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Abstract Fluctuations in the solar wind plasma and magnetic field are well described by
the sum of two power law distributions. It has been postulated that these distributions are
the result of two independent processes: turbulence, which contributes mainly to the smaller
fluctuations, and crossing the boundaries of flux tubes of coronal origin, which dominates the
larger variations. In this study we explore the correspondence between changes in the mag-
netic field with changes in other solar wind properties. Changes in density and temperature
may result from either turbulence or coronal structures, whereas changes in composition,
such as the alpha-to-proton ratio are unlikely to arise from in-transit effects. Observations
spanning the entire ACE dataset are compared with a null hypothesis of no correlation be-
tween magnetic field discontinuities and changes in other solar wind parameters. Evidence
for coronal structuring is weaker than for in-transit turbulence, with only ∼25% of large
magnetic field discontinuities associated with a significant change in the alpha-to-proton
ratio, compared to ∼40% for significant density and temperature changes. However, note
that a lack of detectable alpha-to-proton signature is not sufficient to discount a structure as
having a solar origin.
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1. Introduction

Single-point spacecraft observations reveal fluctuations in the solar wind plasma and mag-
netic field over a wide range of time scales. These are interpreted as a combination of spatial
and temporal variations in the rest frame of the plasma, with waves, shocks, turbulence and
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412 Owens et al.

Figure 1 Sketches of two possible mechanisms for coronal heating and subsequent heliospheric magnetic
field braiding. In the left-hand sketch, the corona is heated by reconnection between open solar flux and closed
loops emerging through the photosphere. In this model, the heliospheric magnetic field is likely to become
tangled due to foot point motions. In the right-hand sketch, the corona is heated by waves or turbulence. The
heliospheric magnetic field can then become tangled by turbulent motions, either propagating directly from
the corona or generated in transit.

tangential and rotational discontinuities all likely contributing (e.g., Horbury et al., 2001;
Bruno et al., 2001; Bruno and Carbone, 2005). It is of considerable interest to discern be-
tween fluctuations of turbulent or coronal origin, as this can provide a constraint on the
physical mechanism(s) by which the corona is heated and the solar wind formed.

Figure 1 shows sketches of two possible mechanisms for coronal heating and their impli-
cations for heliospheric magnetic field discontinuities as structures convect over an observ-
ing spacecraft. Both models are able to produce fast and slow solar wind, as well as observed
in situ composition signatures (Cranmer, 2008). In the left-hand sketch, the corona is heated
by reconnection between open solar flux and closed loops emerging through the photo-
sphere (see, e.g., Fisk and Schwadron, 2001; Schwadron and McComas, 2003; Schwadron,
McComas, and DeForest, 2006), and the heliospheric magnetic field will naturally become
tangled due to foot point motions. In the right-hand sketch, the corona is heated by waves or
turbulence (see, e.g., Cranmer and van Ballegooijen, 2005; Verdini and Velli, 2007). The he-
liospheric magnetic field can then become tangled by turbulent motions, either propagating
directly from the corona or generated in transit.

Borovsky (2008) showed that the observed occurrence rate of changes in the magnetic
field direction at 1 AU (�θB) can be fit by assuming two distinct populations. It was sug-
gested that periods of low �θB, e.g., below 45°, can be attributed to turbulence, whereas
larger �θB intervals were explained in terms of crossing walls of magnetic flux tubes formed
near the Sun. The occurrence rate of other solar wind parameters, including proton temper-
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Solar Wind Discontinuities 413

ature (TP), density (nP), and the alpha-to-proton ratio (α/p) were shown to exhibit a similar
dual distribution.

Solar wind density and temperature are expected to undergo significant evolution during
transit from the Sun to 1 AU, through both linear and non-linear processes. Conversely, el-
emental abundance, in particular the alpha-to-proton ratio, is primarily determined by coro-
nal processes and is difficult to modify during the subsequent transit to the observer (Borrini
et al., 1981; Aellig, Lazarus, and Steinberg, 2001). Borovsky (2008) found that, for two
years of Advanced Composition Explorer (ACE) measurements, α/p is typically higher for
�θ > 50° than �θ < 15°. This suggests that the largest changes in magnetic field direction
may have a solar origin. Similarly, for intervals of periodic solar wind density fluctuations,
Viall, Spence, and Kasper (2009) found an anti-correlation with α/p. However, the general
interrelation between �θ and �α/p, along with its statistical significance, has still to be
fully investigated and is addressed in this study.

2. Data

ACE magnetic field data from the Magnetic Field Investigation (MFI, Smith et al., 1998)
and plasma data from the Solar Wind Electron Proton Alpha Monitor (SWEPAM, McCo-
mas et al., 1998) are used at 64-second resolution, the spin period of the spacecraft. The data
cover the whole of the available ACE mission, from January 1998 to June 2009. Periods dur-
ing which no data are available are removed from the study (no interpolation is made), and
only the time interval of 64 seconds is considered for the data. This results in approximately
3.5 million data points. No attempt is made to remove intervals associated with coronal mass
ejections (CMEs) and corotating interaction regions (CIRs) from the time series. By treating
the solar wind dataset as a whole, we assume that CMEs are merely the largest structures in
a spectrum of coronal flux tubes (e.g., half the solar wind magnetic flux at solar maximum
may be the result of CMEs, Owens and Crooker, 2006).

For the whole dataset, we compute the fractional change in solar wind parameters be-
tween consecutive data points, DX , for both vector (i.e., magnetic field and plasma velocity)
and scalar (i.e., proton temperature, density and alpha-to-proton ratio) quantities:

DX = �X
〈|X|〉 = |Xi − Xi+1|

|Xi + Xi+1|/2
. (1)

Thus DX is a scalar quantity regardless of whether X is a scalar or vector quantity. In order
to aid direct comparison with the work of Borovsky (2008), we also consider the angular
change in the magnetic field vector between consecutive data points, �θB.

3. Solar wind Variations

We consider the 64-second variations in solar wind parameters in three stages. First, the
individual probability distribution functions (PDFs) are computed over the whole dataset.
Next, the joint occurrence rates between solar wind parameters and changes in the magnetic
field are investigated for any interrelation. Finally, the individual PDFs are combined to
calculate the null hypothesis of no interrelation, which is compared with the observations.
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Figure 2 The individual PDFs for point-to-point changes in various solar wind parameters at 64-second
resolution. DV and DB are the magnitude of changes in the vector velocity and magnetic field, respectively.
Dn , DT and Dα are changes in the scalar quantities of density, temperature and alpha-to-proton ratio, respec-
tively. All data are shown on a logarithmic scale. The red lines are the best fits using a high-order polynomial
function.

3.1. Individual Occurrence Rates

Figure 2 shows P (DX), the PDF of fractional changes in solar wind parameters. A logarith-
mic scale is used. The magnetic field vector, magnetic field angle, proton velocity vector,
proton temperature, proton density and the alpha-to-proton ratio are all considered.

We do not attempt to draw any conclusions from these individual PDFs; in particular,
no attempt is made to deconvolve them into component distributions. However, the red line
shows the best fit to observed PDFs using a high-order (n = 10) polynomial function which
is used to analytically characterise the PDFs to compute the null hypothesis in Section 3.3.

3.2. Joint Occurrence Rates

While changes in solar wind magnetic field and plasma properties have been described by
two populations (Borovsky, 2008), it has not been explicitly established that large/small
changes in one parameter are associated with large/small changes in another. Figure 3 shows
changes in solar wind velocity, density, temperature and alpha-to-proton ratio binned by the
associated changes in the magnetic field (in terms of both vector and angular changes).

Velocity variations dramatically increase with changes in the magnetic field, as expected
for Alfvenic fluctuations, but with a possible decline at very large field changes. However,
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Figure 3 Changes in solar wind velocity, density, temperature and alpha-to-proton ratio binned by associated
changes in the magnetic field (in terms of both vector and angular changes). The variation in alpha-to-proton
ratio with the magnetic field is far less pronounced than the equivalent changes in solar wind velocity, density
or temperature.

the uncertainties in the mean values of such extreme changes are largely due to the ex-
ponential decrease in occurrence rate (see, e.g., Figure 2). Changes in solar wind density,
temperature and alpha-to-proton ratio all steadily increase with magnetic field changes up
to DB ∼ 1 (Dθ ∼ 90°), after which they appear to plateau. Again, uncertainties at DB > 1
(Dθ > 90°) are too large for us to draw firm conclusions about the interrelation between
parameters in this regime.

The ratio of DX at DB = 1 (Dθ = 90°) to DX at DB = 0 (Dθ = 0°), shown in each panel
of Figure 3, quantifies the interdependence of changes in a solar wind parameter with the
magnetic field. Note that the change in Dα with magnetic field is significantly lower than
the equivalent changes in solar wind velocity, density and temperature.

The mean value of DX in the range 0◦ ≥ Dθ < 5◦ is the level of fluctuation in a solar
wind property X when the magnetic field is effectively constant. We refer to this as the
ambient fluctuation level in X. We consider a “significant” change in X to be one standard
deviation above the ambient level. Figure 4 shows the fraction of changes in solar wind prop-
erties which meet this ‘significant’ criterion as the magnetic field variation increases. Large
magnetic field changes (e.g., Dθ ≥ 90◦) are accompanied by significant velocity changes
∼85% of the time. The correspondence between large magnetic field changes and signifi-
cant temperature and density changes is not as high, occurring ∼40% of the time. Significant
changes in the alpha-to-proton ratio are only observed in conjunction with ∼25% of large
magnetic field changes. If different “significance” criteria are used, e.g., two standard devi-
ations about the ambient fluctuation level, these numbers obviously change, but the overall
trends shown in Figure 4 remain.
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Figure 4 The fraction of “significant” changes in solar wind properties associated with increasing mag-
netic field variations. Large magnetic field changes (e.g., Dθ ≥ 90°) are accompanied by significant veloc-
ity changes ∼85% of the time. The correspondence between large magnetic field changes and significant
temperature and density changes is not as high, occurring ∼40% of the time. Significant changes in the
alpha-to-proton ratio are only observed in conjunction with ∼25% of large magnetic field changes.

3.3. Occurrence Rates Above the Null Hypothesis

Such mean values (and associated measures like correlation coefficients) may not be good
measures of the interrelation between solar wind parameters, as the distribution functions
are heavily skewed towards small changes (e.g., see Figure 2). For this reason, we compare
the observed joint distributions of parameters with a null hypothesis that those parameters
vary completely independently. The probability distribution of the null hypothesis is given
by

PNULL(DX,DY ) = P (DX)P (DY ), (2)

where P (DX) and P (DY ) are the independent PDFs established in Section 3.1 by the best
fits to the observations (the red lines in Figure 2).

We also compute the observed joint probability distribution, POBS(DX,DY ). This is the
normalised two-dimensional histogram of DX and DY , i.e., the number of data points in
the interval DX and DX + �DX , and DY and DY + �DY , divided by the total number of
points. �DX and �DY are chosen to give 40 equally spaced bins over the whole range of
DX and DY . Any bin with fewer than 100 data points is discarded from the analysis.

To illustrate this method, we first consider the relation between point-to-point changes
in the magnetic field vector, DB, and changes in the proton temperature, DT. The left-hand
panel of Figure 5 shows the probability density of the null hypothesis, PNULL(DB,DT),
wherein temperature and magnetic field vector vary completely independently. This is con-
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Figure 5 The relation between changes in proton temperature and magnetic field vector. Left: PNULL, the
probability density of the null hypothesis, wherein temperature and magnetic field vector vary completely
independently. This is constructed from the individual PDFs shown in Figure 2. A logarithmic colour scale
is used. Centre: POBS, the observed joint probability density of changes in temperature and magnetic field
vector, on the same colour scale. Contours of PNULL are shown as black lines. Right: The difference between
the logs of POBS and PNULL. Red (blue) indicates more (fewer) observations than expected if the variables
were independent. There is a clear correlation between field and temperature changes.

structed from the observed individual PDFs shown in Figure 2. A log colour scale is used.
The middle panel shows the observed joint distribution, POBS(DB,DT), on the same scale.
Contours of PNULL(DB,DT) are over-plotted in black. Finally, the right-hand panel of Fig-
ure 5 shows log[POBS] − log[PNULL], with red (blue) showing a greater (lesser) number
of points observed than expected from independent variations. Black dots show the con-
tour of PNULL = POBS. Compared with the null hypothesis, there is an over-abundance of
small (large) temperature changes associated with small (large) magnetic field changes. Con-
versely, there is a paucity of small temperature changes associated with large magnetic field
changes, and vice versa. This implies a correlation between DB and DT at a level above the
null hypothesis.

Figure 6 summarises the differences between the observed distributions and those ex-
pected from the null hypothesis for solar wind velocity, density, temperature and alpha-to-
proton ratio. Red (blue) regions show a greater (lesser) number of observed points than
would be expected from independent variables. The top two panels compare the change
in the velocity vector with changes in the magnetic field vector (left) and angle (right).
As expected from the highly Alfvenic nature of the solar wind, changes in the plasma
velocity and magnetic field are highly correlated. There are also strong correlations be-
tween changes in magnetic field and density, and changes in magnetic field and tempera-
ture. Changes in the alpha-to-proton ratio are more weakly correlated with changes in the
magnetic field, though still above the null hypothesis of independently varying parame-
ters.

As a measure of the deviation of the observed distribution from the null hypothesis, we
compute the mean deviation from the null hypothesis, λ = 〈| log(POBS) − log(PNULL)|〉; this
is related to the mutual information of the distributions (see, e.g., Wicks, Chapman, and
Dendy, 2009). As seen by eye, λ is much higher for density and temperature than alpha-
to-proton variations with magnetic field, thus quantifying the degree to which the observed
distributions are correlated above the null hypothesis.
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Figure 6 The deviation of the observed PDFs from the null hypothesis (i.e., log[POBS] − log[PNULL])
for various solar wind parameters. Red (blue) regions show a greater (lesser) number of observed points
than expected from independent variations. Changes in the magnetic field and velocity vectors (the top two
panels) are highly correlated due to the Alfvenic nature of the solar wind. There are also strong correlations
between changes in magnetic field and density, and changes in magnetic field and temperature. Changes in
the alpha-to-proton ratio are weakly correlated with changes in the magnetic field, though still above the null
hypothesis.

4. Discussion

In this study we extended the Borovsky (2008) analysis of the occurrence rate of changes in
solar wind properties to cover the whole ACE dataset. The correspondence between average
changes in solar wind velocity, density and temperature with magnetic field was found to be
much greater than that between the alpha-to-proton ratio and the magnetic field. Similarly,
large magnetic field changes are associated with significant changes in velocity, density,
temperature and alpha-to-proton ratio 85, 40, 40 and 25% of the time, respectively. By com-
paring with a null hypothesis, changes in velocity, density and temperature were found to
correlate with changes in the magnetic field vector, well above the occurrence rate expected
for independent variations. The correlation between changes in the alpha-to-proton ratio and
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the magnetic field vector was weaker, though still significantly above the level expected for
independent variations.

If we assume that density and temperature variations can be the result of either coronal
structure or in-transit turbulence, whereas alpha-to-proton ratio variations are exclusively the
result of changing coronal source, then our conclusions are largely in agreement with those
of Borovsky (2008) and Viall, Spence, and Kasper (2009): Only a small subset of magnetic
field discontinuities have an observable signature of changing coronal source. However, note
that a lack of detectable alpha-to-proton signature is not sufficient to discount a structure as
having a solar origin.

We have also investigated the occurrence rate of solar wind variations across magnetic
field discontinuities with differing orientations at 1 AU. The results are not shown here, but
changes in solar wind parameters across discontinuities perpendicular and parallel to the
nominal Parker spiral direction were found to have nearly identical PDFs. Such isotropy
also favours a dominance of in-transit turbulence over coronal structure, as the latter would
be expected to become aligned with the underlying spiral field by the time the solar wind
reaches 1 AU.

Finally we note that energetic particles, be they of solar, Jovian or galactic origin, may
provide a means of tracing magnetic topology (see, e.g., Owens, Horbury, and Arge, 2010),
thus leading to further information about the nature of magnetic discontinuities in the solar
wind. The analysis of such data will form the basis of future study.
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