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Abstract

Open-ocean deep convection is a highly variable and strongly nonlinear

process that plays an essential role in the global ocean circulation. A new

view of its stability is presented here, in which variability, as parameterised

by stochastic forcing, is central. The use of an idealised deep convection box

model allows analytical solutions and straightforward conceptual understand-

ing, while retaining the main features of deep convection dynamics. In contrast

to the generally abrupt stability changes in deterministic systems, measures of

stochastic stability change smoothly in response to varying forcing parameters.

These stochastic stability measures depend chiefly on the residence times of

the system in different regions of phase space, which need not contain a stable

steady state in the deterministic sense. Deep convection can occur frequently

even for parameter ranges in which it is deterministically unstable; this effect is

denoted wandering unimodality. The stochastic stability concepts are readily

applied to other components of the climate system. The results highlight the

need to take climate variability into account when analysing the stability of a

climate state.

1 Introduction

1.1 Climate and stability

In our changing climate, the sensitivity of oceanic and atmospheric circulations

to perturbations is of vital interest. Under the assumption that a circulation

pattern is a steady state, classical stability theory is applicable and gives infor-

mation about its sensitivity. Climate, however, is variable on a broad range of

time scales. In most cases, a climate “state” can only be defined through an

average in space and time over the observed circulation patterns. For instance,

the deep water formation in the North Atlantic, which is often characterised as

a stable state of the present climate (Manabe and Stouffer, 1999; Rahmstorf,
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2000), arises as an average over many different processes, including intermittent

deep convection events. Moreover, in a nonlinear system several stable states

may coexist, such that variability leads to transitions between them. Climate

change, then, can appear as a shift in the preference of different states, or cli-

mate regimes (Houghton et al., 2001; Palmer, 1999). A change of this kind

can only be understood if we consider not only the mean state, but also the

variability around it.

Our aim in this paper is to study how including environmental variability,

parameterised as a stochastic process, changes the stability of deep convection

in a conceptual box model. This leads to a discussion of general measures of

stochastic stability. While the model is developed to characterise deep con-

vection in the North Atlantic, its simplicity allows a wider application of the

results.

1.2 Deep convection in the North Atlantic

As a consequence of various forcing processes (e.g. freshwater fluxes or cyclonic

wind forcing) the vertical stratification of the North Atlantic is particularly

weak in two small regions, one in the Labrador Sea and the other in the Green-

land Sea. In these regions, strong surface cooling in winter, along with wind

forcing, can lead to a vanishing vertical density gradient. This starts a vigor-

ous vertical mixing process. Such a deep convection event occurs in patches of

about 100 km diameter, extends to depths of 2 to 3 km, and lasts for a couple

of days (see Marshall and Schott (1999) for a comprehensive review, and the

2002 JPO issue 32 (2) dedicated to deep convection in the Labrador Sea).

The cold and dense water masses formed by deep convection eventually sink

to depth and flow southwards, feeding the deep branch of the thermohaline

circulation (THC). In return, warmer waters flow northwards at the surface.

This relative heat transport achieved by the THC is an important contribution

to global-scale meridional transports of heat (Ganachaud and Wunsch, 2000),

and in particular to Europe’s mild climate (Manabe and Stouffer, 1988).
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Observational data show considerable variability in the occurrence and

depth of deep convection events. Especially in the Labrador Sea, the so-called

Great Salinity Anomalies (GSA) are well-documented (Dickson et al., 1988;

Belkin et al., 1998). During these events, the upper layer becomes anomalously

fresh, thus enhancing the vertical density gradient and suppressing deep con-

vection. Lazier’s (1980) data, spanning the years 1964 – 1974, explicitly show

the absence of deep convection during a GSA in 1968 – 1972.

Obviously deep convection is sensitive to the forcing of the upper layer of

the ocean (Dickson et al., 1996; Lilly et al., 1999). Recent studies suggest that

the ocean’s upper layer, through a positive salinity feedback, responds actively

to anomalies in the forcing (Houghton and Visbeck, 2002). Simulations from

coupled climate models indicate that a long-term shutdown of deep convection

may lead to a reduced heat transport by the THC, inducing climatic changes in

the North Atlantic region (Wood et al., 1999; Hall and Stouffer, 2001; Schaeffer

et al., 2002). It is our aim to contribute to a deeper understanding of this

sensitivity in order to assess possible future circulation changes.

1.3 Box models of deep convection

Welander (1982) introduced a simple box model to study how slowly changing

horizontal fluxes caused by eddy diffusion and advection interact with short

and vigorous convective mixing events. Since then, many studies have ap-

plied and extended his model (e.g. Lenderink and Haarsma (1994, 1996); Cessi

(1996); Hirschi et al. (1999)). Recently, Rahmstorf (2001) and Kuhlbrodt et al.

(2001) (hereafter cited as K01) extended Welander’s model to a system of four

variables, considering the coupled salinity and temperature dynamics of two

interacting boxes, one representing a well-mixed surface layer and the other

the deep waters below. The model, referred to as the 2TS model, consists of

four equations:

dT1

dt
=

1

h∗τc(∆ρ)
(T2 − T1) +

1

τ1T
(T ∗1 −AT cos(2πt)− T1) (1)
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dS1

dt
=

1

h∗τc(∆ρ)
(S2 − S1) +

1

τ1S
(S∗1 +AS cos(2πt+ ψ)− S1) (2)

dT2

dt
=

1

τc(∆ρ)
(T1 − T2) +

1

τ2
(T ∗2 − T2) (3)

dS2

dt
=

1

τc(∆ρ)
(S1 − S2) +

1

τ2
(S∗2 − S2) . (4)

The box depths are assumed to have a constant ratio h∗. The variables T1

and T2 represent respectively the temperatures of the upper and lower boxes;

similarly, S1 and S2 are the salinities of these boxes. These variables are re-

laxed towards prescribed relaxation temperatures and salinities T ∗1 , S∗1 , T ∗2 ,

S∗2 , parameterising various processes for the individual variables. The relax-

ation processes in the upper box represent lateral heat and salt exchanges with

surrounding waters, mostly by eddy mixing. As well, the upper box temper-

ature T1 is coupled strongly to the atmosphere through surface heat fluxes,

while the upper box salinity S1 evolves without a feedback to the atmosphere.

This fundamental difference is accounted for by using two different relaxation

time scales: τ1T and τ1S . The deep box temperature T2 and salinity S2 are as-

sumed to be determined by eddy transfer fluxes at depth, motivating a common

restoring time scale τ2. Observations show strong seasonal cycles in the mixed

layer variables; these cycles are captured in the model through annually-varying

forcings with amplitudes AT and AS and a phase shift ψ. Note that the time

variable has been scaled in equations (1)-(4) so that one time unit corresponds

to one year. The vertical exchange time scale τc is a function of the vertical

density difference

∆ρ = ρ1 − ρ2 = −α(T1 − T2) + β(S1 − S2) , (5)

where α and β are the thermal and haline expansion coefficients of the linearised

equation of state for seawater. The vertical exchange time scale is very large

for ∆ρ ≤ 0, but for ∆ρ > 0 convective mixing starts, and τc is of the order of

a few days.

It was demonstrated in K01 that if the model parameters are chosen to

represent the conditions in the Labrador Sea, the pronounced nonlinearity of
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the vertical mixing leads to a bistability of deep convection. The model then

has two stable steady states, one without any deep convection (“off”) and one

with deep convection occurring regularly (“on”).

1.4 Fluctuating forcing

What impact do forcing anomalies have on the bistability of deep convection?

Single short-lived anomalies can induce transitions between the “on” and the

“off” states. In particular, due to the positive salinity feedback, the vertical

density gradient is strengthened during a nonconvecting phase, making it in-

creasingly harder to interrupt such a phase the longer it lasts (K01, see also

Houghton and Visbeck (2002)).

The ubiquitous presence of variability in the atmospheric forcing can be

parameterised by stochastic processes (Hasselmann (1976); see Imkeller and

Monahan (2002) for a recent review). In the 2TS model, stochastic forcing,

parameterising heat flux variability, leads to frequent jumps between the neigh-

bourhoods of the two model states (K01). The jump frequency, conveniently

measured by the mean residence time in a neighbourhood, is a smooth func-

tion of the model parameters. In contrast, the deterministic stability of a state

disappears abruptly if a model parameter is moved beyond a bifurcation point.

The need for stochastic stability concepts to address these facts was suggested

in K01.

The theory of stochastic stability, although well developed (Freidlin and

Wentzell, 1998), has not often been used in ocean dynamics. Cessi (1994)

computed the mean residence times to characterise the variability in a simple

box model of the THC. Timmermann and Lohmann (2000) suggested that

multiplicative noise might excite additional stochastically stable model states

in Cessi’s (1994) model, but this suggestion was erroneous (Monahan et al.,

2002). Very recently, Monahan (2002a,b) worked out a number of differences

between deterministic and stochastic stability using a bistable THC box model

similar to Cessi’s (1994). Shifting the focus to deep convection, we establish in
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this paper a concept of stochastic stability that is suitable for broad application

in climate dynamics. It is built on the temporal character of jumps between

different model regimes.

In the following we move progressively from the example of deep convection

to the general concept of stochastic stability. In the next section a highly sim-

plified box model of deep convection is derived (the “1S” model) which is both

analytically tractable and open to straightforward conceptual understanding.

Despite its simplicity, it reproduces the main dynamical features of the 2TS

model. Section 3 deals with the mean residence times in the model regimes,

both analytically and numerically; these are crucial for defining stochastic sta-

bility. For the analysis of the 1S model output a coarse-grained statistics is

developed in section 4. In section 5 a general concept of stochastic stability

is established and is applied to the 1S model. In comparing deterministic and

stochastic stability, the concepts of effective and wandering unimodality are

introduced. Finally, the concluding section 6 features the wider applicability of

the stochastic stability concepts.

2 The 1S model

2.1 Model Reduction

As a first step we develop a minimal conceptual model of deep convection that

is sufficiently simple to be open to analytical understanding, yet retains the

essential features of more complex models of the system. Starting from the

2TS box model with four variables (eqs. (1) to (4)), we will end up with a 1-

box model of the mixed layer with salinity as the only variable; this is dubbed

the 1S model. To begin the simplification, we note the fact that the variations

in the deep ocean are about one order of magnitude smaller than those in the

upper layer. This motivates setting the deep box temperature and salinity

to constant values T ∗2 and S∗2 . Next, the seasonal cycle is not considered; K01
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showed that its presence does not change the basic stability properties. Finally,

noting that the temperature relaxation time scale of the upper box is much

shorter than that of salinity (by a factor of about 20 for the parameter values

from observations taken at Ocean Weather Ship Bravo [see K01]), we assume

a constant upper box temperature T1 = T ∗1 . Together, these assumptions leave

us with one single equation for the upper box salinity:

dS1

dt
=

1

τc(∆ρ)
(S∗2 − S1) +

1

τ1S
(S∗1 − S1) , (6)

with the same function for τc as above. The vertical density gradient now

depends on S1 only:

∆ρ = ρ1 − ρ2 = −α(T ∗1 − T ∗2 ) + β(S1 − S∗2) . (7)

We can rewrite the two equations (6) and (7) after a transformation of the

variables, and switching from time scales to exchange coefficients:

dy

dt
= −k y + kS(y∗ − y) ,where (8)

k = 0 for y ≤ y0

k = kc for y > y0,

and

y = S1 − S∗2 (9)

y∗ = S∗1 − S∗2 (10)

y0 =
α

β
(T ∗1 − T ∗2 ) (11)

kS = 1/τ1S (12)

k = 1/τc(∆ρ) , (13)

with 1/kc of the order of a few days. For later use we define

K = kc/kS + 1 . (14)

The model is sketched in Figure 1.
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The only variable of the 1S model, the vertical salinity gradient y, is restored

to a reference value y∗, parameterising primarily the effect of eddy mixing (other

processes acting on the upper layer are less important; Houghton and Visbeck

(2002)). If the upper layer salinity becomes sufficiently high, then the vertical

salinity gradient y overcomes the fixed vertical temperature gradient y0 (y− y0

being the vertical density gradient), and convective mixing starts. Hence, y0

plays an important role as a threshold that separates the two regimes of the

model. In the convecting regime (y > y0), the upper box is coupled to the

deep box very strongly; in the nonconvecting regime (y ≤ y0) the two boxes are

independent. The function k = 1/τc(∆ρ) has thus been specified to be a step

function with either k = kc for convection or k = 0 in the absence of convection

(corresponding to τc(∆ρ) =∞).

The two stable steady states y
(n,c)
st follow immediately from the model equa-

tion (8): a nonconvecting, or “off” state at y
(n)
st = y∗, existing if y∗ ≤ y0,

and a convecting, or “on” state at y
(c)
st = y∗/K, existing if y∗ > Ky0. For

Ky0 < y∗ ≤ y0 both states exist; the model is bistable in this parameter range.

The stability diagram (Fig. 2) shows that the stability properties of the 1S

model are very similar to those of the 2TS model (Fig. 5 in K01). In a manner

analogous to the 2TS model, we will study stability changes as a function of two

model parameters: the fixed vertical temperature gradient y0 and the reference

vertical salinity gradient y∗.

There are clearly defined borders in parameter space for the existence of

the two deterministically stable states (Fig. 2), but it is important to note that

the two regimes always exist. Even if one of the regimes does not contain a

stable state, it may be accessed temporarily by the model trajectory, due to

perturbations to the system.

Because of its simplicity, equation (8) can be expressed in terms of the

potential:

U(y) =
kS
2

(
(y − y∗)2 − (y0 − y∗)2

)
if y ≤ y0 , (15)
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U(y) =
kS K

2

((
y − y∗

K

)2

−
(
y0 −

y∗

K

)2
)

if y > y0, (16)

as

dy

dt
= −dU

dy
(17)

where we have set U(y0) = 0. This potential (see Fig. 3) is different from a

classical double-well potential because the convection threshold in (8) results

in a continuous, but non-differentiable, point at y0. For parameter values in

the bistable domain, there is no unstable steady state at this “kink”.

The vertical salinity gradient y can be pictured as an overdamped ball mov-

ing in the potential landscape U . When it exists, the nonconvecting state is

associated with a broad potential well; in contrast, the convecting state appears

as a narrower well. The two wells are connected at the convection threshold,

where the vertical density gradient is zero. A crossing of the threshold is as-

sociated with a transition from one model regime to the other. For instance,

if the ball is initially in the nonconvecting well, a strong salinity anomaly may

reduce the density gradient until convection starts. Such a perturbation pushes

the ball away from the broad well over the threshold into the narrow well of

the convecting state. If the model parameters are such that a stable convecting

state does not exist (“off” panel of Fig. 3), then the respective potential well

is replaced by a mere upward sloping potential curve; in such a case, the ball

cannot stay for long on this slope, and will roll back into the nonconvecting

state. It is a crucial feature of the model that perturbations can drive the

system across the threshold to convect temporarily.

2.2 Stochastic forcing

We now proceed to study the impact on the upper layer of anomalies in the

forcing, represented by a stochastic term in the model equation. In the stochas-

tic 2TS model such a term represented the synoptic heat flux variability in the

surface fluxes. In the present model, the focus is on the freshwater flux vari-

ability in the lateral eddy mixing; such variability is an important contribution
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to the long-term evolution of the background stratification of the water column

(Houghton and Visbeck, 2002). In the simple picture of the ball in the poten-

tial landscape, the stochastic forcing continuously pushes the ball around, both

within one well and over the convection threshold between the regimes.

The 1S model equation (8) is thus extended to include a red noise process

ξ with decorrelation time τξ and variance σ2/2τξ :

dy

dt
= −k y + kS(y∗ − y) + ξ (18)

dξ

dt
= − 1

τξ
ξ +

σ

τξ
ζt (19)

k = 0 for y ≤ y0

k = kc for y > y0

where ζt is a Gaussian white noise process. In the limit τξ → 0 the noise process

ξ(t) becomes white noise as well. In what follows, we will consider the dynamics

of the system in the τξ → 0 limit, unless explicitly stated otherwise.

The model’s parameters are estimated from the 2TS parameter values (given

in Table 2 of K01) and directly from observational data, yielding an “estimated”

parameter set. In addition, a “tutorial” parameter set is defined that helps to

clarify basic model properties. The estimation is carried out in detail in the

Appendix, and the parameter sets are given in Table 1. For the sake of brevity,

the units of these parameters are suppressed from this point on.

A typical trajectory of the model (Fig. 4) illustrates how the model fluctu-

ates around the two states for parameter values in the deterministically bistable

range, crossing the separating threshold from time to time. The relative fre-

quencies of occurrence of different ranges in y are characterised by the sta-

tionary probability density ps. With the potential (15) and (16) and white

noise forcing it is straightforward to use the Fokker-Planck equation (see, for

instance, Gardiner (2002)) to determine ps:

ps(y) = N bn exp

[
−kS
σ2

(y − y∗)2
]

if y ≤ y0 (20)

ps(y) = N bc exp

[
−kSK

σ2

(
y − y∗

K

)2
]

if y > y0 , (21)
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where

bn = exp

[
kS
σ2

(y0 − y∗)2
]
, (22)

bc = exp

[
kSK

σ2

(
y0 −

y∗

K

)2
]
, (23)

and the constant N is determined by the normalisation condition

∞∫

−∞
ps(y)dy = 1 . (24)

Probability density functions (pdfs) are shown at three representative sets of

parameter values in Fig. 3. From the exponential functions in (20) and (21) it is

obvious that the pdf peak is sharper for a deeper potential well (large kS values)

and for weaker noise (small σ values). It is useful to define the probabilities

for the model to be in the convecting regime or in the nonconvecting regime.

These are respectively:

Pc =

∫ ∞

y0

ps(y)dy (25)

and

Pn =

∫ y0

−∞
ps(y)dy . (26)

There is a full correspondence between potential wells and pdf peaks only in

the limit of white noise forcing. In a system driven by red noise (with τξ > 0)

additional pdf peaks may appear that do not correspond to a potential well,

as was shown by Monahan et al. (2002) and Monahan (2002a) in a simple box

model of the thermohaline circulation. Fig. 5 reveals that such additional pdf

peaks can also appear in the 1S model. In the ball-and-well picture this effect

is easily understood. The red noise process will contain phases in which all

its values are positive, pushing the ball constantly in the positive direction.

For parameter values in the nonconvecting monostable domain, the potential

rises steeply in the convecting regime (see Fig. 3); the ball cannot climb up

this slope far beyond the threshold of the convecting regime y0. Consequently,

a pdf peak accumulates just at the threshold. The larger the value of τξ is

(holding the variance of ξ fixed), the longer are positive-only phases in the red
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noise process, yielding a larger pdf peak at the threshold. If σ is held fixed as

τξ is increased (as in Figure 5), the peak around y0 eventually disappears again

as the standard deviation of the process ξ (equal to σ/
√

2τξ) becomes so small

that the system rarely makes excursions to the threshold of convection.

3 Residence times

The residence time tr is defined as the time that a trajectory spends uninter-

ruptedly in one regime, regardless of whether a stable steady state exists or not.

The mean residence time 〈tr〉 is an important dynamical feature of a stochas-

tic dynamical system, providing information on how often jumps between the

regimes occur. In contrast, the probabilities Pc and Pn only indicate how much

time in total the system has spent in either regime. Inspection of Fig. 4 shows

that the definition of 〈tr〉 includes long episodes of several years in which the

trajectory does not approach the convection threshold—but also short episodes

of a few time steps’ length where the trajectory stays close to the threshold y0.

Another approach is needed for an approximate analytical calculation of the

residence times. Here an expression for the mean escape time can be obtained.

Provided that a deterministically stable state exists, the escape time te is de-

fined as the time the trajectory spends in the corresponding pdf peak before

it hits a given threshold for the first time. For a system moving in a potential

U , it is an exact result (Gardiner, 2002) that the mean escape time 〈te〉 from a

potential minimum (here at y∗) to a threshold (here at y0, with y0 > y∗) is

〈te〉 =
2

σ2

∫ y0

y∗
exp

[
2

σ2
U(y)

](∫ y

−∞
exp

[
− 2

σ2
U(y′)

]
dy′
)
dy . (27)

This equation can be used to obtain an approximate analytic form for the

mean escape time 〈te,n〉 from the nonconvecting state. If we assume small

noise, then the first exponential is large only close to y0, while the second has

significant magnitude only near y∗. Hence the contribution from the second

integral is relevant for y close to y0 only, and will not vary strongly for these y
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values. Therefore we can set y to y0 in the upper bound of the second integral

and approximate the two integrals as independent. The first integral can be

evaluated by linearising U(y) around y0. With these assumptions, equation

(27) becomes

〈te,n〉 ≈
√
π

kS

(
kS
σ2

(y0 − y∗)2
)− 1

2

exp

[
kS
σ2

(y0 − y∗)2
]
. (28)

This analytical expression for the mean escape time is a generalisation of a result

already achieved by Kramers (1940) in that it applies to a bistable potential

without an intermediate unstable fixed point. It is a good approximation to

the mean residence time 〈tr,n〉 if there is a sharp pdf peak around the “off”

state (cf. eq. 20). This is achieved with either a strong restoring coefficient

kS , a small noise σ or a large positive difference (y0 − y∗), as can be seen in

comparing Fig. 6a with Fig. 6c. For a small difference (y0 − y∗), the term

(kS (y0 − y∗)2 σ−2)−1/2 in (28) diverges and the approximation breaks down

(right-hand parts of Fig. 6a and 6c).

Having considered the mean residence time in a regime, we now turn to

the distribution of residence times and to the probability for the residence

time to exceed a particular threshold. For a random process with vanishing

autocorrelation it is known (Leadbetter et al., 1983; von Storch and Zwiers,

1999) that the residence time tr in a given regime is exponentially distributed:

ps(tr) =
1

〈tr〉
exp

[
− tr
〈tr〉

]
, (29)

with 〈tr〉 the mean residence time. The cumulative probability distribution for

tr is then:

P (tr < tx) =

∫ tx

0
ps(tr)dtr = 1− exp

[
− tx
〈tr〉

]
(30)

It is easy now to compute, for instance, the probability that the residence time

tr,n exceeds one year:

P (tr,n > 1) = 1− P (tr,n < 1) = exp

[
− 1

〈tr,n〉

]
(31)

In fact, the process y will have a nonzero autocorrelation, due on the one hand

to the relaxation parameters kS and kc and on the other hand, if τξ > 0, to
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autocorrelation in the forcing. If the resulting autocorrelation time for y is still

clearly smaller than the mean residence time 〈tr,n〉, then (31) is a reasonable

approximation (Khatiwala et al., 2001), although (29) does not hold generically

(e.g. K01).

4 Coarse-grained statistics

For the sake of simplicity we have avoided introducing an explicit seasonal cycle

in the 1S model. Deep convection events thus may occur at any time in a given

year, not only around the seasonal cycle’s extremum in winter. Of course, in the

real ocean the physically most relevant feature of a deep convection event is the

mixing of the deep waters with the cold surface layer waters. Yet, in the absence

of a seasonal cycle in the model, it does not really matter when exactly in a given

year deep convection occurs, since the diffusive and advective time scales of the

deep ocean are larger than one year, and since there is virtually no seasonal

cycle in the deep waters. Under statistically stationary boundary conditions,

the relevant physical question is whether convection did occur in a given year at

all. This motivates the introduction of a coarse-grained measure of convection

frequency. A given year of the model output is called a “convecting year” if

there was at least one convection event during this year. In the ball-and-well

picture, this means that the ball has left the nonconvecting state and has been

pushed across the convection threshold on at least one occasion. Otherwise,

a year is said to be “nonconvecting”. As an illustrative example, consider the

time series displayed in Fig. 4. The model years 24, 28, 29, 30, 31, 36, 37, and

38 are “convecting years” in the above sense.

The coarse-grained measure of convection we will consider is nc, the prob-

ability for convection to occur in a given year, which was introduced in K01.

This measure is coarse-grained in the sense that it neglects any short back-

and-forth changes between the convecting and the nonconvecting regime. An

approximate analytical expression for nc is readily derived. Suppose that the
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nonconvecting stable state exists, and that (28) is valid. Obviously,

nc = 1− P (y < y0 during one year) . (32)

The probability P (y < y0 during one year) for convection not to occur in a year

is the probability to be in the nonconvecting regime in the beginning of this

year times the probability for the residence time in the nonconvecting regime

to exceed one year:

P (y < y0 during one year) (33)

= P (y(t0) < y0) · P (y(t) < y0 for all t0 < t ≤ t0 + 1) (34)

=

∫ y0

−∞
ps(y)dy · exp

[
− 1

〈tr,n〉

]
. (35)

Finally,

nc = 1− Pn · exp

[
− 1

〈tr,n〉

]
. (36)

Fig. 7a shows a comparison of nc estimated from long numerical integrations

of (18) to the approximate analytic expression (36). The analytical approxima-

tion obviously follows the numerical values quite closely over a large range of

y∗ values, for the (representative) value of y0 considered. Numerical estimates

of nc over broad ranges of y∗ and y0 are illustrated in Figure 7b.

It is instructive to compare nc, the probability for a year to be convecting,

with Pc, the probability to be in the convecting regime. Fig. 7a already reveals

that nc can exceed Pc significantly. Figure 8 contours both Pc and nc over

broad ranges of y0 and y∗. Consider first the bistable domain in the lower

left-hand section of the panels. Here, the values of Pc and nc are very similar,

as both potential wells are rather deep and the mean residence times are large.

Consequently, the exponential in (36) is close to one, so nc ≈ 1 − Pn · 1 ≈

Pc. Now consider the upper right-hand section of the panels, in the “off”

domain. Here the differences of Pc and nc are considerable. The Pc values

are small, as the stable convecting state does not exist, while the nc values

are large (even exceeding 0.5 for some parameter values). The explanation

lies in the “off” potential well being shallow here: the small residence time

15



implies that there are frequent excursions from the neighbourhood of the non-

convecting steady state, beyond the convection threshold. The pdf peak is

broad, as can be seen in the “off” panel of Fig. 3. Since Pn ≈ 1, we have

nc ≈ 1 − 1 · exp[−1/〈tr,n〉]. In the “off” domain, nc depends on the mean

residence time only. This feature comes out clearly in Fig. 7b: for large y∗,

the isolines of nc are parallel to the “off” domain borders. These parallels

are the lines of equal (y0 − y∗), and therefore isopotential (and iso-residence

time) lines in the nonconvecting regime. Note that the analytical expression

(36) gives a good qualitative understanding although the broad pdf peak (cf.

Fig. 3) indicates a relatively strong noise intensity.

The qualitative differences between Pc and nc are the same when using the

more realistic “estimated” parameters, rather than the “tutorial” parameters.

Fig. 9 shows that with the estimated parameters, the dependence of Pc and

nc in the bistable domain on y∗ is weaker than in Fig. 8, but the dependence

on y0 is stronger. This leads to kinks in the contours along the line where the

stable deterministic convecting state vanishes. The reason lies in the larger

ratio K of the two potential wells in either parameter set (see (15) and (16)).

Nevertheless, in the “off” domain the values of nc still exceed the Pc values.

The difference in physical interpretation between Pc and nc is noteworthy.

The frequent occurrence of convecting years need not depend on the existence

of the convecting state, because short excursions over the convection threshold

into the convecting regime are sufficient to achieve convection events. The

curves of nc run smoothly (or at least continuously) across the point where the

convecting stable state ceases to exist.
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5 Stochastic stability of deep convection

5.1 The concept of stochastic stability

This study has direct bearing on the concept of stability of a climate state. In

particular, it highlights a pronounced difference between deterministic stability

and stochastic stability. Note that the dynamic stability we deal with here is

not to be confused with the static stability of a stratified fluid.

In a deterministic dynamical system, where no random perturbations are

present, we call a state stable under two conditions: (i) it is a steady state,

meaning that it does not change in time (except possibly due to external mod-

ulations like the seasonal cycle), and (ii), if small perturbations are applied,

these asymptotically decay and the steady state is reached again (although

transient growth is possible).

In a stochastic dynamical system driven by Gaussian noise, the random

perturbations will sooner or later carry the system away from any neighbour-

hood of a steady state. If there are two or more coexisting stable states, the

system will jump between their neighbourhoods, or regimes in our terminology.

These regimes are then described as being metastable. The deterministic sta-

bility definition, focusing on one stable state and its neighbourhood, is thus no

longer applicable. In such a bi- or multistable system, a definition of stochas-

tic stability has to take these transitions between metastable regimes into ac-

count. If the lifetimes of the metastable regimes are not longer than the longest

physically-relevant time scales in the phenomenon under consideration, then it

is the relative stability of these regimes that is of primary interest (Monahan,

2002b). There are several natural measures of the relative stochastic stability

of metastable regimes (Freidlin and Wentzell, 1998):

1. In a system with a potential, work must be done moving from one state

to the other. Intuitively, less work is needed to escape the shallower well

than the deeper, so the relative well depth ∆U = U (1)−U (2) (where U (k)

is the potential at the bottom of the k-th well) is a measure of the relative
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stability of the metastable regimes containing these states.

2. The ratio of mean escape times, 〈t(1)
e 〉/〈t(2)

e 〉 is a second measure. Intu-

itively, a metastable regime with a longer mean escape time should be

more stable than one with a shorter mean escape time.

3. A third natural measure of relative stability is the stationary probability

of being in each of the metastable regimes, obtained from integrations of

the stationary probability density function (see eq. (25) and (26)). This

is a direct measure of the relative fractions of time spent by the system

in each regime; a regime that is occupied more often is intuitively more

stable.

4. Finally, as we have seen above, the specific problem may motivate consid-

eration of the relative frequency of occupation of regimes coarse-grained

by a basic time unit (e.g. one day or one year). This defines the fourth of

our measures of stability.

The first three of these measures are naturally interrelated. This follows

immediately from the classical result by Kramers (1940) that the mean escape

time from a metastable regime depends exponentially on the potential difference

that has to be overcome to leave it:

〈t(k)
e 〉 ∼ e(U(0)−U(k))/σ2

, (37)

where U (0) is the potential at the point separating the two wells, and σ the

noise intensity. Clearly, then, the potential difference ∆U will be directly pro-

portional to the logarithm of the ratio of the mean escape times:

σ2 ln

(
〈t(1)
e 〉
〈t(2)
e 〉

)
∼ −∆U , (38)

or similarly of the mean residence times. Furthermore, as the stationary distri-

bution is given by

ps(y) ∼ e−U(y)/σ2
, (39)
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the ratio of the heights of the two peaks of the distribution is logarithmically

related to ∆U :

σ2 ln

(
ps(y

(1))

ps(y(2))

)
∼ −∆U. (40)

If the peaks corresponding to the two metastable regimes are well-separated,

the ratio of their heights should be proportional to that of their areas:

ps(y
(1))

ps(y(2))
∼ P (1)

P (2)
=

∫ y0
−∞ ps(y) dy∫∞
y0 ps(y) dy

, (41)

which relates the third of the stability measures to the first two. In contrast, the

coarse-grained fourth measure of stability combines probability and residence

time information, and as we have seen above can give quite a different picture

of stochastic stability than the first three measures.

The discussion of relative stability has so far assumed the existence of a

deterministically stable steady state within each metastable regime. In fact, the

second, third, and fourth of the above measures can also be used to compare

the relative stability of two regions of state space if they do not contain a

deterministic stable state. Partitioning the state space in this way is natural

when the system contains thresholds separating regimes with different physical

behaviour, such as the convection threshold in the 1S model.

5.2 Stochastic stability in the 1S model and in the

2TS model

The measures of relative stability for 1S model simulations are shown in Fig. 10

a, b, c, and e. As expected, the first three of these provide similar results. For

a symmetric potential, the lines of ∆U = 0, log(〈tr,n〉/〈tr,c〉) = 0, and Pc = 0.5

would coincide. The asymmetry of the 1S model explains the deviations. The

contours of Pc, log(〈tr,n〉/〈tr,c〉), and nc run smoothly across the deterministic

stability boundaries, reflecting that those measures are not confined to deter-

ministic stability domains.

Note that there is only a narrow band in the (y0, y
∗) parameter plane

in which the probabilities to be in either regime do not differ by at least
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one order of magnitude. This is consistent with the narrow band in which

| log(〈tr,n〉/〈tr,c〉)| < 1. In the largest part of the bistable domain, to either

side of this band, the probability to be in one regime is very close to one, and

the other regime is rarely visited (E1 and E2 in Fig. 10a and b). Although the

system has two potential wells, one well is so large that the pdf peak corre-

sponding to the other well becomes very small. The deterministic bistability is

turned into effective unimodality (Fig. 10d). Effective unimodality is a known

feature of stochastic bistable systems (Gardiner, 2002), and has recently been

studied in a box model of the thermohaline circulation (Monahan (2002a,b)).

If one considers the coarse-grained probability nc, the probability for a con-

vecting year, then a new stochastic stability effect comes up. It has been shown

that in parts of the “off” domain (near point W in Fig. 10b), the probability

for a convecting year is still high, although the steady convecting state does

not exist. The high values of nc are explained by short excursions of the model

trajectory into the convecting regime. Seen in the ball-and-well picture, the ball

now spends most of the time in the broad potential well of the nonconvecting

state. The short mean residence time in this broad well however (Fig. 6b) makes

the ball wandering across the convection threshold y0 and into the convecting

regime rather often (see the pdf shape in Fig. 10f). We call this wandering uni-

modality: while the pdf has only one peak that is in the nonconvecting regime,

the coarse-grained probability nc for a convecting year is significantly larger

than Pc (and may even exceed 0.5).

The nc stability diagram from the 1S model compares well with the nc

stability diagram from the 2TS model (Fig. 11; see K01 for details on nc in the

2TS model). Both stability diagrams show the areas of effective unimodality in

the flanks of the bistable domain, and both stability diagrams show wandering

unimodality in parts of the “off” domain.

Wandering unimodality is an important effect because the coarse-grained

probability nc is well motivated by the physics of deep convection. In the real

ocean like in the two box models, the convection events are quite short, but
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still achieve the vertical mixing of the water column. The forcing of the upper

layer must bring the vertical density gradient just beyond the point of neutral

stratification to start a convection event. In the deterministic 2TS model this is

achieved by the seasonal cycle; in the stochastic 2TS model convection events

may be additionally triggered (or suppressed) by the stochastic forcing; and in

the 1S model the stochastic forcing alone causes the convection events.

The presence of noise has two opposite effects: deterministic bistability is

turned into effective unimodality, and due to the coarse-grained probability nc

areas of deterministic monostability show wandering unimodality, with both

regimes being visited. The effect of noise is crucial, too, for the interpretation

of the position of the optimal parameter set that the represents the conditions

in the Labrador Sea (the asterisk in Fig. 11a). In the deterministic setting, a

shift of the parameters to lower S∗1 or larger T ∗1 looks quite dramatic due to the

associated loss of stability for the “on” state. In the stochastic model, however,

the same parameter changes lead to quantitative, but not qualitative, changes

in the frequency of deep convection. In other words, the presence of variability

in the climate system has a moderating influence here, since the stochastic

model can repeatedly make excursions to a regime where no deterministically

stable state exists.

6 Conclusions

Open-ocean deep convection is a highly variable process. Moreover, it is an

essential part of the present day circulation in the North Atlantic, making

questions about its sensitivity to changes in climate (be they of natural or

of human origin) of global significance. Furthermore, its manifest nonlinearity

and the well-recognised significance of environmental variability to its dynamics

make it a prototypical system for considering the stochastic stability of a system

with multiple regimes of behaviour.

In this study, we have introduced the idea of stochastic stability in terms of
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the relative frequency of occupation of different climate regimes. In contrast to

the classical deterministic concept of stability, the variability of the system is

central to the idea of stochastic stability. The relative frequency of occupation

of a regime can be measured by its mean residence time, by the total time

spent there, or by the depth of the associated potential well (should one exist).

Changing model parameters smoothly changes these frequencies of occupation

and thus the stochastic stabilities; deterministic stability, by contrast, gener-

ally changes abruptly in a bifurcation. This smooth dependence of stochastic

stability on system parameters reflects the fact that stability can be defined for

any region in phase space, and not only for neighbourhoods of deterministic

steady states.

The use of a highly simplified box model—the 1S model—for this study

carries several advantages. First of all, many of the results are obtained an-

alytically, which fosters a conceptual understanding of the model behaviour.

Still, since the 1S model was derived from a more comprehensive box model

of deep convection (K01), it retains the most relevant dynamical features: the

bistability of deep convection in a certain domain in parameter space, the pos-

itive salinity feedback, and also the stochastic stability properties. Of course,

the 1S model is a highly simplified representation of the phenomenon of deep

convection, and cannot be expected to be quantitatively accurate in its fine

details. A natural extension of the present study would be the investigation of

the response to environmental fluctuations of models with a higher degree of

fidelity to the natural world. The value of conceptual models—such as the 1S

model—lies in that they provide a useful conceptual vocabulary with which the

dynamics of more complex models, and the natural system, can be understood.

It is worth noting that the dynamics of the 1S model are in fact not much

simpler than those used to parameterise convection in many complex Ocean

General Circulation Models.

The presence of the seasonal cycle motivates a coarse-grained analysis of

the 1S time series. This is done by analysing whether the convection threshold
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is hit in any one year. The probability nc for such a convecting year to occur

can be large even if the probability for convection itself is low. This effect is

dubbed wandering unimodality: there is only one pdf peak in the nonconvecting

regime, but the trajectory of the stochastically forced model frequently wanders

to the physical threshold where convection starts. In this way the deep water

formation process continues, although unstable from a deterministic perspec-

tive. The analytical expression for nc explains wandering unimodality through

relatively short residence times in the nonconvecting regime.

Another phenomenon of stochastic stability is called effective unimodality

(see also Monahan (2002a,b)). Here the stochastic forcing has the effect that

one of two existing potential wells is almost never visited. Both effects, effective

unimodality and wandering unimodality, highlight the need to take climate

variability into account when analysing the stability of climate states. The

deterministic picture of one or more distinct stable climate states is replaced

by the stochastic picture of transitions between different regimes. It is this

wandering which has to be taken as the overall climate state, and not only the

averages of the observed quantities. Changes in the statistical properties of this

wandering may then reflect a changed regime preference in the sense of Palmer

(1999) and Khatiwala et al. (2001).

In the 1S model the mean length of nonconvecting phases increases exponen-

tially under a surface freshening or warming. However, it can easily be shown

(see Kuhlbrodt (2002) for details) that the probability of these phases to be

longer than a given length shows an exponential growth only initially, when this

probability is small, but then shifts to a linear increase. Since the simplicity

of the 1S model allows a generalisation of these results, they are an extension

to the study of Khatiwala et al. (2001). At least in the context of reduced

climate models, the probability of persistent climate events (e.g. the climate

state being locked in one regime for an extended period) is not necessarily an

exponential function of the forcing parameters.

We expect that our results are still valid if feedbacks with the surroundings
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are included. Preliminary calculations indicate that coupling the noise strength

to the model variable leads to an enlarged domain of bimodality. As well,

abrupt shutdowns of deep convection, persisting for decadal or centennial time

scales and due to environmental fluctuations, have been observed in coupled

General Circulation Models (Hall and Stouffer, 2001; Goosse et al., 2002). Also,

the results can easily be carried over to other physical systems with a relevant

threshold. For instance, simple stochastic models have been successfully applied

to convection in the tropical atmosphere (Lin and Neelin, 2000; Yano et al.,

2001; Palmer, 2001). There is evidence that large-scale atmospheric variability

may be seen as a wandering between different regimes (e.g. Corti et al. (1999),

Monahan et al. (2001), although see Hsu and Zwiers (2001); see Sura (2002) for

a recent model study). Because of the many time and space scales involved in

these phenomena, concepts of stochastic stability provide a natural framework

for advancing their understanding.

Appendix

The parameter estimation for the 1S model is presented here in detail. Starting

from the parameter values from the 2TS model (see Table 2 in K01), the 1S pa-

rameters are obtained according to eqs. (10) to (12). This yields y∗ ≈ −1.5 psu

and y0 = 0.04 psu. With the time unit being one year, we have kS = 0.125 yr−1

from τ1S = 8 yr. The convective mixing rate is taken to be kc = 50 yr−1,

corresponding to a time scale of one week.

An independent check of these parameters is possible with data from

Houghton and Visbeck (2002), hereafter cited as HV02 (see also Khatiwala

et al. (2002)). They specify a value of 0.2 Sv total mean freshwater flux

into the Labrador Sea. Most of this freshwater is transported by boundary

currents, such that only 20%, or 0.04 Sv, reaches the interior Labrador Sea

upper layer through lateral eddy mixing. HV02 further assume a volume of

V = (0.6 · 106 km2) · 300 m for the interior of the Labrador Sea, and a reference
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salinity of S0 = 35 psu. One obtains a mean freshwater flux of

ΦFW =
S0

V
· 0.04 Sv = 0.25 psu yr−1 . (42)

According to HV02 the error of this estimated freshwater flux is 50%. Thus, the

value of ΦFW is consistent with the observation that, if convection is absent, the

upper layer salinity decreases at about half of this rate (Fig. 5 of HV02). In the

1S model, the initial salinity decrease immediately after the end of convection

(y(t0) = y0) is

dy

dt
= kS(y∗ − y(t0)) = 0.125 · (−1.5− 0.04) psu yr−1 ≈ −0.2 psu yr−1 , (43)

which is consistent with the above value of ΦFW .

We now estimate the decorrelation time τξ and the standard deviation std(ξ)

of the stochastic term ξ in (18). The decorrelation time scale of the freshwater

flux is difficult to estimate from observations because long time series are sparse,

and the freshwater flux has many sources (such as continental runoff, sea ice

advection and melt, precipitation). Proxy time series from models suggest a

decorrelation time of half a year to three years. Such time series include the sea

ice export through Fram strait (H. Haak, pers. comm.) and the sea ice volume

in Baffin Bay (M. Maqueda, pers. comm.). We use here τξ = 2 years. In this

way, the stochastic freshwater forcing includes interannual anomalies.

According to HV02, the anomalous freshwater flux associated with the Great

Salinity Anomaly is 20% of the mean freshwater flux. Assuming Great Salinity

Anomalies to be typical for the interannual salinity fluctuations, this yields

a standard deviation std(ξ) = 0.05 psu yr−1. The anomalous freshwater flux

amounts to 20% of the processes that drive the seasonal cycle (HV02). To

ensure a realistic amount of variability in the model, the variance of the seasonal

cycle is subsumed in that of the noise; a sensible choice is std(ξ) = 0.25 psu yr−1.

Since we will also use white noise forcing, it is useful to determine the noise

intensity σ in (19) from σ =
√

2τξ std(ξ) (Gardiner, 2002). With the above

values this yields σ = 0.5 psu yr−1/2.
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Parameter set kS

(yr−1)

kc

(yr−1)

σ

(psu yr−1/2)

τξ

(yr)

y∗

(psu)

y0

(psu)

“estimated” 0.125 50 0.5 2.0 -1.5 0.04

“tutorial” 1.0 10 0.8 0 – –

Table 1: Parameter sets for 1S model simulations. For the tutorial parameter set no

particular values for y∗ and y0 are specified.
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Figure 1: Sketch of the 1S model with one single active box. The only variable is the

vertical salinity gradient y. Restoring to the reference value y∗ represents mixing with

surrounding waters. The deep box is considered to be an infinite reservoir of water

with constant salinity.
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Figure 2: Stability diagram of the 1S model for the parameters kS = 1 and kc = 10.

Depending on the parameters y∗ and y0 there exist one or both stable states, with

convection being “on” or “off”. The lines define the borders of the respective domains.

The crosses show the parameter sets used for the panels in Fig. 3.
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Figure 3: Thin lines: potential U (in arbitrary units) as a function of y as given

by eqs. (15) and (16). The potential is shown for three cases: convecting monos-

table (“on”), bistable, and nonconvecting monostable (“off”), corresponding to the

crosses in Fig. 2. Tutorial parameters with y∗ = −1 and y0 = −1.2; −0.2; 0.0, re-

spectively. The convection threshold y0 (dash-dotted) separates the convecting and the

nonconvecting regime. Thick lines: probability density function ps (in arbitrary units)

corresponding to the potential curves. The lower panel shows that there is a non-zero

probability for the “on” regime to be occupied even if the stable “on” state does not

exist.
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Figure 4: Time series from the 1S model using the tutorial parameter set and y∗ = −1,

y0 = −0.2. The parameters correspond to the middle cross in Fig. 2. The model is

in the bistable domain. The dash-dotted line denotes the threshold y0 that separates

the convecting regime (y > y0) from the nonconvecting regime (y ≤ y0). Convection

occurs in the model years 24, 28, 29, 30, 31, 36, 37, and 38.
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Figure 5: Dependence of the pdf shape on the noise decorrelation time τξ for tutorial

parameters with σ = 1.25, y∗ = −1.0, and y0 = 0.15. The model is in the noncon-

vecting monostable domain. The upper left hand panel shows the white noise limit

case with one pdf peak. With increasing τξ (such that ps retains significant probability

around y = y0) a second pdf peak emerges, although there is no deterministic bistabi-

lity. As τξ is further increased, the probability around y = y0 shrinks and the second

peak disappears.
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Figure 6: (a) Comparison of the mean residence time in the nonconvecting regime

〈tr,n〉 (logarithmically scaled, time unit is one year) from simulations (crosses) with

the analytically computed mean escape time 〈te,n〉 (solid) as a function of y∗ for fixed

y0 = −0.067. The dashed lines enclose the bistable domain. (b) Contour plot of the

mean residence time (logarithmically scaled) as a function of the two model parame-

ters (y0, y
∗). Due to the finite length of the model simulations the contours are not

perfectly smooth and could not be computed for the whole parameter plane. Shading

indicates where they miss. The thick lines are the deterministic stability borders as

in Fig. 2. For panels (a) and (b) the tutorial parameters were used. (c) shows the

same comparison like in (a), but with other parameters: kS = 10, kc = 50, σ = 0.5,

and y0 = −0.1.
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Figure 7: (a) Comparison of numerical (crosses) and analytical (thick line) compu-

tation of nc with Pc (circles). The parameter values are kS = 10, kc = 50, σ = 0.5,

and y0 = −0.1. The vertical dashed lines denote the boundaries of deterministic bi-

stability. The analytical approximation of nc breaks down where the analytical 〈te,n〉
has its minimum (cf. Fig. 6c). (b) Contours of numerically simulated nc for the same

parameter values, with varying y0. For small y∗ values the contours follow the 〈tr,n〉
contours (cf. Fig. 6b), or the isolines of the potential function of the “off” regime.
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Figure 8: Estimates of (a) the probability Pc to be in the convecting regime and (b)

the probability nc for a convecting year from numerical simulations of the 1S model.

Contours show Pc and nc as a function of the forcing parameters y∗ and y0, using the

tutorial parameters. Thick lines denote the deterministic stability domain borders as

in previous figures. Note that the contours run smoothly through these deterministic

stability borders.
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Figure 9: Contours of (a) Pc and (b) nc for the estimated parameter set. The differ-

ence between Pc and nc is still significant, particularly in the “off” domain (y0 > 0).
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Figure 10: Stochastic stability measures, effective unimodality, and wandering unimodality.

Panel (a) and (b) show Pc and nc like in Fig. 8. They are compared with two other stability

measures: the potential well depth difference (c) and the logarithm of the ratio of the mean

residence times (e). The tutorial parameters are used for all panels. Shading in (e) is as

in previous figures. Panels (d) and (f) show the potential (thin) and the pdf (thick) as a

function of y, with y∗ and y0 corresponding to the position of the letters E2 and W in (b).

Two pdf peaks with strongly different size lead to effective unimodality (d), whereas a single

pdf peak that leaks into the other regime is associated with wandering unimodality (f).
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Figure 11: Comparison of the nc values for (a) the 2TS model and (b) the 1S model.

Parameter values are for 1S the tutorial ones, and for 2TS the optimal parameter set

as determined in K01, where T ∗1 and S∗1 vary. The asterisk in (a) denotes the position

of the optimal parameters.
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