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Abstract The ability to predict times of greater galactic cosmic ray (GCR) fluxes is impor-
tant for reducing the hazards caused by these particles to satellite communications, aviation,
or astronauts. The 11-year solar-cycle variation in cosmic rays is highly correlated with the
strength of the heliospheric magnetic field. Differences in GCR flux during alternate solar
cycles yield a 22-year cycle, known as the Hale Cycle, which is thought to be due to different
particle drift patterns when the northern solar pole has predominantly positive (denoted as
qA > 0 cycle) or negative (qA < 0) polarities. This results in the onset of the peak cosmic-
ray flux at Earth occurring earlier during qA > 0 cycles than for qA < 0 cycles, which in
turn causes the peak to be more dome-shaped for qA > 0 and more sharply peaked for
qA < 0. In this study, we demonstrate that properties of the large-scale heliospheric mag-
netic field are different during the declining phase of the qA < 0 and qA > 0 solar cycles,
when the difference in GCR flux is most apparent. This suggests that particle drifts may not
be the sole mechanism responsible for the Hale Cycle in GCR flux at Earth. However, we
also demonstrate that these polarity-dependent heliospheric differences are evident during
the space-age but are much less clear in earlier data: using geomagnetic reconstructions,
we show that for the period of 1905 – 1965, alternate polarities do not give as significant a
difference during the declining phase of the solar cycle. Thus we suggest that the 22-year
cycle in cosmic-ray flux is at least partly the result of direct modulation by the heliospheric
magnetic field and that this effect may be primarily limited to the grand solar maximum of
the space-age.

Keywords 22-year cycle · Cosmic rays · Heliospheric current sheet · Solar variability ·
Polarity reversal

1. Introduction

During the recent solar minimum, which was longer and deeper than others observed for
over a century (Lockwood, 2010), galactic cosmic-ray (GCR) flux has reached its highest
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values of the space-age (Mewaldt et al., 2010). The high GCR flux has implications for
satellites, spacecraft, and aviation (e.g. Hapgood, 2010) due to their high energies, making
the ability to predict times of greater fluxes of cosmic rays critical for mission planning
and reducing such hazards. It is also important to study the propagation and modulation
of GCRs throughout the heliosphere for the purposes of long-term reconstructions of so-
lar parameters (e.g. McCracken et al., 2004; Usoskin, Bazilevskaya, and Kovaltsov, 2011).
Indeed, cosmogenic isotopes generated in the atmosphere by GCRs and stored in dateable
terrestrial reservoirs such as ice sheets and tree trunks, are our only source of information
on solar variability on millennial timescales (Beer, Vonmoos, and Muscheler, 2006). For
the present study, GCR flux is inferred using high-latitude ground-based neutron monitors.
As GCRs enter the terrestrial atmosphere, they collide with atmospheric particles, produc-
ing secondary particles such as neutrons, which are then observed at the detectors situated
around the globe. The neutron monitor used for this study is at McMurdo, Antarctica, is
run by the Bartol Institute, and has been recording data since 1964. The cut-off rigidity for
this neutron monitor, set by the geomagnetic field, is lower than that set by the atmosphere
because of the strength and more strongly vertical orientation in polar regions of the geo-
magnetic field. This means that the instrument responds to energies down to about 1 GeV,
whereas a station near the Equator (where the cut-off rigidity is set by the geomagnetic field)
will respond to particles of energy exceeding about 16 GeV. The fractional modulation of
cosmic rays by the heliosphere is greater at lower energies, and hence by selecting this high-
latitude station we detect the stronger variation of the lower-energy particles (Bieber et al.,
2004).

Schwabe (1843) was the first to recognise the 11-year solar-cycle variation using the pe-
riodicity in sunspot number records, and the signature of this variation in cosmic rays was
detected using ionisation chambers by Forbush (1954). Evidence for the 22-year Solar Cycle
variation was first reported on by Ellis (1899), who observed high counts of geomagneti-
cally quiet days during alternate minima in the 1850s and 1870s. Chernosky (1966) showed
additional characteristic differences in geomagnetic activity in alternate 11-year cycles. The
odd- and even-numbered solar cycles have been shown to be different in cosmic ray fluxes at
Earth (e.g. Webber and Lockwood, 1988), giving a 22-year cycle, known as the Hale Cycle,
as also seen in sunspot polarity and latitude (Hale and Nicholson, 1925). Van Allen (2000)
compared neutron counts with sunspot numbers for solar activity Cycles 19 – 22. He pro-
duced modulation cycles where each year a data point is plotted, between sunspot number
and neutron counts, which map out an approximately circular pattern throughout the cycle.
He showed that the shape of these plots was vastly different between the odd Solar Cycles
21 and 23 and the even Cycles 20 and 22. He also noted that as sunspot numbers increase
after solar minimum, the cosmic ray flux drops quicker for odd than for even cycles.

Studies of the 22-year cycle in cosmic-ray fluxes from modern neutron monitors (e.g.
Webber and Lockwood, 1988; Smith, 1990) have led to the description of neutron counts
following an alternate flat-topped and peaked pattern. The polarity of the solar field [A] is
taken to be negative when the dominant polar field is inward in the northern and outward
in the southern hemisphere (e.g. Ahluwalia and Ygbuhay, 2010; and references therein) and
positive if the opposite is true. Curvature and gradient drift directions are reversed if the
sign of the charge of the particle [q] is reversed, therefore it is customary to define cycles by
the polarity of the product [qA]. The occurrence of flat-topped and peaked maxima has been
found to agree with the expected effect of curvature and gradient drifts of cosmic ray protons
(Jokipii, Levy, and Hubbard, 1977; Jokipii and Thomas, 1981; Potgieter, 1995; Ferreira and
Potgeiter, 2004): during cycles with positive polarity (qA > 0), cosmic ray protons arrive
at Earth after approaching the poles of the Sun in the inner heliosphere and moving out
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along the heliospheric current sheet (HCS). Conversely, during negative polarities (qA < 0),
cosmic ray protons approach the Sun along the HCS plane and leave via the poles. The ease
with which cosmic rays can travel toward Earth along the HCS during qA < 0 cycles is
thought to depend on the HCS tilt (or inclination) relative to the solar Equator. Shielding of
GCRs is also provided by scattering of particles off irregularities in the heliospheric field.
Because the number and size of these irregularities tends to scale with the field strength,
this is well quantified by the open solar flux (OSF) (Rouillard and Lockwood, 2004), the
total magnetic flux leaving the coronal source surface (usually defined to be at a heliocentric
distance of 2.5 R� where R� is a mean solar radius). Surveys of in-situ data show that the
near-Earth interplanetary medium also displays 22-year cycles (e.g. Hapgood et al., 1991),
and the results of Rouillard and Lockwood (2004) suggest that the 22-year variation was
primarily caused by that in heliospheric field strength, with less influence of drift effects
than previously thought.

The polar-field reversal, which must separate qA > 0 and qA < 0 cycles, occurs at, or
just after, sunspot maximum for each solar cycle. It is triggered by magnetic flux migrat-
ing up from sunspot groups towards the poles, which cancels out the pre-existing flux of
opposite polarity already situated here (Harvey, 1996). This behaviour is clearly visible in
photospheric magnetogram data.

The tilt angle of the heliospheric current sheet (HCS) has been shown to be a key param-
eter in the modulation of cosmic rays. The model proposed by Alanko-Huotari et al. (2007)
suggested that the modulation can be described by a combination of the HCS tilt angle, the
Sun’s polarity, and the unsigned open solar flux (OSF). This model gives good agreement
throughout Solar Cycles 19 – 23. Cliver and Ling (2001) compared the heliospheric tilt angle
for Solar Cycle 21, 22, and the available data of Solar Cycle 23 at the time. They noted that
during the declining phase of solar cycle, the decay of the HCS tilt angle following the odd
cycle was more gradual than following the even cycle. During the ascending phase, how-
ever, both cycles were remarkably similar. From this, the authors concluded that this is most
likely due to differences in the evolution of the large-scale magnetic field on the decay of
the solar cycle. This study was updated by Cliver, Richardson, and Ling (2011), who added
the HCS tilt-angle data for the remainder of Solar Cycle 23. They found that the recent cy-
cle was indeed similar to Cycle 21 in shape, but that Solar Cycle 23 was much longer. In
this article, we build on the studies of Cliver and Ling (2001) and Cliver, Richardson, and
Ling (2011) by evaluating other heliospheric parameters to investigate the possible differ-
ence in the declining phase of the solar cycle, in particular, whether the difference between
GCR flux in qA < 0 and qA > 0 cycles has its origin in differences in the heliospheric field
strength and not just in its direction (as would be expected for drift effects alone).

2. The 22-Year Solar Cycle Variations

In this study, we consider “polarity cycles” to be the intervals between polar polarity rever-
sals (i.e. solar maximum to solar maximum) and not the conventional solar cycle (i.e. from
solar minimum to solar minimum), as has previously been studied. This enables us to bet-
ter isolate effects of solar polarity. Thus, we assign a phase [εp], varying linearly between
0◦ and 360◦, between the two polarity reversals (such that its relationship to the sunspot
cycle phase [ε] defined from solar minimum to minimum by Lockwood et al. (2012) is
εp ≈ ε − 2πx(4.5/L), where L is the solar-cycle length in years). However, polarity rever-
sals are difficult to define from photospheric magnetogram data, as there are annual fluctua-
tions in observed polar polarities due to the inclination of the ecliptic plane with respect to
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Figure 1 Solar polarity reversal times for Solar Cycles 19 to 23, as estimated from photospheric magne-
tograms. The red lines show the earliest and latest times that the average field of either the north or the south
magnetic polar region crosses zero. Black crosses give best estimates for polarity reversals. The top panel
shows the times from sunspot minimum in years, while the bottom panel shows solar-cycle phase [ε]. The
dashed horizontal line in the bottom panel shows the value used here to determine the timing of polarity
reversals from sunspot data.

the heliographic equator (Babcock and Babcock, 1955). Furthermore, polarity reversals do
not occur simultaneously at both poles but are often separated by more than a year (Bab-
cock, 1959). The present study used polarity reversal times for Solar Cycles 21 – 23 from
Svalgaard, Cliver, and Kamide (2005) and Hathaway (2012), an extension to the polarity
reversal of Solar Cycle 24 (see Lockwood et al., 2012), and analysis from Babcock (1959)
for Solar Cycle 20.

Within one solar hemisphere, the mean of the earliest and latest times at which the po-
larity reversal may have occurred, are defined as the times at which the average field in that
polar region crosses zero. These are displayed in Figure 1 as the vertical red lines. The top
panel shows these data in years since solar minimum, defined as the time of rapid increase in
the average sunspot latitude (Owens et al., 2011). The bottom panel shows the same polarity
reversal data as a function of solar-cycle phase [ε], defined as 0◦ at the start of the solar cycle
and 360◦ at the end of the solar cycle, which effectively normalises for the variable length
of solar cycles. The black crosses in Figure 1 are the times when the average north minus
average south polar fields cross zero. These data, however, are unavailable prior to Cycle 20
and so these crosses are not included in Figure 1. This is generally used as a measure of the
global solar dipole having reversed (e.g. Hathaway, 2012).

To apply this analysis to pre-space-age solar cycles, it is necessary estimate the time of
polarity reversals without the aid of photospheric magnetograms instead of relying only on
sunspot data. We therefore calculated the solar cycle phase [ε] which is the best fit through
all the potential times of polarity reversal shown in Figure 1. We found a phase of ε = 125◦,
as shown by the horizontal dashed line, and this ε was used to define εp = 0◦. The error on
the phase is 20◦ corresponding to an average of 0.5 to 1 year in the top panel. The blue (qA >

0) and red (qA < 0) lines in Figure 2 are based on polarity-reversal timings approximated
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Figure 2 Time series (from top): neutron-monitor counts at McMurdo, sunspot number, unsigned open solar
flux, magnitude of the heliospheric magnetic field in near-Earth space, and heliospheric current sheet tilt
index. The 22-year solar cycle is clearly seen in the cosmic-ray count rates. The times of qA < 0 polarity are
shown in red and qA > 0 in blue with the change in colours representing the polarity reversal time estimated
using sunspot data. The grey boxes represent the times of polarity reversals estimated from photospheric
magnetograms as described in the text.

by this method. The grey-shaded regions are the full extents of the polarity reversal times
estimated from photospheric magnetograms. In general, the two methods agree well. This
is because while solar cycle length can vary considerably; it tends to be a result of short or
long declining phases, with rise phases showing much less variability in length (Waldmeier,
1935; Hathaway, Wilson, and Reichmann, 1994; Owens et al., 2011).

The top panel of Figure 2 shows neutron monitor counts at McMurdo. The 22-year cycle
in cosmic ray flux is clearly visible with its alternate flat-topped (blue) and peaked (red)
pattern. The second panel shows the sunspot number. The third panel shows the unsigned
open solar flux (OSF), calculated from 4πAU2|BR|, where AU is the Earth–Sun distance and
BR is the daily mean radial magnetic field from the OMNI dataset (King and Papitashvili,
2005). The bottom panel shows the HCS index, a useful parameter for quantifying any tilt
and the warped nature of the HCS (in other studies often called tilt angle). It is found by
applying a uniform grid across the magnetogram-constrained potential-field source surface
(PFSS) and computing the fraction of grid boxes that have the opposite polarity to their
immediate longitudinal neighbour (Owens, Crooker, and Lockwood, 2011). At solar max-
imum, much of the HCS is highly inclined with the rotation axis, and it is highly warped
due to a strong quadrupole moment, giving a high HCS index value. At solar minimum,
when the quadrupole moment is weaker and the dipole more rotationally aligned, the HCS
index has a much lower value. As discussed above, the HCS has been found to play a key
role in the modulation of cosmic rays (e.g. Smith and Thomas, 1986) because distortions in
the HCS are associated with corotating interaction regions (CIRs), which can act as shields
to GCR propagation (Rouillard and Lockwood, 2007). Structures in the heliospheric mag-
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Figure 3 Neutron monitor counts as a function of polarity-cycle phase [εp] for qA > 0 (blue) and qA < 0
(red) cycles. From left: raw data, normalised data, and superposed epoch (composite) analysis. The error bars
are plus or minus one standard deviation.

netic field can result in GCRs experiencing drift effects or scattering off of irregularities
(e.g. Parker, 1965; Jokipii, Levy, and Hubbard, 1977). OSF is also included in a model by
Alanko-Huotari et al. (2007), who found it to be strongly anti-correlated with neutron count
rates (e.g. Lockwood, 2003; Rouillard and Lockwood, 2004). Note that the HCS inclination-
index data show a more gradual decline during the declining phase of qA < 0 cycles than
the qA > 0 cycles, as noted by Cliver and Ling (2001) and Cliver, Richardson, and Ling
(2011).

3. Differences Between qA < 0 and qA > 0 Cycles

To examine the differences between heliospheric and GCR properties in qA < 0 and qA > 0
polarity cycles, we here used a superposed epoch (composite) analysis. To demonstrate the
analysis process, we first applied this analysis to the neutron-monitor count rates in Figure 3.

The red lines in Figure 3 represent qA < 0 cycles while the blue lines are qA > 0 cycles.
The left panel shows the raw data (27-day means) of the McMurdo neutron monitor count
rates as a function of the polarity phase [εp] (defined using the sunspot method of defining
the polarity-cycle start/end times). For the anticipitated polarity reversal of Cycle 24, we
used the date of 2.4 months into 2013, corresponding to a phase of 125◦ through the polarity
cycle (Lockwood et al., 2012). The middle panel shows the data normalised to the maximum
and minimum values over that individual polarity cycle to remove systematic cycle-to-cycle
amplitude variations. Finally, the right panel shows the average for normalised parameters
over qA > 0 and qA < 0 cycles, with error bars showing plus/minus one standard deviation.

The neutron-monitor count rates clearly show the Hale cycle. The qA < 0 and qA > 0
cycles display differing shapes, with the peaked and flat-top profiles largely the result of
differences in the first half of the polarity cycle (i.e. the declining phase of the sunspot
cycle), although there is a shorter, less pronounced difference after the cosmic ray peak (i.e.
the rising phase of the sunspot cycle). In Figure 4 we now repeat this analysis for a number
of other solar and heliospheric parameters.
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Figure 4 Panels from left to right give raw data, normalised data, and averages of the qA < 0 and qA > 0
polarity cycles (in red and blue, respectively). These plots are for (from top to bottom) the monthly sunspot
number [R], the monthly standard deviation of the daily sunspot number [σR], the near-Earth magnetic-field
strength [|B|], the open solar flux [OSF], and the HCS inclination index. The error bars are plus and minus
one standard deviation of the two polarity cycles used. Note that there are data on the HCS inclination index
for only one qA > 0 cycle, therefore no standard deviations can be given in the bottom right panel. The data
have been averaged over bins in cycle phase [εp] that are 36◦ wide.

The format of Figure 4 is the same as that for Figure 3, with raw data in the left column,
normalised data in the middle, and a superposed epoch analysis shown on the right. The four
rows show (from top to bottom) the international sunspot number [R], the monthly standard
deviation of daily sunspot number [σR], the near-Earth magnetic-field strength [|B|], the
open solar flux [OSF], and the HCS inclination index. For the HCS inclination index, there
is only one cycle of data available for qA > 0, therefore no error bars can be given.

The sunspot number shows a small difference between the qA < 0 and qA > 0 cycles,
suggesting that the start and end times for the cycles are well defined and that there is no Hale
effect in sunspot number [R]. However, the standard deviation of the sunspot number does
show a significant difference between the two polarities: in the second panel, we see a greater
variability in sunspot number during the qA < 0 polarity cycles than during the qA > 0
cycles. The increased variability could be the result of active longitudes (e.g. Ruzmaikin
et al., 2000; Berdyugina and Usoskin, 2003) separated by quiet longitudes. This agrees with
an anti-correlation between cosmic ray flux and non-asymmetric open solar flux (Wang,
Sheeley, and Rouillard, 2006), which is responsible for the longitudinal structure in the
heliosphere. It is worth noting that Gil and Alanis (2008) found that the 27-day variability
of neutron monitor counts was greater in qA > 0 cycles than in qA < 0 cycles. However,
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this behaviour is opposite to that for the sunspot numbers noted here. This could be a result
of rotating compression regions associated with the HCS known as corotating interaction
regions (CIRs), which are more effective modulators during qA > 0 cycles (Richardson,
Cane, and Wibberenz, 1999), and not the result of a change in CIR and/or heliospheric
properties themselves.

A similar signature is also seen in the other three rows, which show the heliospheric
magnetic field, the OSF, and the HCS inclination index. There is a significant difference be-
tween the qA < 0 and qA > 0 cycles around εp = 125◦ (which corresponds to the declining
phase of the solar cycle). The HCS inclination index result is also consistent with a greater
prevalence of active longitudes during the declining phase of the solar cycle under qA < 0
conditions. A very similar pattern is also noted for the HCS tilt angle (not presented here).
The only available qA > 0 cycle is consistently outside of the error bars throughout the first
half of the polarity cycle, the time when the qA < 0 and qA > 0 cosmic ray values differ
most significantly. Hence, the result for Cycle 23 is consistent with the previous findings of
Cliver and Ling (2001).

Solar Cycle 20 was unusual in terms of the magnitude of the near-Earth magnetic field
and because the OSF was particularly flat and showed little solar cycle variation. As can
be seen from Figure 4, this cycle does indeed have an effect on the difference between the
average behaviour of |B| and the OSF within the qA > 0 and qA < 0 cycles. However, we
note that removing this cycle does not remove the significance in the difference between
average qA > 0 and qA < 0 cycles.

We also tested the sensitivity to changing the exact start and end times of the polarity
cycles. Varying the boundaries between the times of the north and south polar reversals by
an interval of 0.5 – 1 year (from the error on the phase in Figure 1) during the space age
does vary the average curves to some degree. However, it does not remove the differences
between the qA > 0 and qA < 0 cycles during the first half of the polarity cycle, which
remains significant. This test is applied again and discussed in more detail in the next section.

4. Geomagnetic Reconstructions of the Pre-Space-Age Heliosphere

We now consider data from before the space age. Magnetic-field magnitude and OSF can be
reliably reconstructed back to at least 1905 using geomagnetic data (e.g. Lockwood, Rouil-
lard, and Finch, 2009; Lockwood and Owens, 2011). We used these data sets to examine
the behaviour of the heliospheric magnetic field over six additional pre-space-age polarity
cycles. This enabled us to test whether this difference in heliospheric parameters during
the qA > 0 and qA < 0 polarity cycles is limited to the space-age, which spans the recent
grand solar maximum (Solanki et al., 2004; Lockwood, Rouillard, and Finch, 2009; Lock-
wood et al., 2012), or whether it is a more persistent feature. Geomagnetic reconstruction
of the heliospheric field is limited to yearly values because annual variations in factors such
as the ionospheric conductivity and Earth’s dipole tilt influence the coupling between the
solar wind and the geomagnetic field. Thus bin sizes were taken to be approximately one
year (precisely one year is not possible because we consider solar cycle phase, not time).
Between the geomagnetic reconstructions and the OMNI data, heliospheric magnetic field
magnitude and open solar flux have been shown to be consistent (Lockwood and Owens,
2011). We therefore assumed that these parameters agree during the space-age and that ge-
omagnetic reconstructions can be taken as representative of the heliospheric magnetic field
throughout the period of 1905 – 2012.

Figures 5 and 6 give a similar analysis to Figure 4 in the same format as Figures 3 and 4,
namely for the raw data (left column), normalised data (middle column), and means and
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Figure 5 Heliospheric magnetic-field magnitude [|B∗|] and open solar flux [OSF∗] reconstructed from ge-
omagnetic data, along with the monthly sunspot number and the monthly standard deviation of the daily
sunspot number. This plot considers the space-age period (1965 – 2012). The red curves show qA < 0 po-
larity cycles for each parameter, whereas the blue curves show qA > 0 cycles. The left column shows the
raw data, the middle column shows the data normalised to the maximum and minimum values, and the right
column gives the mean and standard deviations of the polarity cycles.

standard deviations (right column) of the qA < 0 and qA > 0 polarity cycles (in blue and
red, respectively) determined using the sunspot method of defining εp. This analysis is given
for (from top) |B∗| the heliospheric magnetic-field magnitude, and OSF∗ the open solar flux
(where the asterisks denote that values are reconstructed from geomagnetic data), along with
monthly sunspot numbers and the monthly standard deviation of the daily sunspot number.

Figure 5 shows the space-age data only, whereas Figure 6 gives the pre-space-age data.
As can be seen from Figure 5, the difference between the qA < 0 and qA > 0 cycles dur-
ing the space age is still present in |B∗| and OSF∗. Because the reconstructed data have
a yearly resolution, the data are binned more coarsely, with fewer data points averaged to
produce each data point, which may partly explain why the differences in |B∗| and OSF∗
are slightly less pronounced than for |B| and OSF in Figure 4. The sunspot numbers and
standard deviations are also plotted at this yearly resolution and show the same trends as
found previously for the monthly averages. Note that the geomagnetic data do not cover the
final 72◦ of the polarity-cycle phase. This is because the geomagnetic data are only available
up until June 2008, while in this study the main focus times are the declining phases of the
solar cycle.

Figure 6 shows the same analysis as Figure 5, but for six pre-space-age polarity cycles.
The pre-space-age |B∗| and OSF∗ do show some slight differences in alternate polarity
cycles; however, unlike the space age, these are earlier in the polarity cycle (i.e. just after
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Figure 6 Pre-space-age reconstructions of heliospheric magnetic-field magnitude [|B∗|] and open solar flux
[OSF∗]; the sunspot number and standard deviation of daily sunspot number are also shown. The red curves
show qA < 0 polarity cycles for each parameter, whereas the blue curves show qA > 0 cycles. The left col-
umn shows the raw data, the middle column shows the normalised data, and the right column is a superposed
epoch analysis.

solar maximum) and hence no longer coincident with the Hale Cycle differences in the
cosmic-ray flux. Furthermore, the standard deviation of daily sunspot numbers with respect
to the monthly averages does not show the same variation between alternate polarity cycles
in the pre-space-age data (in fact, the qA > 0 cycles give slightly higher mean values at the
relevant εp than the qA < 0 cycles in Figure 5, but the difference is small compared to the
errors).

We now test the sensitivity of the results shown in Figures 5 and 6 to realistic variations
on the start and end times of the polarity cycle (i.e. changes in the time of polarity rever-
sal). Comparison of the polarity-reversal times determined from sunspot number and pho-
tospheric magnetograph data (Figure 1) suggests a typical uncertainty of around 0.5 years.
Therefore we performed a Monte Carlo analysis of the difference in heliospheric parame-
ters in the qA < 0 and qA > 0 cycles to the varying the reversal times by half a year. For
each variable shown in Figures 5 and 6 (i.e. the geomagnetic reconstructions of magnetic-
field magnitude and OSF, the monthly sunspot number, and the sunspot variance) we used
random numbers to vary the start and end times of each cycle by 0.5 years with a chosen
weighting of 50 % chance of no change in start and end time and 50 % of the reversal time
changing by 0.5 years (with an equal probability of moving backward or forward 0.5 years).
For each set of new polarity reversal times, we repeated the same superposed-epoch analy-
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Figure 7 Sensitivity analysis of geomagnetic and sunspot data to varying the start and end dates by plus or
minus 0.5 years. Each panel shows the difference between qA < 0 and qA > 0 polarity cycles of the following
parameters (from top): reconstructed magnetic-field intensity, reconstructed open solar flux, sunspot number,
and sunspot variance. The green line shows the mean of all space-age cycles and the black line shows all
pre-space-age cycles with the error bars representing the standard deviation of all cycles included in the
mean.

sis and computed the difference in the qA > 0 and qA < 0 parameters. We ran this process
1 000 times to obtain a broad spread of cycle start and end times.

Figure 7 shows the difference in heliospheric parameters between the qA > 0 and qA < 0
cycles, with the space age (pre-space age) in green (black). Shown from top to bottom are
geomagnetic reconstructions of the heliospheric magnetic field [|B∗|], the open solar flux
[OSF∗], the sunspot number [R], and the sunspot variance [σR], as used in previous plots.
Each parameter was averaged over all available cycles of each polarity and the differences
between the means for the qA < 0 and qA > 0 cycles are plotted. The green lines are the
average behaviour of all space-age cycles and the black lines are all pre-space-age cycles.
The error bars on each plot are plus or minus the standard deviation of all cycles included in
the mean of all samples.

For the heliospheric magnetic-field strength [|B∗|] (top panel) both the pre-space-age
data (black line) and the space-age data (green line) show a difference around εp = 100◦,
which is larger than the error bars and so is considered significant. This difference is signif-
icant at all phases of the declining phase of the sunspot cycle (εp < 100◦) for the pre-space-
age data, but not for shortly after solar maximum in the space-age data. This means that
shortly after sunspot maximum, |B∗| during qA < 0 cycles is larger than for qA > 0 cycles
in the pre-space-age data, which is the opposite of the space-age data. The result that there
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is no significant difference between the two polarity cycles for sunspot number [R] is found
not to be sensitive to the start and end times of cycles used.

On the other hand, for both the OSF∗ and the sunspot number variability [σR], the result
holds when subjected to sensitivity testing; that is, the declining phases of the space-age
cycles show an increase in these parameters during qA < 0 over qA > 0, but do not show a
difference in pre-space-age data. This is shown as the peak in the space-age data above the
pre-space age is more than zero by more than the error bar.

Another result to note is the difference at the start of the polarity cycle seen in the geo-
magnetic |B∗| data. Here we see |B∗| during qA < 0 dominating |B∗| during qA > 0 during
pre-space-age cycles, but the opposite is true for space-age cycles. This result may warrant
further work but is not seen in any other variable.

5. Discussion and Conclusions

As cosmic rays are modulated by the heliospheric magnetic field and heliospheric current-
sheet tilt, the 11-year cycle is also seen in cosmic ray records. In addition to the solar cycle,
cosmic ray time series display a strong 22-year Hale Cycle, which has been attributed to
differing drift patterns and diffusion (particularly at solar maximum) during positive and
negative solar field polarities (e.g. Jokipii, Levy, and Hubbard, 1977; Ferreira and Potgeiter,
2004). It has been argued that this results in the earlier rise to the cosmic ray peak during
qA > 0 cycles than for qA < 0 cycles, and gives the time series a flat-topped and peaked
appearance, respectively. However, an increasing number of results are not consistent with
this concept. For example, Richardson, Cane, and Wibberenz (1999) and Gil and Alanis
(2008) have found that recurring decreases in cosmic ray fluxes were considerably stronger
when qA > 0, whereas the drift theory suggests that they should be stronger for qA < 0,
when cosmic rays should be entering by drifting inward along the HCS. In addition, other
studies have found differences between qA > 0 and qA < 0 in the HCS tilt (Cliver and
Ling, 2001) and in open solar flux (Rouillard and Lockwood, 2004) that offer alternative
explanations of the 22-year cycle in cosmic ray fluxes.

In this study, we separated space-age solar and heliospheric data into polarity cycles de-
fined as intervals between polar solar-polarity reversals, thus approximately spanning solar
maximum to solar maximum.

The results show a significant difference in the behaviour of HCS inclination, helio-
spheric magnetic-field magnitude, and open solar flux between qA > 0 cycles and qA < 0
cycles. This difference is only significant during the first half of the polarity cycle, which
corresponds to the declining phase of the solar cycle, the period responsible for a large part
of the difference in GCR fluxes in the qA > 0 and qA < 0 cycles. The standard deviation
in daily sunspot number also gives a significant difference between qA > 0 and qA < 0
cycles during the same period, suggesting a greater prevalence of active longitudes during
this phase of qA < 0 cycles. This agrees with the increased HCS inclination throughout
this period. The presence of more active longitudes giving greater HCS inclination means
that there will be regular fast/slow stream interfaces extending over broad latitudinal ranges,
which was shown to be an effective way of shielding cosmic rays in a case study by Rouil-
lard and Lockwood (2007).

We suggest that the 22-year cycle in GCR flux may be partly due to direct heliospheric
modulation, although drift effects (Jokipii, Levy, and Hubbard, 1977; Ferreira and Potgeiter,
2004) will still play a role, particularly during the end of the polarity cycle (i.e. the rise phase
of the solar cycle), when differences in heliospheric parameters are less apparent. Of course,
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while changes in heliospheric structure are coincident with the differing behaviour in cosmic
ray flux in alternate polarity cycles, it still remains to be shown that they are of sufficient
magnitude to effect the required modulation. To do this will, however, require a significant
modelling effort.

The above conclusions relate to the space-age era for which there are in-situ observations
of interplanetary parameters and magnetograph data from which the start and end times of
the polarity cycle and the HCS tilt index can be derived. Because these data have been taken
during a grand solar maximum (Lockwood, Rouillard, and Finch, 2009), the conclusions
might not necessarily have been valid in the less active times prior to the grand maximum. To
test this, the open solar flux and near-Earth magnetic field reconstructed from geomagnetic
activity data were used, employing the sunspot number variations to define the start and end
times of the polarity cycle. The data were divided into the space-age era (1965 and after
corresponding to the first study) and pre-space-age data before 1965.

The reconstructed data from the space-age era supported the above findings of the study
using direct observations, but we also noted that the differences between polarity cycles
are considerably smaller before the space age. Using geomagnetic reconstructions of helio-
spheric magnetic-field magnitude and open solar flux, it was shown that for the period of
1905 – 1965, the opposite polarities do not give such differing patterns during the declining
phase of the solar cycle. In particular, the variability in sunspot numbers is greatly reduced.
One source of uncertainty that we addressed is that before the space age we have to use the
sunspot number variation to define the start and end time of the polarity cycles. A sensitiv-
ity study that added the uncertainty in these inferred times showed that the result is robust
for the open solar flux [OSF] and the variability of the sunspot number [σR]. However, this
uncertainty means that we cannot be certain that the polarity effect on the near-Earth he-
liospheric field strength (at the phase of the polarity cycle when the polarity effect on GCR
is greatest in the space-age era) is different in the pre-space-age data compared with the
space-age era.

The data suggest that the polarity-dependent effect on cosmic rays before the recent grand
solar maximum was most likely restricted to the drift effects and was not as marked as it has
been in recent data. This is consistent with cosmogenic isotope data, which, in general, do
not show strong 22-year Hale cycle variations (Usoskin, 2008).
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