Geophysical Research Abstracts, Vol. 10, EGU2008-A-02065, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-02065 EGU General Assembly 2008 © Author(s) 2008

A new feedback on climate change from the hydrological cycle

P.D. Williams (1), E. Guilyardi (1,2), R. Sutton (1), J. Gregory (1,3) and G. Madec (2)

(1) Department of Meteorology, University of Reading, UK, (2) Laboratoire d'Oceanographie et de Climat: Experimentation et Approche Numerique (LOCEAN/IPSL), CNRS/Universite Paris VI, France, (3) Hadley Centre for Climate Prediction and Research, Exeter, UK (p.d.williams@reading.ac.uk)

An intensification of the hydrological cycle is a likely consequence of global warming. But changes in the hydrological cycle could affect sea-surface temperature by modifying diffusive ocean heat transports. We investigate this mechanism by studying a coupled general circulation model sensitivity experiment in which the hydrological cycle is artificially amplified. We find that the amplified hydrological cycle depresses sea-surface temperature by enhancing ocean heat uptake in low latitudes. We estimate that a 10 per cent increase in the hydrological cycle will contribute a basin-scale seasurface temperature decrease of around 0.1 K away from high latitudes, with larger decreases locally. We conclude that an intensified hydrological cycle is likely to contribute a weak negative feedback to anthropogenic climate change.