annulus is mounted on a turntable. The base

FIG. 1. Raw laboratory images of the rotating two-layer annulus
experiment, taken under different experimental conditions. The
bulk Rossby numbers of the lid [see Eq. (1)] are (a) Rolid � 0.16
and (b) Rolid � 0.45. In both cases the rotational Froude number
[see Eq. (2)] is Fr � 8.5 and the Burger number [see Eq. (3)] is
Bu � 0.12. The baroclinic life cycle phase (see section 4) is 60° in
both cases. Colors represent internal interface heights: blue cor-
responds to a high interface and yellow to a low interface. The
images are taken from experiments (a) 1 and (b) 11 of WHR05.

FIG. 2. Schematic cross section through the rotating two-layer
annulus apparatus, showing the principal components described
in the text. The interface between the two liquids, which have
equal volumes, is shown as a dashed line. The angular velocities of
the turntable and lid, in the laboratory frame, are indicated. A
bright white source light illuminates the apparatus from below
(not shown). After propagating vertically upward through the
base, fluids, and lid, the light is received by a color video camera
(also not shown) that captures the raw laboratory images shown
herein.
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and sidewalls rotate with angular velocity � about the
axis of symmetry, and the lid (in contact with the upper
layer) rotates relative to the base and sidewalls with
angular velocity ��, so that the angular velocity of the
lid in the laboratory frame is � � ��. For all of the
experiments described in this paper, we use � 	 0 and
�� 	 0, implying a superrotation of the lid and working
fluids relative to the turntable.

The upper layer is water and the lower layer is a
mixture of limonene and CFC-113. The lower-layer
constituent liquids are both practically insoluble in wa-
ter and are mixed in such proportions that the compos-
ite density (
2 � 1003 kg m�3) is slightly greater than
that of water (
1 � 997 kg m�3). Importantly, the lower
layer has a large optical activity due to the limonene.
Therefore, when the system is illuminated from below
with white light and viewed from above through
crossed polaroids, there is a relationship between the
color perceived and the height of the internal interface.
This is the effect responsible for the color gradients in
the images of Fig. 1, which were captured by a video
camera viewing the annulus from above. This flow vi-
sualization technique was proposed by Hart and Kittel-
man (1986). It is a noninvasive method for visualizing
interface perturbations with high resolution in the ver-
tical coordinate (see following paragraph), the horizon-
tal coordinates (in our case, 0.5 mm), and time (in our
case, 0.04 s).

Williams et al. (2004a) calibrated the experiment by
deriving the quantitative relationship between hue (a
measure of the dominant wavelength) and the height of
the internal interface. Given an image captured by the
camera, the two-dimensional hue field can be calcu-
lated from the digitized red, green, and blue pixel in-
formation and then projected onto the calibration curve
to obtain an interface height map. However, during the
present study it was discovered that the pixel jitter
noise in the blue channel is much larger than in the red
and green channels. This noise limits the vertical reso-
lution of the retrieved interface height measurements,
which is a key consideration because we wish to be able
to detect small-amplitude inertia–gravity waves. For
the purposes of the present study, we therefore disre-
gard the blue channel and modify the Williams et al.
(2004a) calibration curve to use only the red and green
channels. This strategy reduces the error in retrieved
interface height measurements from 1 mm (as reported
by Williams et al. 2004a) to 0.3 mm, and it will be used
throughout this paper.

For later use, the bulk Rossby number at the lid, the
internal rotational Froude number, and the internal
Burger number are defined by

Rolid �
��

2�
, �1�

Fr �
�2��2L2

g�H
, �2�

and

Bu �
1

Fr
, �3�

respectively, where g � 2g(
2 � 
1)/(
1 � 
2) � 5.9
cm s�2 is the reduced gravity. The internal Rossby ra-
dius of deformation for a fluid composed of two layers
of equal resting depths is given (e.g., Gill 1982) by

Rd �
�g�H2��H � H�

2�
. �4�

3. Methodology for quantifying inertia–gravity
wave activity

In this section, we describe our method for comput-
ing the inertia–gravity wave activity in any given raw
laboratory image. We must use a severely restricted
range of radii to remain within the limits of the calibra-
tion curve as the experimental parameters vary, but
fortunately the inertia–gravity waves happen to fall
within the permitted radii. We illustrate our approach
using the image shown in Fig. 3 as a case study. We first
digitize the red and green color components at each
pixel within the two circles (of radii 78.0 and 82.0 mm)
shown in the figure. Then, at each azimuthal angle, we

FIG. 3. Raw laboratory image to illustrate our method for quan-
tifying inertia–gravity wave activity. The experimental parameters
are �� � 1.3 rad s�1 and � � 2.0 rad s�1, giving Rolid � 0.33,
Fr � 8.5, and Bu � 0.12. The baroclinic life cycle phase (see
section 4) is 140°. Interface height retrievals are made in the re-
gion enclosed by the two black concentric circles. The image is
taken from experiment 8 of WHR05.
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average over radius between the inner and outer circles
to reduce pixel jitter noise. This is an average over
around 10 pixels, which reduces the noise by a factor of
around 101/2.

We next project the radially averaged red and green
pixel information onto the modified calibration curve
(see section 2) to obtain interface height as a function
of azimuth. The resulting curve is shown in Fig. 4a. The

presence of a large-scale baroclinic wave, together with
two trains of short-scale inertia–gravity waves, is clear.
The baroclinic wave has a dominant wavenumber of 2,
but also has a noticeable wavenumber-4 harmonic as
suggested by Fig. 3. To isolate the inertia–gravity wave
signal, Fig. 4b shows the difference between the original
and low-pass filtered interface height curves. Two iner-
tia–gravity wave envelopes, each containing around six

FIG. 4. Analysis of the interface height shown in Fig. 3. In (a)–(c), the zero of azimuth is at
3 o’clock and azimuth increases clockwise. (a) The solid curve is the raw interface height, and
the dotted curve is the interface height filtered using a moving boxcar average of azimuthal
width 12.5°. (b) The solid curve is the difference between the raw and filtered curves in (a),
and the dotted lines are estimates of the noise due to pixel jitter. (c) Morlet-6 wavelet
transform of the signal in (b), with contours drawn at 2, 4, 6, 8, 10, 12, and 14 mm. (d)
Azimuthal average of the wavelet transform in (c).
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complete wavelengths, are clearly seen above the pixel
jitter noise. Figures 4c and 4d show, respectively, the
wavelet transform of the inertia–gravity wave signal
and the azimuthal mean of the wavelet transform. The
inertia–gravity waves are seen to have a range of wave-
lengths centered on 10° of azimuth, implying a typical
wavenumber of 36 and a typical wavelength (at radius
80 mm) of 1.4 cm. For comparison, the internal Rossby
radius of deformation is given by Eq. (4) to be 1.5 cm.

As a measure of the amplitude of the baroclinic
wave, the root-mean-square displacement of the low-
pass filtered curve in Fig. 4a is 5.0 mm. We now evalu-
ate four different metrics of the inertia–gravity wave
activity:

• the root-mean-square displacement of the inertia–
gravity wave signal in Fig. 4b, which is 1.3 mm;

• the maximum displacement of the inertia–gravity
wave signal in Fig. 4b, which is 5.3 mm;

• the mean wavelet amplitude in Fig. 4d averaged over
the wavelength band 5–20°, which is 2.1 mm; and

• the percentage of the total (baroclinic plus inertia–
gravity) wave energy that is stored in the inertia–
gravity waves, which is 9.0% (see below and Table 1).

These four metrics each represent a different way of
quantifying the inertia–gravity wave activity. A large-
amplitude but azimuthally confined inertia–gravity
wave packet would result in the maximum displace-
ment metric being large but the other three metrics
being small, and vice versa for a small-amplitude but
azimuthally extended wave packet. For this reason, the
metrics are to be regarded as mutually complementary,
and we shall use all four in this study.

We calculate the energy metric as follows. Both wave
classes (i.e., baroclinic and inertia–gravity) contain po-
tential energy and kinetic energy. We compute the po-
tential energies (in arbitrary units) by azimuthally inte-

grating the squared deviations from the azimuthal
means of both the low-pass filtered baroclinic wave sig-
nal in Fig. 4a and the inertia–gravity wave signal in Fig.
4b. We compute the kinetic energies from the potential
energies using the appropriate partition formulas (e.g.,
Gill 1982). We finally compute the total energy in both
the baroclinic wave and the inertia–gravity waves by
adding the potential and kinetic contributions. The re-
sults of this calculation are summarized in Table 1 and
show that, in the case of Fig. 3, 9.0% of the total (baro-
clinic plus inertia–gravity) wave energy is stored in the
inertia–gravity waves.

Some limitations must be borne in mind when inter-
preting the energy metric defined above. First, the re-
strictions on radius mean that the metric is not a com-
parison of the global energies contained in the two
wave classes, but rather a local comparison near radius
80 mm. Second, the energy partition formulas apply in
the shallow-water limit, and although the baroclinic
wave might fulfill this requirement, the inertia–gravity
waves do not. However, the fraction of the total wave
energy stored in the inertia–gravity waves is fairly in-
sensitive to this choice (see caption of Table 1) and so
our qualitative findings are robust. Finally, the sum of
the baroclinic wave and inertia–gravity wave potential
energies, computed as described above, does not ex-
actly equal the total potential energy computed by azi-
muthally integrating the squared deviation from the
azimuthal mean of the unfiltered curve in Fig. 4a. This
is because there is a baroclinic/inertia–gravity wave
cross term that does not quite integrate to zero. How-
ever, because there is such a large spectral separation
between the two waves, the residual term is small (typi-
cally 2% of the total potential energy) and it is ne-
glected in this paper.

We may now use the above four metrics to quanti-
tatively compare the inertia–gravity wave activity in the
two extreme Rossby number experiments of Fig. 1. The
results of this calculation are shown in Table 2 and
confirm that the variation with Rossby number is weak,

TABLE 2. Comparison of IGW activity near radius 80.0 mm
in the images of Figs. 1a and 1b, which have Rolid � 0.16 and
Rolid � 0.45, respectively. All other experimental parameters are
fixed.

Rolid � 0.16 Rolid � 0.45

RMS displacement of IGWs (mm) 0.4 0.8
Maximum displacement of IGWs

(mm)
1.6 3.0

Mean wavelet amplitude in
wavelength band 5–20° (mm)

0.6 1.6

Percentage of wave energy in
IGWs

1.1 2.2

TABLE 1. Energy analysis of the image shown in Fig. 3 and
processed in Fig. 4. Breakdown of the potential energy (PE),
kinetic energy (KE) and total energy (PE � KE) into the baro-
clinic wave and inertia–gravity wave (IGW) contributions. The
PE is computed from laboratory data and the KE is computed
from the PE using the shallow-water KE:PE ratios from Gill
(1982), that is, his Eqs. (7.5.2) for the baroclinic waves and (8.3.5)
for the IGWs. When the calculation is repeated using the deep-
water KE:PE ratio for the IGWs, the proportion of the total wave
energy that is stored in the IGWs changes only from 9.0% to 15.1%.

Baroclinic
wave

Inertia–gravity
wave

PE breakdown (%) 94.0 6.0
KE:PE ratio 0.29 1.01
KE breakdown (%) 81.7 18.3
PE � KE breakdown (%) 91.0 9.0
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as suggested in section 1. As the Rossby number in-
creases by a factor of around 3, all four metrics give an
increase in inertia–gravity wave activity by a factor of
around 2. The quantitative Rossby number dependence
is explored more fully in section 5.

4. Energy flux from balanced flow into
inertia–gravity waves

As noted in section 1, the amplitude of the large-
scale baroclinic wave in these experiments periodically
grows and decays. This periodic variation is known as
amplitude vacillation (Lorenz 1963; Pedlosky 1977).
The inertia–gravity waves appear once each life cycle,
and in this respect their generation resembles that seen
in the atmospheric baroclinic life cycle simulations of
O’Sullivan and Dunkerton (1995).

We now examine the variation of inertia–gravity
wave activity during one complete baroclinic life cycle.
Figure 5 shows raw laboratory images at various
phases, where a phase of 0° refers to the peak of the life
cycle and a phase difference of 360° refers to a single
complete life cycle (in this case, 132 s). At the peak of
the baroclinic life cycle (Fig. 5a), inertia–gravity wave
activity appears to be absent. As the baroclinic wave
decays (Figs. 5b–d), inertia–gravity waves are clearly
visible, first azimuthally confined with large amplitudes
and then azimuthally extended with smaller ampli-
tudes. Finally, as the baroclinic wave grows (Figs. 5e,f),
inertia–gravity waves are once again barely visible.

We now quantify the variation of inertia–gravity
wave activity during the course of the life cycle shown
in Fig. 5, using the methodology of section 3. Figure 6
shows the evolution of the baroclinic wave amplitude
and the four metrics of inertia–gravity wave activity.
The covariation between baroclinic wave and inertia–
gravity wave activity, suggested in the previous para-
graph, is confirmed. According to all four metrics, the
inertia–gravity waves grow as the baroclinic wave de-
cays, and vice versa. Note that differences in each of the
four inertia–gravity wave metrics in Fig. 6 between the
phases of 0° and 360° give some indication of the inter–
life cycle variability of inertia–gravity wave activity.

Although knowledge of the energy stored in the in-
ertia–gravity waves is valuable, the energy flux into
them from the balanced baroclinic wave is arguably of
greater consequence. The growth rate of the inertia–
gravity waves in Figs. 5 and 6 gives some indication of
this energy transfer, which we now quantify. Figure 6e
shows that the peak energy transfer into the inertia–
gravity waves occurs between the phases of 120° and
220°. During this time interval, the percentage of the
total wave energy that is stored in the inertia–gravity

waves increases from around 0% to around 20%. Be-
cause a phase difference of 100° corresponds to 36.7 s,
and because the turntable rotation rate is 2.0 rad s�1,
this time interval corresponds to 11.7 turntable rotation
periods. We therefore estimate that, at this Rossby
number, the balanced flow leaks around 1.7% of its
energy per “day” (i.e., rotation period) into the inertia–
gravity waves at the peak of their generation. We dis-
cuss the consequences of this energy flux for the atmo-
sphere and ocean in section 6. For comparison, Afa-
nasyev (2003) estimates that approximately 4% of the
energy is radiated as inertia–gravity waves in a nonro-
tating, linearly stratified laboratory fluid during the ad-
justment after the collision of two translating vortex
dipoles.

5. Variation of inertia–gravity wave activity with
Rossby number

We now extend the life cycle analysis of section 4,
which was done for one particular Rossby number, to
study variations with Rossby number. Using the experi-
ments of WHR05, we analyze flows with different val-
ues of �� but with � fixed at 2.0 rad s�1 to give a
varying Rossby number but a fixed Burger number and
rotational Froude number. The baroclinic wave in each
case is an amplitude-vacillating wavenumber-2 flow.

Before proceeding, we must address an important
technical point. The bulk Rossby number calculated
using the lid rotation speed, that is, Rolid defined by Eq.
(1), does not reflect the true flow speed. An analysis
of the variation of inertia–gravity waves with Rolid

might therefore be misleading. We must instead use the
bulk Rossby number within the fluid, and specifically at
the interface Roint, because that is where the inertia–
gravity waves appear. Unfortunately, we cannot mea-
sure the internal flow speed directly with the current
apparatus. We instead use the equilibrium torque bal-
ance theory of Williams et al. (2004a), who derived, for
the axisymmetric rotating two-layer annulus, two
coupled nonlinear torque balance equations that may
be solved iteratively for the rotation rates of the inter-
face and the two layers, for any given � and ��. This
axisymmetric calculation does not include baroclinic
waves, and therefore neglects the (small) mean-flow
correction that they induce.

Results of calculations using the torque balance
theory are shown in Fig. 7. As anticipated, Fig. 7a shows
that the Rossby number at the lid is a poor estimate of
the Rossby numbers in the two layers and at the inter-
face. Figure 7b shows that the interface Rossby number
is given in terms of the lid Rossby number by

Roint � �Rolid. �5�
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The factor � is a function of the turntable rotation rate
�, but all the flows analyzed in this study have � �
2.0 rad s�1, for which � � 0.31. In contrast, quasigeo-
strophic theory gives � � 1/2 (e.g., Hart 1972) for all
values of �, which is an overestimate due to the neglect
of Stewartson layer drag at the sidewalls. In the fol-

lowing analysis, we use Roint (with � � 0.31) as the
Rossby number, rather than Rolid. The range of acces-
sible lid Rossby numbers, 0.16 � Rolid � 0.45, becomes
a range of accessible interface Rossby numbers of
0.05 � Roint � 0.14.

Continuing with the main analysis, at 11 different

FIG. 5. Raw laboratory images at the phases indicated, showing one complete baroclinic life cycle. Successive
images are separated by phases of 60°, which in this case is 22 s. The experimental parameters are identical to those
in Fig. 3. The images are taken from experiment 8 of WHR05.
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Rossby numbers we compute the baroclinic wave am-
plitude and the four inertia–gravity wave metrics at six
phases of the baroclinic life cycle. In each case, we per-
form the analysis for two successive life cycles, to give
an indication of the inter–life cycle variability as well as
the intra–life cycle variability. The results are shown in
Fig. 8. While the baroclinic wave amplitude shows little
systematic variation with Rossby number, all four iner-
tia–gravity wave metrics show an increase with increas-
ing Rossby number. Inter–life cycle variability in iner-
tia–gravity wave activity—which may be thought of as

defining error bars for the curves—is present but is
clearly smaller than both the intra–life cycle variability
and the mean variation with Rossby number.

To obtain a single curve describing the inertia–
gravity waves’ amplitude variation with Rossby number
in the laboratory, we take an average over the 12 curves
in Fig. 8b. The resulting life cycle–averaged curve is
plotted in logarithmic coordinates in Fig. 9. The data lie
on a straight line of slope 1.2 � 0.1 in these coordinates
and therefore indicate variation as Ro1.2. If the average
is taken instead over the 12 curves in Figs. 8c–e, then the

FIG. 6. Quantitative analysis of the baroclinic life cycle shown in Fig. 5, but using 37 images
each separated by phases of 10° (3.7 s) to give a higher temporal resolution. The RMS
displacement of the baroclinic wave is plotted together with the four metrics of inertia–gravity
wave (IGW) activity defined in section 3.
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slopes obtained are 1.3 � 0.2, 1.3 � 0.1, and 2.1 � 0.2,
respectively. The laboratory data are therefore consis-
tent with a linear variation of inertia–gravity wave am-
plitude over a threefold range of Rossby number and a
corresponding quadratic variation of inertia–gravity
wave energy. Furthermore, when extrapolated to lower
Rossby numbers, the line of best fit to the laboratory
data in Fig. 9 passes close to the origin, indicating not
only linearity, but proportionality.

The exponential and polynomial predictions from
theory, discussed in section 1, are also plotted in Fig. 9
for comparison. There is a sharp mismatch between the
laboratory curve and the exponential curves. There is
also a sharp mismatch between the laboratory curve
and the quadratic and cubic polynomial curves. Only
the linear polynomial curve is consistent with the labo-
ratory data. Our observations therefore challenge the

notion that inertia–gravity waves generated by bal-
anced motion will be “exponentially small” (e.g., Van-
neste and Yavneh 2004).

6. Consequences for the atmosphere and ocean

The findings of this study may have important con-
sequences for geophysical fluid flows. Our laboratory
observations imply an inevitable emission of inertia–
gravity waves at Rossby numbers similar to those of the
large-scale atmospheric and oceanic flow. The appre-
ciable energy leak from the balanced laboratory mo-
tions, reported in section 4, suggests that the geophysi-
cal analog of our laboratory emission might be a signif-
icant source of inertia–gravity waves in the atmosphere
and ocean. Furthermore, the linear Rossby number
scaling, reported in section 5, suggests that the inertia–
gravity waves might be far more energized than pre-
dicted by at least some theories.

One application of our findings is to the role of in-
ertia–gravity waves in deep ocean mixing. Figure 10
shows the energy budget for the global ocean circula-
tion as estimated by Wunsch and Ferrari (2004). The
thermohaline circulation is partly composed of the sink-
ing of dense surface waters at high northern latitudes.
But to close the circulation and maintain the abyssal
stratification, the dense waters must rise up again
through vertical mixing. This process requires a source
of energy roughly estimated to be 2 TW (1 TW � 1012

W). Previous work has concluded that tides and winds
may adequately supply the required power, but the
conceivable role of loss of balance from mesoscale ed-
dies, resulting in the generation of internal inertia–
gravity waves and associated vertical mixing, has hith-
erto been considered to be “of unknown importance”
(Wunsch and Ferrari 2004).

We may crudely extrapolate our laboratory results to
estimate the energy leak from mesoscale ocean eddies
to internal inertia–gravity waves. The energy stored in
the eddies is given as 13 EJ (1 EJ � 1018 J) in Fig. 10.
If roughly 1% of this energy is lost to inertia–gravity
waves each day, as suggested in section 4, then the
power leak in the global ocean is 1.5 TW. We claim no
accuracy for this figure, which is only indicative. Nev-
ertheless, we are persuaded that generation of inertia–
gravity waves from the balanced mesoscale flow may be
an important source of energy for deep interior mixing
in the ocean. Our finding supports the view that the
“loss of balance” energy pathway in Fig. 10 is poten-
tially important and deserves further study. The known
fluxes of Fig. 10 are possibly in error by factors as large
as 10 (Wunsch and Ferrari 2004), so by comparison our
extrapolation is perhaps not as crude as it first seems.

FIG. 7. Results from the iterative torque balance calculation of
Williams et al. (2004a). Various values of the lid rotation rate ��
are used, with the turntable rotation rate � fixed at 2.0 rad s�1.
(a) Lid and fluid Rossby numbers plotted as functions of the lid
rotation rate. (b) Same data as in (a), but with fluid Rossby num-
bers plotted as functions of the lid Rossby number. The interface
curve in (b) is a straight line with slope 0.31.
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Finally, we note that a power leak of 1% per day im-
plies a 100-day decay time scale, which is broadly con-
sistent with the observed decay time scales of mesoscale
ocean eddies (e.g., Swart et al. 2008).

7. Summary and discussion

We have observed the emission of internal inertia–
gravity waves from balanced flow in a rotating two-
layer annulus laboratory experiment. The wavelength

of the waves is very close to the internal Rossby radius
of deformation. We have investigated some of the
waves’ properties and speculated on the consequences
for the atmosphere and ocean.

Our starting point was laboratory images of internal
interface height at two extremes of Rossby number.
Casual observation of the images suggested that the
inertia–gravity wave amplitude does not depend as
strongly on Rossby number as at least some theories

FIG. 8. Variation of IGW activity with Rossby number, as observed in the laboratory
experiment. The rotational Froude number is fixed at Fr � 8.5. The RMS displacement of the
baroclinic wave is plotted, together with the four metrics of IGW activity defined in section 3.
The red curves correspond to phases of 30°, green to 60°, blue to 90°, yellow to 120°, magenta
to 150°, and cyan to 180°. Two consecutive life cycles are analyzed, represented respectively
by dashed–dotted and dotted curves. The analysis uses experiments 1–11 of WHR05.
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predict. We quantified this observation by defining
various metrics of inertia–gravity wave activity, which
could be computed for any given color laboratory im-
age by projecting onto a calibration curve. For the in-
ternal rotational Froude number fixed at 8.5 (i.e., inter-
nal Burger number fixed at 0.12), we evaluated the in-
ertia–gravity wave metrics at interface Rossby numbers
(calculated from the lid Rossby number using a torque
balance theory) in the range 0.05–0.14. Although we
have only been able to access variations in Rossby num-
ber by a factor of 3, the Ford (1994) source term varies
as Rossby number squared, and so we have almost a
decade of variation in this source term. The results
show a linear variation of inertia–gravity wave ampli-
tude with Rossby number in this range. This observed
linear scaling challenges the notion, suggested by sev-
eral dynamical theories, that inertia–gravity waves gen-
erated by balanced motion will be exponentially small.
A full theoretical explanation for the mismatch is ea-
gerly awaited.

Finally, we have estimated that the balanced labora-
tory flow leaks roughly 1% of its energy each “day”
(i.e., rotation period) into inertia–gravity waves at the
peak of their generation. This suggests that inertia–

FIG. 9. Variation of relative IGW amplitude with Rossby num-
ber, as observed in the laboratory experiment (at Fr � 8.5) and
according to theory. The life cycle–averaged laboratory data are
obtained from Fig. 8b as described in the text. Error bars indicate
the phase-averaged inter–life cycle variability, also determined
from Fig. 8b. The exponential curves are curves of Ro�1/2 exp(��/
Ro) (Vanneste and Yavneh 2004). The polynomial curves are
curves of Ro�. The exponential and polynomial curves are arbi-
trarily normalized to pass through (1, 1). The laboratory data are
also arbitrarily normalized.

FIG. 10. Energy budget for the global ocean circulation, from Wunsch and Ferrari (2004). The boxes in the top row represent energy
sources and the shaded boxes represent energy reservoirs. Energy fluxes between the different components are given in units of TW.
Note the energy flux from mesoscale eddies to internal waves, labeled “loss of balance” and with its value indicated by a question mark.
The value given for the internal wave energy is erroneous and should read 1.4 EJ rather than 14 EJ (C. Wunsch 2007, personal
cmmunication).
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gravity waves might make a significant contribution to
the energy budgets of the atmosphere and ocean. In
particular, the mechanism represents a potentially large
supply of energy for deep ocean mixing, which we
crudely estimated to be 1.5 TW in the global ocean. It
is interesting to compare this flux with the recent ob-
servational estimate of Polzin (2008, manuscript sub-
mitted to J. Phys. Oceanogr.) He finds that the transfer
of energy from eddies to internal waves is 4 � 10�10 W
kg�1 in the depth range 600–800 m. Extrapolating this
to the entire ocean (of volume 1.34 � 109 km3 and
mean density 1026 kg m�3) gives a total flux of 0.5 TW,
which compares quite well with our own estimate. Our
quantitative results also have applications to the atmo-
sphere, for which they could be used to guide inertia–
gravity wave parameterizations.

It is worth remarking that the systematic emission of
inertia–gravity waves has not been observed in other
similar laboratory experiments, even though they have
been used for decades to investigate baroclinic waves.
We speculate that this is because our flow visualization
technique allows a much higher spatiotemporal resolu-
tion than has been achieved in previous studies. Also,
on the rare occasions that inertia–gravity waves have
been reported previously [e.g., Read (1992), although
the amplitudes were an order of magnitude smaller
than in our study], they were measured by probes in the
fluid and it was natural to attribute their generation to
an interaction between the flow and the probes. Un-
usually for rotating laboratory experiments, the visual-
ization technique that we use is noninvasive, ruling out
this possibility.

Our observation that the inertia–gravity wave ampli-
tude is only linearly dependent on Rossby number, and
not exponentially dependent, might be due to dissipa-
tive processes. In these experiments, the inertia–gravity
waves could be affected, or possibly even controlled, by
viscosity and surface tension. Thus, we are not able to
rule out the possibility that the inertia–gravity waves
are fully saturated over the range of Rossby numbers
we have been able to access, and that their amplitude is
determined more by the dissipation than by the forcing.
If this were the case, then our estimate of the energy
flux into the inertia–gravity waves must be considered a
lower bound. We plan future experiments to investigate
this possibility, if practicable.

Inertia–gravity wave generation may depend upon
the Burger number (or its reciprocal, the rotational
Froude number) as well as the Rossby number. Unfor-
tunately, for two independent reasons, it is virtually
impossible to study the dependence upon the former
using the present laboratory apparatus. First, it is evi-
dent from Fig. 3 of WHR05 that over the part of pa-

rameter space at which inertia–gravity waves coexist
with a regular baroclinic wave, the range of possible
Froude numbers at constant Rossby number is much
smaller than the range of possible Rossby numbers at
constant Froude number. Second, the interface be-
comes steeply sloped at high Froude numbers, and the
fluid begins to access interface heights outside the
range of the calibration curve, so that we can no longer
infer interface heights (and hence inertia–gravity wave
amplitudes) from the color laboratory images.

To interpret the present laboratory results in the con-
text of other analytical and numerical studies, it is help-
ful to compare the dynamical regimes in the (Ro, Bu)
space. The present laboratory experiments are at Ro �
0.1 and Bu � 0.1. This lies in the frontal geostrophic
regime and is outside the standard quasigeostrophic re-
gime (Ro K 1 and Bu k Ro), the Ford et al. (2000)
spontaneous emission regime (Ro 	 1 and Bu k Ro2),
and the Vanneste (2004) and Plougonven et al. (2005,
2006) regimes (Ro K 1 and Bu � l).

We acknowledge that the extrapolation of our results
to geophysical flows is crude and provisional. Although
the laboratory fluid and geophysical fluids share similar
Rossby numbers, they have different Burger numbers,
geometries, stratifications, and aspect ratios. Neverthe-
less, this is the first time the emission of inertia–gravity
waves has been studied in this way in a real fluid rather
than a numerical model or theoretical analysis. Our
study therefore makes a vital contribution to the debate
about the role of inertia–gravity waves in geophysical
flows.
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