
to a (to be verified later), we can at leading order replace b with a
and we find the required result for b� a. Putting in numbers (⌦ by
definition equals 2⇡day�1), we find that q = 1/582. This verifies
that b is very close to a, so the earlier approximation is justified.

It also shows that this simple model is off by a factor of about 2,
because we did not take into account the effect of the oblateness on
the geoid: in our approximation a surface point on the equator is
in some sense above the spherical surface we assume for the gravi-
tational part for the geopotential. Adding mass to fill up this extra
height would reduce the geopotential of this point, so we need to
move this point out to reset its geopotential to zero. In other words,
the oblateness will move the � = 0 point on the equator outward
compared to our simple model, corresponding to a larger q.

In fact this works quantitatively as well: a surface equator point
lies a height qa above the surface, approximately corresponding to a
geopotential, compared to the sphere, of g0qa. Filling up this extra
height brings this point to the surface of the geoid and reduces the
geopotential by approximately g0qa. To compensate for this reduc-
tion, the � = 0 point is located further outward by approximately
qa. In other words, in reality we expect q to be about twice as big
as in our simple model. So b � a = qa with q ⇡ ⌦2a/g0 (instead
of q = ⌦2a/2g0). Plugging in numbers we find q ⇡ 1/291, which is
close to the observed result.

4.3 The adiabatic lapse �a is the temperature change with height in
a hydrostatic, isentropic fluid. From this definition one would expect
that

… �a = �
✓
@ T

@ p

◆

s

dp

dz
.

Use the reciprocity relation for partial derivatives and a Maxwell
relation to show that this is equivalent to Eq. 4.29.

SOLUTION We can use the reciprocity relation to write✓
@ T

@ p

◆

s
= �
✓
@ T

@ s

◆

p

✓
@ s

@ p

◆

T
=
✓
@ T

@ s

◆

p

✓
@ v

@ T

◆

p
,
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where in the last step we used the second Maxwell relation. Now
writing hydrostatic balance as dp/dz = �g/v we find

�a = �
✓
@ T

@ p

◆

s

dp

dz
=

g

v

✓
@ v

@ T

◆

p

✓
@ T

@ s

◆

p
=

g↵pT

cp
,

as required. In the last step we used the definition of ↵p and that
(@ T/@ s)p = T/cp, by virtue of the reciprocal relation.

4.4 Assuming water has a constant heat capacity c and a constant
thermal expansivity ↵, show that the temperature profile for an adi-
abatic lapse rate in water is

T = T0 exp(�g0↵Z/c).
The scale height for this profile is very large so a linear profile is
appropriate for large height ranges. For water ↵ ⇡ 2⇥ 10�4K�1 and
c ⇡ 4.2⇥ 103Jkg�1 K�1 so that at typical temperatures the adiabatic
lapse rate is less than about 0.15K km�1.

SOLUTION By definition of the adiabatic lapse rate we have
dT

dz
= ��a =

g↵

c
T,

with g, ↵ and c assumed constant. The solution of this equation for
T is the exponential profile proportional to exp(�Z/H) with scale
height H,

H =
c

g0↵
⇡ 2000 km

The lapse-rate for |Z | ⌧ 2000 km is equal to T0/H, or about
0.13K km�1.

4.5 Estimate typical values for the geopotential thickness of the
1000hPa–500 hPa layer when the surface temperature is 0�C and
when the surface temperature is 20�C. By how much would the
geopotential thickness of the 1000 hPa–500 hPa layer increase on a
uniform increase in temperature of 1�C?

SOLUTION There are a few different ways to answer this question,
and there is no single right answer. In the simplest approximation
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we can use the hypsometric equation for an isothermal (T = T0)
atmosphere to find

Z1� Z0 =
RT0

g0
ln(p0/p1).

In this approximation, the thickness of the 1000hPa–500 hPa layer
at T0 = 0�C is 554dam and at T0 = 20�C we find a thickness of
594dam. We should expect this to be an overestimate of the real
thickness, because the layer-mean temperature in the hypsometric
equation will be lower than the surface temperature. In the isother-
mal approximation, each degree Celsius increase in temperature cor-
responds to an increase in thickness of about 2dam.

In a more accurate approximation we assume the temperature to
decrease with height, for example with a fixed lapse rate � , so that
T = T0� � Z . In this approximation we can write T as a function of
p, using Eq. 4.19,

T = T0 (p/p0)R�/g0 .

With this approximation, we can integrate the hypsometric equation
to find

Z1� Z0 =
Z p0

p1

RT0

g0
(p/p0)R�/g0�1 dp =

T0

�

Ç
1�
✓

p1

p0

◆R�/g0
å

.

Taking � = 6.5 Kkm�1 we find for the thickness of the 1000hPa–
500hPa layer

(Z1� Z0) (dam)= 1.9⇥ T0(K).

For T0 = 0�C we find a thickness of 519 dam, and for T0 = 20�C
a thickness of 557dam. Each degree Celsius increase in T0 corre-
sponds to a 1.9dam increase in thickness.

The isothermal approximation can be improved, by using for T0
an estimated temperature in the middle of the layer, instead of the
surface temperature. Of course, we do not know where the mid-
dle of the layer is precisely, but the 750 hPa level in the standard
atmosphere is about Zm = 2.5 km high. So we could adjust the sur-
face temperature T0 to T0 � � Zm and then use this temperature in
the isothermal approximation. Using this method and again taking
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� = 6.5K km�1 we find at a surface temperature of 0�C a thickness
of 521dam and for a surface temperature of 20�C a thickness of
562dam.

4.6 Show that for an isothermal atmosphere the Brunt–Väisälä fre-
quency is given by:

N 2 =
g2

cpT
.

The isothermal atmosphere is one of the most stable profiles ob-
served in the atmosphere (for example, in the lower stratosphere).
This provides a typical upper bound for the buoyancy frequency.
Hence show that typical buoyancy periods are not shorter than about
5 minutes.

SOLUTION It is easiest to use the ideal gas approximation for Eq. 4.44,
where we take �a = �d = g/cp. We then get for the buoyancy fre-
quency N in an ideal gas:

N 2 =
g

T

Ç
g

cp
+

dT

dz

å
.

The required result now follows when putting in the isothermal con-
dition dT/dz = 0. Putting in numbers (take T0 = 0�C) we get N =
1.9⇥10�2s�1. The corresponding period is 2⇡/N = 335 s= 5.6 min.
Expecting typical buoyancy frequencies to be less than the isother-
mal one, we expect typical periods to be not less than 5 minutes
or so. Observed values of N are closer to about N = 10�2s�1 in
the mid-latitude troposphere, corresponding to a period of about 10
minutes.

4.7 Total air temperature. The air at the skin of an aircraft has
the same speed as the aircraft itself because viscosity makes the air
“stick” to the aircraft. In the frame of reference moving with the
aircraft the air then has to decelerate from the aircraft speed to a
standstill at the skin of the aircraft. Use the Bernoulli equation to
show that the temperature Tt of this decelerated air is related to the
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actual air temperature T by

Tt

T
= 1+

�� 1
2

✓V
C

◆2
,

with � = cp/cv, V the flight speed of the aircraft, and C = p�RT
the speed of sound. The ratio V /C is called the Mach number. The
temperature Tt of the decelerated air is called the stagnation tem-

perature or the total air temperature. In this context, the actual air
temperature T is also called the static air temperature. A probe on
an aircraft measures the total air temperature and uses the flight
speed to calculate the static air temperature.

Calculate typical values of the total air temperature for an aircraft
at cruising altitude. Would an aircraft expand appreciably due to this
heating effect? The difference between Tt and T can be quite large:
the same effect is responsible for heating up spacecraft or meteorites
when they (re-)enter the Earth’s atmosphere. In popular literature it
is often said that this heating is due to friction. This is a confusing
way of describing the phenomenon. Friction only ensures that the
air sticks to the space ship; the heating itself is due to the Bernoulli
effect, or its supersonic equivalent (at very low densities ballistic
effects of individual molecules need to be taken into account).

SOLUTION In the reference frame of the aircraft, that is, the reference
frame where we do the measurements, the air on its skin has zero
velocity but the air further ahead of the aircraft has a speed of V in
the direction of the aircraft. So in this frame of reference the air-
speed decelerates from V to zero. Because this deceleration occurs
adiabatically, the Bernoulli function is conserved. For an ideal gas,
we get

(cpT +�)ahead of aircraft+
1
2
V 2 = (cpT +�)at skin of aircraft,

where we used the ideal gas expression for the enthalpy (the zero
point energy is irrelevant in this context), and we set V = 0 at
the skin of the aircraft. Because the geopotential is not expected
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to change much during the deceleration of the air, we get

cpT +
1
2
V 2 = cpTt

where we have defined the temperature ahead of the aircraft as the
static air temperature, T , and the air temperature at the skin of the
aircraft at the as the total air temperature Tt . This equation can be
rearranged to

Tt

T
= 1+

V 2

2cpT
= 1+

�RT

2cpT

✓V
C

◆2
,

where we used C 2 = �RT . Now writing R = cp � cv = cp (1� 1/�)
we find the desired result.

The typical cruise speed of a passenger aircraft may be about V =
900km hr�1 = 250m s�1. The soundspeed near the tropopause level
(with T ⇡ 220 K) is about C = 300 m s�1. We then find

Tt/T ⇡ 1.14,

corresponding to a total air temperature of about Tt ⇡ 250 K, com-
pared to a static air temperature of T = 220 K. The difference is
about 30�C. With a linear thermal expansion coefficient of about
2 ⇥ 10�5 K�1 (we used an approximate value for aluminium), we
find a fractional expansion of 6⇥ 10�4 of the length of the aircraft.
At a typical length of perhaps 60m, this corresponds to an additional
length of nearly 4cm.

4.8 Entropy in statistical mechanics. Using the definition, Eq. 4.67,
of the probability Pi of a microstate i, show that the entropy of a
system, Eq. 4.78, can be expressed as

… SA = �kB

X
i
Pi ln Pi.

This expression for entropy is called the Gibbs entropy. Besides its
central role in statistical mechanics, it is also the relevant expression
of Shannon’s information entropy, see footnote 14. Show that if the
microstates i have an equal probability, the Gibbs entropy reduces to
the Boltzmann entropy, Eq. 2.35.
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SOLUTION Taking the logarithm of Eq. 4.67, we get

ln Pi = �UA,i/kB T � ln Z .

Multiply through by �kB Pi and sum over all microstates, to find

�kB

X
i
Pi ln Pi =
X

i
Pi UA,i/T+kB ln Z

X
i
Pi = hUi/T+kB ln Z ,

where in the last step we used that the probabilities Pi are normal-
ized, and thus add up to 1. Comparing this equation with the defini-
tion of SA in Eq. 4.78, we find the desired result.

At equal probabilities for the microstates, we have Pi = 1/W , with
W the number of microstates. So we find for the Gibbs entropy

SA = �kB

X
i
Pi ln Pi = kB

X
i
(1/W ) lnW = kB lnW ,

which is the Boltzmann expression for the entropy, Eq. 2.35.
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